xref: /openbmc/linux/drivers/spi/spi-dw-dma.c (revision 2cf1c348)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Special handling for DW DMA core
4  *
5  * Copyright (c) 2009, 2014 Intel Corporation.
6  */
7 
8 #include <linux/completion.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/irqreturn.h>
12 #include <linux/jiffies.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 #include <linux/platform_data/dma-dw.h>
16 #include <linux/spi/spi.h>
17 #include <linux/types.h>
18 
19 #include "spi-dw.h"
20 
21 #define DW_SPI_RX_BUSY		0
22 #define DW_SPI_RX_BURST_LEVEL	16
23 #define DW_SPI_TX_BUSY		1
24 #define DW_SPI_TX_BURST_LEVEL	16
25 
26 static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
27 {
28 	struct dw_dma_slave *s = param;
29 
30 	if (s->dma_dev != chan->device->dev)
31 		return false;
32 
33 	chan->private = s;
34 	return true;
35 }
36 
37 static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
38 {
39 	struct dma_slave_caps caps;
40 	u32 max_burst, def_burst;
41 	int ret;
42 
43 	def_burst = dws->fifo_len / 2;
44 
45 	ret = dma_get_slave_caps(dws->rxchan, &caps);
46 	if (!ret && caps.max_burst)
47 		max_burst = caps.max_burst;
48 	else
49 		max_burst = DW_SPI_RX_BURST_LEVEL;
50 
51 	dws->rxburst = min(max_burst, def_burst);
52 	dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
53 
54 	ret = dma_get_slave_caps(dws->txchan, &caps);
55 	if (!ret && caps.max_burst)
56 		max_burst = caps.max_burst;
57 	else
58 		max_burst = DW_SPI_TX_BURST_LEVEL;
59 
60 	/*
61 	 * Having a Rx DMA channel serviced with higher priority than a Tx DMA
62 	 * channel might not be enough to provide a well balanced DMA-based
63 	 * SPI transfer interface. There might still be moments when the Tx DMA
64 	 * channel is occasionally handled faster than the Rx DMA channel.
65 	 * That in its turn will eventually cause the SPI Rx FIFO overflow if
66 	 * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
67 	 * cleared by the Rx DMA channel. In order to fix the problem the Tx
68 	 * DMA activity is intentionally slowed down by limiting the SPI Tx
69 	 * FIFO depth with a value twice bigger than the Tx burst length.
70 	 */
71 	dws->txburst = min(max_burst, def_burst);
72 	dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
73 }
74 
75 static void dw_spi_dma_sg_burst_init(struct dw_spi *dws)
76 {
77 	struct dma_slave_caps tx = {0}, rx = {0};
78 
79 	dma_get_slave_caps(dws->txchan, &tx);
80 	dma_get_slave_caps(dws->rxchan, &rx);
81 
82 	if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
83 		dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
84 	else if (tx.max_sg_burst > 0)
85 		dws->dma_sg_burst = tx.max_sg_burst;
86 	else if (rx.max_sg_burst > 0)
87 		dws->dma_sg_burst = rx.max_sg_burst;
88 	else
89 		dws->dma_sg_burst = 0;
90 }
91 
92 static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
93 {
94 	struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
95 	struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
96 	struct pci_dev *dma_dev;
97 	dma_cap_mask_t mask;
98 
99 	/*
100 	 * Get pci device for DMA controller, currently it could only
101 	 * be the DMA controller of Medfield
102 	 */
103 	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
104 	if (!dma_dev)
105 		return -ENODEV;
106 
107 	dma_cap_zero(mask);
108 	dma_cap_set(DMA_SLAVE, mask);
109 
110 	/* 1. Init rx channel */
111 	rx->dma_dev = &dma_dev->dev;
112 	dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
113 	if (!dws->rxchan)
114 		goto err_exit;
115 
116 	/* 2. Init tx channel */
117 	tx->dma_dev = &dma_dev->dev;
118 	dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
119 	if (!dws->txchan)
120 		goto free_rxchan;
121 
122 	dws->master->dma_rx = dws->rxchan;
123 	dws->master->dma_tx = dws->txchan;
124 
125 	init_completion(&dws->dma_completion);
126 
127 	dw_spi_dma_maxburst_init(dws);
128 
129 	dw_spi_dma_sg_burst_init(dws);
130 
131 	return 0;
132 
133 free_rxchan:
134 	dma_release_channel(dws->rxchan);
135 	dws->rxchan = NULL;
136 err_exit:
137 	return -EBUSY;
138 }
139 
140 static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
141 {
142 	dws->rxchan = dma_request_slave_channel(dev, "rx");
143 	if (!dws->rxchan)
144 		return -ENODEV;
145 
146 	dws->txchan = dma_request_slave_channel(dev, "tx");
147 	if (!dws->txchan) {
148 		dma_release_channel(dws->rxchan);
149 		dws->rxchan = NULL;
150 		return -ENODEV;
151 	}
152 
153 	dws->master->dma_rx = dws->rxchan;
154 	dws->master->dma_tx = dws->txchan;
155 
156 	init_completion(&dws->dma_completion);
157 
158 	dw_spi_dma_maxburst_init(dws);
159 
160 	dw_spi_dma_sg_burst_init(dws);
161 
162 	return 0;
163 }
164 
165 static void dw_spi_dma_exit(struct dw_spi *dws)
166 {
167 	if (dws->txchan) {
168 		dmaengine_terminate_sync(dws->txchan);
169 		dma_release_channel(dws->txchan);
170 	}
171 
172 	if (dws->rxchan) {
173 		dmaengine_terminate_sync(dws->rxchan);
174 		dma_release_channel(dws->rxchan);
175 	}
176 }
177 
178 static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
179 {
180 	dw_spi_check_status(dws, false);
181 
182 	complete(&dws->dma_completion);
183 
184 	return IRQ_HANDLED;
185 }
186 
187 static bool dw_spi_can_dma(struct spi_controller *master,
188 			   struct spi_device *spi, struct spi_transfer *xfer)
189 {
190 	struct dw_spi *dws = spi_controller_get_devdata(master);
191 
192 	return xfer->len > dws->fifo_len;
193 }
194 
195 static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
196 {
197 	if (n_bytes == 1)
198 		return DMA_SLAVE_BUSWIDTH_1_BYTE;
199 	else if (n_bytes == 2)
200 		return DMA_SLAVE_BUSWIDTH_2_BYTES;
201 
202 	return DMA_SLAVE_BUSWIDTH_UNDEFINED;
203 }
204 
205 static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
206 {
207 	unsigned long long ms;
208 
209 	ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
210 	do_div(ms, speed);
211 	ms += ms + 200;
212 
213 	if (ms > UINT_MAX)
214 		ms = UINT_MAX;
215 
216 	ms = wait_for_completion_timeout(&dws->dma_completion,
217 					 msecs_to_jiffies(ms));
218 
219 	if (ms == 0) {
220 		dev_err(&dws->master->cur_msg->spi->dev,
221 			"DMA transaction timed out\n");
222 		return -ETIMEDOUT;
223 	}
224 
225 	return 0;
226 }
227 
228 static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
229 {
230 	return !(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_TF_EMPT);
231 }
232 
233 static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
234 				   struct spi_transfer *xfer)
235 {
236 	int retry = DW_SPI_WAIT_RETRIES;
237 	struct spi_delay delay;
238 	u32 nents;
239 
240 	nents = dw_readl(dws, DW_SPI_TXFLR);
241 	delay.unit = SPI_DELAY_UNIT_SCK;
242 	delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
243 
244 	while (dw_spi_dma_tx_busy(dws) && retry--)
245 		spi_delay_exec(&delay, xfer);
246 
247 	if (retry < 0) {
248 		dev_err(&dws->master->dev, "Tx hanged up\n");
249 		return -EIO;
250 	}
251 
252 	return 0;
253 }
254 
255 /*
256  * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
257  * channel will clear a corresponding bit.
258  */
259 static void dw_spi_dma_tx_done(void *arg)
260 {
261 	struct dw_spi *dws = arg;
262 
263 	clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
264 	if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy))
265 		return;
266 
267 	complete(&dws->dma_completion);
268 }
269 
270 static int dw_spi_dma_config_tx(struct dw_spi *dws)
271 {
272 	struct dma_slave_config txconf;
273 
274 	memset(&txconf, 0, sizeof(txconf));
275 	txconf.direction = DMA_MEM_TO_DEV;
276 	txconf.dst_addr = dws->dma_addr;
277 	txconf.dst_maxburst = dws->txburst;
278 	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
279 	txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
280 	txconf.device_fc = false;
281 
282 	return dmaengine_slave_config(dws->txchan, &txconf);
283 }
284 
285 static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
286 				unsigned int nents)
287 {
288 	struct dma_async_tx_descriptor *txdesc;
289 	dma_cookie_t cookie;
290 	int ret;
291 
292 	txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
293 					 DMA_MEM_TO_DEV,
294 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
295 	if (!txdesc)
296 		return -ENOMEM;
297 
298 	txdesc->callback = dw_spi_dma_tx_done;
299 	txdesc->callback_param = dws;
300 
301 	cookie = dmaengine_submit(txdesc);
302 	ret = dma_submit_error(cookie);
303 	if (ret) {
304 		dmaengine_terminate_sync(dws->txchan);
305 		return ret;
306 	}
307 
308 	set_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
309 
310 	return 0;
311 }
312 
313 static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
314 {
315 	return !!(dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_RF_NOT_EMPT);
316 }
317 
318 static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
319 {
320 	int retry = DW_SPI_WAIT_RETRIES;
321 	struct spi_delay delay;
322 	unsigned long ns, us;
323 	u32 nents;
324 
325 	/*
326 	 * It's unlikely that DMA engine is still doing the data fetching, but
327 	 * if it's let's give it some reasonable time. The timeout calculation
328 	 * is based on the synchronous APB/SSI reference clock rate, on a
329 	 * number of data entries left in the Rx FIFO, times a number of clock
330 	 * periods normally needed for a single APB read/write transaction
331 	 * without PREADY signal utilized (which is true for the DW APB SSI
332 	 * controller).
333 	 */
334 	nents = dw_readl(dws, DW_SPI_RXFLR);
335 	ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
336 	if (ns <= NSEC_PER_USEC) {
337 		delay.unit = SPI_DELAY_UNIT_NSECS;
338 		delay.value = ns;
339 	} else {
340 		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
341 		delay.unit = SPI_DELAY_UNIT_USECS;
342 		delay.value = clamp_val(us, 0, USHRT_MAX);
343 	}
344 
345 	while (dw_spi_dma_rx_busy(dws) && retry--)
346 		spi_delay_exec(&delay, NULL);
347 
348 	if (retry < 0) {
349 		dev_err(&dws->master->dev, "Rx hanged up\n");
350 		return -EIO;
351 	}
352 
353 	return 0;
354 }
355 
356 /*
357  * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
358  * channel will clear a corresponding bit.
359  */
360 static void dw_spi_dma_rx_done(void *arg)
361 {
362 	struct dw_spi *dws = arg;
363 
364 	clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
365 	if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy))
366 		return;
367 
368 	complete(&dws->dma_completion);
369 }
370 
371 static int dw_spi_dma_config_rx(struct dw_spi *dws)
372 {
373 	struct dma_slave_config rxconf;
374 
375 	memset(&rxconf, 0, sizeof(rxconf));
376 	rxconf.direction = DMA_DEV_TO_MEM;
377 	rxconf.src_addr = dws->dma_addr;
378 	rxconf.src_maxburst = dws->rxburst;
379 	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
380 	rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
381 	rxconf.device_fc = false;
382 
383 	return dmaengine_slave_config(dws->rxchan, &rxconf);
384 }
385 
386 static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
387 				unsigned int nents)
388 {
389 	struct dma_async_tx_descriptor *rxdesc;
390 	dma_cookie_t cookie;
391 	int ret;
392 
393 	rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
394 					 DMA_DEV_TO_MEM,
395 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
396 	if (!rxdesc)
397 		return -ENOMEM;
398 
399 	rxdesc->callback = dw_spi_dma_rx_done;
400 	rxdesc->callback_param = dws;
401 
402 	cookie = dmaengine_submit(rxdesc);
403 	ret = dma_submit_error(cookie);
404 	if (ret) {
405 		dmaengine_terminate_sync(dws->rxchan);
406 		return ret;
407 	}
408 
409 	set_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
410 
411 	return 0;
412 }
413 
414 static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
415 {
416 	u16 imr, dma_ctrl;
417 	int ret;
418 
419 	if (!xfer->tx_buf)
420 		return -EINVAL;
421 
422 	/* Setup DMA channels */
423 	ret = dw_spi_dma_config_tx(dws);
424 	if (ret)
425 		return ret;
426 
427 	if (xfer->rx_buf) {
428 		ret = dw_spi_dma_config_rx(dws);
429 		if (ret)
430 			return ret;
431 	}
432 
433 	/* Set the DMA handshaking interface */
434 	dma_ctrl = DW_SPI_DMACR_TDMAE;
435 	if (xfer->rx_buf)
436 		dma_ctrl |= DW_SPI_DMACR_RDMAE;
437 	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
438 
439 	/* Set the interrupt mask */
440 	imr = DW_SPI_INT_TXOI;
441 	if (xfer->rx_buf)
442 		imr |= DW_SPI_INT_RXUI | DW_SPI_INT_RXOI;
443 	dw_spi_umask_intr(dws, imr);
444 
445 	reinit_completion(&dws->dma_completion);
446 
447 	dws->transfer_handler = dw_spi_dma_transfer_handler;
448 
449 	return 0;
450 }
451 
452 static int dw_spi_dma_transfer_all(struct dw_spi *dws,
453 				   struct spi_transfer *xfer)
454 {
455 	int ret;
456 
457 	/* Submit the DMA Tx transfer */
458 	ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
459 	if (ret)
460 		goto err_clear_dmac;
461 
462 	/* Submit the DMA Rx transfer if required */
463 	if (xfer->rx_buf) {
464 		ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
465 					   xfer->rx_sg.nents);
466 		if (ret)
467 			goto err_clear_dmac;
468 
469 		/* rx must be started before tx due to spi instinct */
470 		dma_async_issue_pending(dws->rxchan);
471 	}
472 
473 	dma_async_issue_pending(dws->txchan);
474 
475 	ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);
476 
477 err_clear_dmac:
478 	dw_writel(dws, DW_SPI_DMACR, 0);
479 
480 	return ret;
481 }
482 
483 /*
484  * In case if at least one of the requested DMA channels doesn't support the
485  * hardware accelerated SG list entries traverse, the DMA driver will most
486  * likely work that around by performing the IRQ-based SG list entries
487  * resubmission. That might and will cause a problem if the DMA Tx channel is
488  * recharged and re-executed before the Rx DMA channel. Due to
489  * non-deterministic IRQ-handler execution latency the DMA Tx channel will
490  * start pushing data to the SPI bus before the Rx DMA channel is even
491  * reinitialized with the next inbound SG list entry. By doing so the DMA Tx
492  * channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
493  * the DMA Rx channel being recharged and re-executed will eventually be
494  * overflown.
495  *
496  * In order to solve the problem we have to feed the DMA engine with SG list
497  * entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
498  * synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
499  * and rx_sg lists may have different number of entries of different lengths
500  * (though total length should match) let's virtually split the SG-lists to the
501  * set of DMA transfers, which length is a minimum of the ordered SG-entries
502  * lengths. An ASCII-sketch of the implemented algo is following:
503  *                  xfer->len
504  *                |___________|
505  * tx_sg list:    |___|____|__|
506  * rx_sg list:    |_|____|____|
507  * DMA transfers: |_|_|__|_|__|
508  *
509  * Note in order to have this workaround solving the denoted problem the DMA
510  * engine driver should properly initialize the max_sg_burst capability and set
511  * the DMA device max segment size parameter with maximum data block size the
512  * DMA engine supports.
513  */
514 
515 static int dw_spi_dma_transfer_one(struct dw_spi *dws,
516 				   struct spi_transfer *xfer)
517 {
518 	struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
519 	unsigned int tx_len = 0, rx_len = 0;
520 	unsigned int base, len;
521 	int ret;
522 
523 	sg_init_table(&tx_tmp, 1);
524 	sg_init_table(&rx_tmp, 1);
525 
526 	for (base = 0, len = 0; base < xfer->len; base += len) {
527 		/* Fetch next Tx DMA data chunk */
528 		if (!tx_len) {
529 			tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
530 			sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
531 			tx_len = sg_dma_len(tx_sg);
532 		}
533 
534 		/* Fetch next Rx DMA data chunk */
535 		if (!rx_len) {
536 			rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
537 			sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
538 			rx_len = sg_dma_len(rx_sg);
539 		}
540 
541 		len = min(tx_len, rx_len);
542 
543 		sg_dma_len(&tx_tmp) = len;
544 		sg_dma_len(&rx_tmp) = len;
545 
546 		/* Submit DMA Tx transfer */
547 		ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
548 		if (ret)
549 			break;
550 
551 		/* Submit DMA Rx transfer */
552 		ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
553 		if (ret)
554 			break;
555 
556 		/* Rx must be started before Tx due to SPI instinct */
557 		dma_async_issue_pending(dws->rxchan);
558 
559 		dma_async_issue_pending(dws->txchan);
560 
561 		/*
562 		 * Here we only need to wait for the DMA transfer to be
563 		 * finished since SPI controller is kept enabled during the
564 		 * procedure this loop implements and there is no risk to lose
565 		 * data left in the Tx/Rx FIFOs.
566 		 */
567 		ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
568 		if (ret)
569 			break;
570 
571 		reinit_completion(&dws->dma_completion);
572 
573 		sg_dma_address(&tx_tmp) += len;
574 		sg_dma_address(&rx_tmp) += len;
575 		tx_len -= len;
576 		rx_len -= len;
577 	}
578 
579 	dw_writel(dws, DW_SPI_DMACR, 0);
580 
581 	return ret;
582 }
583 
584 static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
585 {
586 	unsigned int nents;
587 	int ret;
588 
589 	nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
590 
591 	/*
592 	 * Execute normal DMA-based transfer (which submits the Rx and Tx SG
593 	 * lists directly to the DMA engine at once) if either full hardware
594 	 * accelerated SG list traverse is supported by both channels, or the
595 	 * Tx-only SPI transfer is requested, or the DMA engine is capable to
596 	 * handle both SG lists on hardware accelerated basis.
597 	 */
598 	if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
599 		ret = dw_spi_dma_transfer_all(dws, xfer);
600 	else
601 		ret = dw_spi_dma_transfer_one(dws, xfer);
602 	if (ret)
603 		return ret;
604 
605 	if (dws->master->cur_msg->status == -EINPROGRESS) {
606 		ret = dw_spi_dma_wait_tx_done(dws, xfer);
607 		if (ret)
608 			return ret;
609 	}
610 
611 	if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS)
612 		ret = dw_spi_dma_wait_rx_done(dws);
613 
614 	return ret;
615 }
616 
617 static void dw_spi_dma_stop(struct dw_spi *dws)
618 {
619 	if (test_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy)) {
620 		dmaengine_terminate_sync(dws->txchan);
621 		clear_bit(DW_SPI_TX_BUSY, &dws->dma_chan_busy);
622 	}
623 	if (test_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy)) {
624 		dmaengine_terminate_sync(dws->rxchan);
625 		clear_bit(DW_SPI_RX_BUSY, &dws->dma_chan_busy);
626 	}
627 }
628 
629 static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
630 	.dma_init	= dw_spi_dma_init_mfld,
631 	.dma_exit	= dw_spi_dma_exit,
632 	.dma_setup	= dw_spi_dma_setup,
633 	.can_dma	= dw_spi_can_dma,
634 	.dma_transfer	= dw_spi_dma_transfer,
635 	.dma_stop	= dw_spi_dma_stop,
636 };
637 
638 void dw_spi_dma_setup_mfld(struct dw_spi *dws)
639 {
640 	dws->dma_ops = &dw_spi_dma_mfld_ops;
641 }
642 EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_mfld, SPI_DW_CORE);
643 
644 static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
645 	.dma_init	= dw_spi_dma_init_generic,
646 	.dma_exit	= dw_spi_dma_exit,
647 	.dma_setup	= dw_spi_dma_setup,
648 	.can_dma	= dw_spi_can_dma,
649 	.dma_transfer	= dw_spi_dma_transfer,
650 	.dma_stop	= dw_spi_dma_stop,
651 };
652 
653 void dw_spi_dma_setup_generic(struct dw_spi *dws)
654 {
655 	dws->dma_ops = &dw_spi_dma_generic_ops;
656 }
657 EXPORT_SYMBOL_NS_GPL(dw_spi_dma_setup_generic, SPI_DW_CORE);
658