xref: /openbmc/linux/drivers/spi/spi-dw-core.c (revision f4fc91af)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Designware SPI core controller driver (refer pxa2xx_spi.c)
4  *
5  * Copyright (c) 2009, Intel Corporation.
6  */
7 
8 #include <linux/dma-mapping.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/preempt.h>
12 #include <linux/highmem.h>
13 #include <linux/delay.h>
14 #include <linux/slab.h>
15 #include <linux/spi/spi.h>
16 #include <linux/spi/spi-mem.h>
17 #include <linux/string.h>
18 #include <linux/of.h>
19 
20 #include "spi-dw.h"
21 
22 #ifdef CONFIG_DEBUG_FS
23 #include <linux/debugfs.h>
24 #endif
25 
26 /* Slave spi_device related */
27 struct chip_data {
28 	u32 cr0;
29 	u32 rx_sample_dly;	/* RX sample delay */
30 };
31 
32 #ifdef CONFIG_DEBUG_FS
33 
34 #define DW_SPI_DBGFS_REG(_name, _off)	\
35 {					\
36 	.name = _name,			\
37 	.offset = _off,			\
38 }
39 
40 static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
41 	DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
42 	DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
43 	DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
44 	DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
45 	DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
46 	DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
47 	DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
48 	DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
49 	DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
50 	DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
51 	DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
52 	DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
53 	DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
54 	DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
55 	DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
56 	DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
57 };
58 
59 static int dw_spi_debugfs_init(struct dw_spi *dws)
60 {
61 	char name[32];
62 
63 	snprintf(name, 32, "dw_spi%d", dws->master->bus_num);
64 	dws->debugfs = debugfs_create_dir(name, NULL);
65 	if (!dws->debugfs)
66 		return -ENOMEM;
67 
68 	dws->regset.regs = dw_spi_dbgfs_regs;
69 	dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
70 	dws->regset.base = dws->regs;
71 	debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
72 
73 	return 0;
74 }
75 
76 static void dw_spi_debugfs_remove(struct dw_spi *dws)
77 {
78 	debugfs_remove_recursive(dws->debugfs);
79 }
80 
81 #else
82 static inline int dw_spi_debugfs_init(struct dw_spi *dws)
83 {
84 	return 0;
85 }
86 
87 static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
88 {
89 }
90 #endif /* CONFIG_DEBUG_FS */
91 
92 void dw_spi_set_cs(struct spi_device *spi, bool enable)
93 {
94 	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
95 	bool cs_high = !!(spi->mode & SPI_CS_HIGH);
96 
97 	/*
98 	 * DW SPI controller demands any native CS being set in order to
99 	 * proceed with data transfer. So in order to activate the SPI
100 	 * communications we must set a corresponding bit in the Slave
101 	 * Enable register no matter whether the SPI core is configured to
102 	 * support active-high or active-low CS level.
103 	 */
104 	if (cs_high == enable)
105 		dw_writel(dws, DW_SPI_SER, BIT(spi->chip_select));
106 	else
107 		dw_writel(dws, DW_SPI_SER, 0);
108 }
109 EXPORT_SYMBOL_GPL(dw_spi_set_cs);
110 
111 /* Return the max entries we can fill into tx fifo */
112 static inline u32 tx_max(struct dw_spi *dws)
113 {
114 	u32 tx_room, rxtx_gap;
115 
116 	tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
117 
118 	/*
119 	 * Another concern is about the tx/rx mismatch, we
120 	 * though to use (dws->fifo_len - rxflr - txflr) as
121 	 * one maximum value for tx, but it doesn't cover the
122 	 * data which is out of tx/rx fifo and inside the
123 	 * shift registers. So a control from sw point of
124 	 * view is taken.
125 	 */
126 	rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
127 
128 	return min3((u32)dws->tx_len, tx_room, rxtx_gap);
129 }
130 
131 /* Return the max entries we should read out of rx fifo */
132 static inline u32 rx_max(struct dw_spi *dws)
133 {
134 	return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
135 }
136 
137 static void dw_writer(struct dw_spi *dws)
138 {
139 	u32 max = tx_max(dws);
140 	u16 txw = 0;
141 
142 	while (max--) {
143 		if (dws->tx) {
144 			if (dws->n_bytes == 1)
145 				txw = *(u8 *)(dws->tx);
146 			else
147 				txw = *(u16 *)(dws->tx);
148 
149 			dws->tx += dws->n_bytes;
150 		}
151 		dw_write_io_reg(dws, DW_SPI_DR, txw);
152 		--dws->tx_len;
153 	}
154 }
155 
156 static void dw_reader(struct dw_spi *dws)
157 {
158 	u32 max = rx_max(dws);
159 	u16 rxw;
160 
161 	while (max--) {
162 		rxw = dw_read_io_reg(dws, DW_SPI_DR);
163 		if (dws->rx) {
164 			if (dws->n_bytes == 1)
165 				*(u8 *)(dws->rx) = rxw;
166 			else
167 				*(u16 *)(dws->rx) = rxw;
168 
169 			dws->rx += dws->n_bytes;
170 		}
171 		--dws->rx_len;
172 	}
173 }
174 
175 int dw_spi_check_status(struct dw_spi *dws, bool raw)
176 {
177 	u32 irq_status;
178 	int ret = 0;
179 
180 	if (raw)
181 		irq_status = dw_readl(dws, DW_SPI_RISR);
182 	else
183 		irq_status = dw_readl(dws, DW_SPI_ISR);
184 
185 	if (irq_status & SPI_INT_RXOI) {
186 		dev_err(&dws->master->dev, "RX FIFO overflow detected\n");
187 		ret = -EIO;
188 	}
189 
190 	if (irq_status & SPI_INT_RXUI) {
191 		dev_err(&dws->master->dev, "RX FIFO underflow detected\n");
192 		ret = -EIO;
193 	}
194 
195 	if (irq_status & SPI_INT_TXOI) {
196 		dev_err(&dws->master->dev, "TX FIFO overflow detected\n");
197 		ret = -EIO;
198 	}
199 
200 	/* Generically handle the erroneous situation */
201 	if (ret) {
202 		spi_reset_chip(dws);
203 		if (dws->master->cur_msg)
204 			dws->master->cur_msg->status = ret;
205 	}
206 
207 	return ret;
208 }
209 EXPORT_SYMBOL_GPL(dw_spi_check_status);
210 
211 static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
212 {
213 	u16 irq_status = dw_readl(dws, DW_SPI_ISR);
214 
215 	if (dw_spi_check_status(dws, false)) {
216 		spi_finalize_current_transfer(dws->master);
217 		return IRQ_HANDLED;
218 	}
219 
220 	/*
221 	 * Read data from the Rx FIFO every time we've got a chance executing
222 	 * this method. If there is nothing left to receive, terminate the
223 	 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
224 	 * final stage of the transfer. By doing so we'll get the next IRQ
225 	 * right when the leftover incoming data is received.
226 	 */
227 	dw_reader(dws);
228 	if (!dws->rx_len) {
229 		spi_mask_intr(dws, 0xff);
230 		spi_finalize_current_transfer(dws->master);
231 	} else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
232 		dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
233 	}
234 
235 	/*
236 	 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
237 	 * disabled after the data transmission is finished so not to
238 	 * have the TXE IRQ flood at the final stage of the transfer.
239 	 */
240 	if (irq_status & SPI_INT_TXEI) {
241 		dw_writer(dws);
242 		if (!dws->tx_len)
243 			spi_mask_intr(dws, SPI_INT_TXEI);
244 	}
245 
246 	return IRQ_HANDLED;
247 }
248 
249 static irqreturn_t dw_spi_irq(int irq, void *dev_id)
250 {
251 	struct spi_controller *master = dev_id;
252 	struct dw_spi *dws = spi_controller_get_devdata(master);
253 	u16 irq_status = dw_readl(dws, DW_SPI_ISR) & 0x3f;
254 
255 	if (!irq_status)
256 		return IRQ_NONE;
257 
258 	if (!master->cur_msg) {
259 		spi_mask_intr(dws, 0xff);
260 		return IRQ_HANDLED;
261 	}
262 
263 	return dws->transfer_handler(dws);
264 }
265 
266 static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
267 {
268 	u32 cr0 = 0;
269 
270 	if (!(dws->caps & DW_SPI_CAP_DWC_SSI)) {
271 		/* CTRLR0[ 5: 4] Frame Format */
272 		cr0 |= SSI_MOTO_SPI << SPI_FRF_OFFSET;
273 
274 		/*
275 		 * SPI mode (SCPOL|SCPH)
276 		 * CTRLR0[ 6] Serial Clock Phase
277 		 * CTRLR0[ 7] Serial Clock Polarity
278 		 */
279 		cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << SPI_SCOL_OFFSET;
280 		cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << SPI_SCPH_OFFSET;
281 
282 		/* CTRLR0[11] Shift Register Loop */
283 		cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << SPI_SRL_OFFSET;
284 	} else {
285 		/* CTRLR0[ 7: 6] Frame Format */
286 		cr0 |= SSI_MOTO_SPI << DWC_SSI_CTRLR0_FRF_OFFSET;
287 
288 		/*
289 		 * SPI mode (SCPOL|SCPH)
290 		 * CTRLR0[ 8] Serial Clock Phase
291 		 * CTRLR0[ 9] Serial Clock Polarity
292 		 */
293 		cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << DWC_SSI_CTRLR0_SCPOL_OFFSET;
294 		cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << DWC_SSI_CTRLR0_SCPH_OFFSET;
295 
296 		/* CTRLR0[13] Shift Register Loop */
297 		cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << DWC_SSI_CTRLR0_SRL_OFFSET;
298 
299 		if (dws->caps & DW_SPI_CAP_KEEMBAY_MST)
300 			cr0 |= DWC_SSI_CTRLR0_KEEMBAY_MST;
301 	}
302 
303 	return cr0;
304 }
305 
306 void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
307 			  struct dw_spi_cfg *cfg)
308 {
309 	struct chip_data *chip = spi_get_ctldata(spi);
310 	u32 cr0 = chip->cr0;
311 	u32 speed_hz;
312 	u16 clk_div;
313 
314 	/* CTRLR0[ 4/3: 0] Data Frame Size */
315 	cr0 |= (cfg->dfs - 1);
316 
317 	if (!(dws->caps & DW_SPI_CAP_DWC_SSI))
318 		/* CTRLR0[ 9:8] Transfer Mode */
319 		cr0 |= cfg->tmode << SPI_TMOD_OFFSET;
320 	else
321 		/* CTRLR0[11:10] Transfer Mode */
322 		cr0 |= cfg->tmode << DWC_SSI_CTRLR0_TMOD_OFFSET;
323 
324 	dw_writel(dws, DW_SPI_CTRLR0, cr0);
325 
326 	if (cfg->tmode == SPI_TMOD_EPROMREAD || cfg->tmode == SPI_TMOD_RO)
327 		dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);
328 
329 	/* Note DW APB SSI clock divider doesn't support odd numbers */
330 	clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
331 	speed_hz = dws->max_freq / clk_div;
332 
333 	if (dws->current_freq != speed_hz) {
334 		spi_set_clk(dws, clk_div);
335 		dws->current_freq = speed_hz;
336 	}
337 
338 	/* Update RX sample delay if required */
339 	if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
340 		dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
341 		dws->cur_rx_sample_dly = chip->rx_sample_dly;
342 	}
343 }
344 EXPORT_SYMBOL_GPL(dw_spi_update_config);
345 
346 static void dw_spi_irq_setup(struct dw_spi *dws)
347 {
348 	u16 level;
349 	u8 imask;
350 
351 	/*
352 	 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
353 	 * will be adjusted at the final stage of the IRQ-based SPI transfer
354 	 * execution so not to lose the leftover of the incoming data.
355 	 */
356 	level = min_t(u16, dws->fifo_len / 2, dws->tx_len);
357 	dw_writel(dws, DW_SPI_TXFTLR, level);
358 	dw_writel(dws, DW_SPI_RXFTLR, level - 1);
359 
360 	imask = SPI_INT_TXEI | SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI |
361 		SPI_INT_RXFI;
362 	spi_umask_intr(dws, imask);
363 
364 	dws->transfer_handler = dw_spi_transfer_handler;
365 }
366 
367 /*
368  * The iterative procedure of the poll-based transfer is simple: write as much
369  * as possible to the Tx FIFO, wait until the pending to receive data is ready
370  * to be read, read it from the Rx FIFO and check whether the performed
371  * procedure has been successful.
372  *
373  * Note this method the same way as the IRQ-based transfer won't work well for
374  * the SPI devices connected to the controller with native CS due to the
375  * automatic CS assertion/de-assertion.
376  */
377 static int dw_spi_poll_transfer(struct dw_spi *dws,
378 				struct spi_transfer *transfer)
379 {
380 	struct spi_delay delay;
381 	u16 nbits;
382 	int ret;
383 
384 	delay.unit = SPI_DELAY_UNIT_SCK;
385 	nbits = dws->n_bytes * BITS_PER_BYTE;
386 
387 	do {
388 		dw_writer(dws);
389 
390 		delay.value = nbits * (dws->rx_len - dws->tx_len);
391 		spi_delay_exec(&delay, transfer);
392 
393 		dw_reader(dws);
394 
395 		ret = dw_spi_check_status(dws, true);
396 		if (ret)
397 			return ret;
398 	} while (dws->rx_len);
399 
400 	return 0;
401 }
402 
403 static int dw_spi_transfer_one(struct spi_controller *master,
404 		struct spi_device *spi, struct spi_transfer *transfer)
405 {
406 	struct dw_spi *dws = spi_controller_get_devdata(master);
407 	struct dw_spi_cfg cfg = {
408 		.tmode = SPI_TMOD_TR,
409 		.dfs = transfer->bits_per_word,
410 		.freq = transfer->speed_hz,
411 	};
412 	int ret;
413 
414 	dws->dma_mapped = 0;
415 	dws->n_bytes = DIV_ROUND_UP(transfer->bits_per_word, BITS_PER_BYTE);
416 	dws->tx = (void *)transfer->tx_buf;
417 	dws->tx_len = transfer->len / dws->n_bytes;
418 	dws->rx = transfer->rx_buf;
419 	dws->rx_len = dws->tx_len;
420 
421 	/* Ensure the data above is visible for all CPUs */
422 	smp_mb();
423 
424 	spi_enable_chip(dws, 0);
425 
426 	dw_spi_update_config(dws, spi, &cfg);
427 
428 	transfer->effective_speed_hz = dws->current_freq;
429 
430 	/* Check if current transfer is a DMA transaction */
431 	if (master->can_dma && master->can_dma(master, spi, transfer))
432 		dws->dma_mapped = master->cur_msg_mapped;
433 
434 	/* For poll mode just disable all interrupts */
435 	spi_mask_intr(dws, 0xff);
436 
437 	if (dws->dma_mapped) {
438 		ret = dws->dma_ops->dma_setup(dws, transfer);
439 		if (ret)
440 			return ret;
441 	}
442 
443 	spi_enable_chip(dws, 1);
444 
445 	if (dws->dma_mapped)
446 		return dws->dma_ops->dma_transfer(dws, transfer);
447 	else if (dws->irq == IRQ_NOTCONNECTED)
448 		return dw_spi_poll_transfer(dws, transfer);
449 
450 	dw_spi_irq_setup(dws);
451 
452 	return 1;
453 }
454 
455 static void dw_spi_handle_err(struct spi_controller *master,
456 		struct spi_message *msg)
457 {
458 	struct dw_spi *dws = spi_controller_get_devdata(master);
459 
460 	if (dws->dma_mapped)
461 		dws->dma_ops->dma_stop(dws);
462 
463 	spi_reset_chip(dws);
464 }
465 
466 static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
467 {
468 	if (op->data.dir == SPI_MEM_DATA_IN)
469 		op->data.nbytes = clamp_val(op->data.nbytes, 0, SPI_NDF_MASK + 1);
470 
471 	return 0;
472 }
473 
474 static bool dw_spi_supports_mem_op(struct spi_mem *mem,
475 				   const struct spi_mem_op *op)
476 {
477 	if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
478 	    op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
479 		return false;
480 
481 	return spi_mem_default_supports_op(mem, op);
482 }
483 
484 static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
485 {
486 	unsigned int i, j, len;
487 	u8 *out;
488 
489 	/*
490 	 * Calculate the total length of the EEPROM command transfer and
491 	 * either use the pre-allocated buffer or create a temporary one.
492 	 */
493 	len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
494 	if (op->data.dir == SPI_MEM_DATA_OUT)
495 		len += op->data.nbytes;
496 
497 	if (len <= SPI_BUF_SIZE) {
498 		out = dws->buf;
499 	} else {
500 		out = kzalloc(len, GFP_KERNEL);
501 		if (!out)
502 			return -ENOMEM;
503 	}
504 
505 	/*
506 	 * Collect the operation code, address and dummy bytes into the single
507 	 * buffer. If it's a transfer with data to be sent, also copy it into the
508 	 * single buffer in order to speed the data transmission up.
509 	 */
510 	for (i = 0; i < op->cmd.nbytes; ++i)
511 		out[i] = SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
512 	for (j = 0; j < op->addr.nbytes; ++i, ++j)
513 		out[i] = SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
514 	for (j = 0; j < op->dummy.nbytes; ++i, ++j)
515 		out[i] = 0x0;
516 
517 	if (op->data.dir == SPI_MEM_DATA_OUT)
518 		memcpy(&out[i], op->data.buf.out, op->data.nbytes);
519 
520 	dws->n_bytes = 1;
521 	dws->tx = out;
522 	dws->tx_len = len;
523 	if (op->data.dir == SPI_MEM_DATA_IN) {
524 		dws->rx = op->data.buf.in;
525 		dws->rx_len = op->data.nbytes;
526 	} else {
527 		dws->rx = NULL;
528 		dws->rx_len = 0;
529 	}
530 
531 	return 0;
532 }
533 
534 static void dw_spi_free_mem_buf(struct dw_spi *dws)
535 {
536 	if (dws->tx != dws->buf)
537 		kfree(dws->tx);
538 }
539 
540 static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
541 {
542 	u32 room, entries, sts;
543 	unsigned int len;
544 	u8 *buf;
545 
546 	/*
547 	 * At initial stage we just pre-fill the Tx FIFO in with no rush,
548 	 * since native CS hasn't been enabled yet and the automatic data
549 	 * transmission won't start til we do that.
550 	 */
551 	len = min(dws->fifo_len, dws->tx_len);
552 	buf = dws->tx;
553 	while (len--)
554 		dw_write_io_reg(dws, DW_SPI_DR, *buf++);
555 
556 	/*
557 	 * After setting any bit in the SER register the transmission will
558 	 * start automatically. We have to keep up with that procedure
559 	 * otherwise the CS de-assertion will happen whereupon the memory
560 	 * operation will be pre-terminated.
561 	 */
562 	len = dws->tx_len - ((void *)buf - dws->tx);
563 	dw_spi_set_cs(spi, false);
564 	while (len) {
565 		entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
566 		if (!entries) {
567 			dev_err(&dws->master->dev, "CS de-assertion on Tx\n");
568 			return -EIO;
569 		}
570 		room = min(dws->fifo_len - entries, len);
571 		for (; room; --room, --len)
572 			dw_write_io_reg(dws, DW_SPI_DR, *buf++);
573 	}
574 
575 	/*
576 	 * Data fetching will start automatically if the EEPROM-read mode is
577 	 * activated. We have to keep up with the incoming data pace to
578 	 * prevent the Rx FIFO overflow causing the inbound data loss.
579 	 */
580 	len = dws->rx_len;
581 	buf = dws->rx;
582 	while (len) {
583 		entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
584 		if (!entries) {
585 			sts = readl_relaxed(dws->regs + DW_SPI_RISR);
586 			if (sts & SPI_INT_RXOI) {
587 				dev_err(&dws->master->dev, "FIFO overflow on Rx\n");
588 				return -EIO;
589 			}
590 			continue;
591 		}
592 		entries = min(entries, len);
593 		for (; entries; --entries, --len)
594 			*buf++ = dw_read_io_reg(dws, DW_SPI_DR);
595 	}
596 
597 	return 0;
598 }
599 
600 static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
601 {
602 	return dw_readl(dws, DW_SPI_SR) & SR_BUSY;
603 }
604 
605 static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
606 {
607 	int retry = SPI_WAIT_RETRIES;
608 	struct spi_delay delay;
609 	unsigned long ns, us;
610 	u32 nents;
611 
612 	nents = dw_readl(dws, DW_SPI_TXFLR);
613 	ns = NSEC_PER_SEC / dws->current_freq * nents;
614 	ns *= dws->n_bytes * BITS_PER_BYTE;
615 	if (ns <= NSEC_PER_USEC) {
616 		delay.unit = SPI_DELAY_UNIT_NSECS;
617 		delay.value = ns;
618 	} else {
619 		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
620 		delay.unit = SPI_DELAY_UNIT_USECS;
621 		delay.value = clamp_val(us, 0, USHRT_MAX);
622 	}
623 
624 	while (dw_spi_ctlr_busy(dws) && retry--)
625 		spi_delay_exec(&delay, NULL);
626 
627 	if (retry < 0) {
628 		dev_err(&dws->master->dev, "Mem op hanged up\n");
629 		return -EIO;
630 	}
631 
632 	return 0;
633 }
634 
635 static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
636 {
637 	spi_enable_chip(dws, 0);
638 	dw_spi_set_cs(spi, true);
639 	spi_enable_chip(dws, 1);
640 }
641 
642 /*
643  * The SPI memory operation implementation below is the best choice for the
644  * devices, which are selected by the native chip-select lane. It's
645  * specifically developed to workaround the problem with automatic chip-select
646  * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
647  * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
648  * unavailable.
649  */
650 static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
651 {
652 	struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
653 	struct dw_spi_cfg cfg;
654 	unsigned long flags;
655 	int ret;
656 
657 	/*
658 	 * Collect the outbound data into a single buffer to speed the
659 	 * transmission up at least on the initial stage.
660 	 */
661 	ret = dw_spi_init_mem_buf(dws, op);
662 	if (ret)
663 		return ret;
664 
665 	/*
666 	 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
667 	 * operation. Transmit-only mode is suitable for the rest of them.
668 	 */
669 	cfg.dfs = 8;
670 	cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
671 	if (op->data.dir == SPI_MEM_DATA_IN) {
672 		cfg.tmode = SPI_TMOD_EPROMREAD;
673 		cfg.ndf = op->data.nbytes;
674 	} else {
675 		cfg.tmode = SPI_TMOD_TO;
676 	}
677 
678 	spi_enable_chip(dws, 0);
679 
680 	dw_spi_update_config(dws, mem->spi, &cfg);
681 
682 	spi_mask_intr(dws, 0xff);
683 
684 	spi_enable_chip(dws, 1);
685 
686 	/*
687 	 * DW APB SSI controller has very nasty peculiarities. First originally
688 	 * (without any vendor-specific modifications) it doesn't provide a
689 	 * direct way to set and clear the native chip-select signal. Instead
690 	 * the controller asserts the CS lane if Tx FIFO isn't empty and a
691 	 * transmission is going on, and automatically de-asserts it back to
692 	 * the high level if the Tx FIFO doesn't have anything to be pushed
693 	 * out. Due to that a multi-tasking or heavy IRQs activity might be
694 	 * fatal, since the transfer procedure preemption may cause the Tx FIFO
695 	 * getting empty and sudden CS de-assertion, which in the middle of the
696 	 * transfer will most likely cause the data loss. Secondly the
697 	 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
698 	 * data being automatically pulled in into the Rx FIFO. So if the
699 	 * driver software is late in fetching the data from the FIFO before
700 	 * it's overflown, new incoming data will be lost. In order to make
701 	 * sure the executed memory operations are CS-atomic and to prevent the
702 	 * Rx FIFO overflow we have to disable the local interrupts so to block
703 	 * any preemption during the subsequent IO operations.
704 	 *
705 	 * Note. At some circumstances disabling IRQs may not help to prevent
706 	 * the problems described above. The CS de-assertion and Rx FIFO
707 	 * overflow may still happen due to the relatively slow system bus or
708 	 * CPU not working fast enough, so the write-then-read algo implemented
709 	 * here just won't keep up with the SPI bus data transfer. Such
710 	 * situation is highly platform specific and is supposed to be fixed by
711 	 * manually restricting the SPI bus frequency using the
712 	 * dws->max_mem_freq parameter.
713 	 */
714 	local_irq_save(flags);
715 	preempt_disable();
716 
717 	ret = dw_spi_write_then_read(dws, mem->spi);
718 
719 	local_irq_restore(flags);
720 	preempt_enable();
721 
722 	/*
723 	 * Wait for the operation being finished and check the controller
724 	 * status only if there hasn't been any run-time error detected. In the
725 	 * former case it's just pointless. In the later one to prevent an
726 	 * additional error message printing since any hw error flag being set
727 	 * would be due to an error detected on the data transfer.
728 	 */
729 	if (!ret) {
730 		ret = dw_spi_wait_mem_op_done(dws);
731 		if (!ret)
732 			ret = dw_spi_check_status(dws, true);
733 	}
734 
735 	dw_spi_stop_mem_op(dws, mem->spi);
736 
737 	dw_spi_free_mem_buf(dws);
738 
739 	return ret;
740 }
741 
742 /*
743  * Initialize the default memory operations if a glue layer hasn't specified
744  * custom ones. Direct mapping operations will be preserved anyway since DW SPI
745  * controller doesn't have an embedded dirmap interface. Note the memory
746  * operations implemented in this driver is the best choice only for the DW APB
747  * SSI controller with standard native CS functionality. If a hardware vendor
748  * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
749  * be safer to use the normal SPI-messages-based transfers implementation.
750  */
751 static void dw_spi_init_mem_ops(struct dw_spi *dws)
752 {
753 	if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
754 	    !dws->set_cs) {
755 		dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
756 		dws->mem_ops.supports_op = dw_spi_supports_mem_op;
757 		dws->mem_ops.exec_op = dw_spi_exec_mem_op;
758 		if (!dws->max_mem_freq)
759 			dws->max_mem_freq = dws->max_freq;
760 	}
761 }
762 
763 /* This may be called twice for each spi dev */
764 static int dw_spi_setup(struct spi_device *spi)
765 {
766 	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
767 	struct chip_data *chip;
768 
769 	/* Only alloc on first setup */
770 	chip = spi_get_ctldata(spi);
771 	if (!chip) {
772 		struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
773 		u32 rx_sample_dly_ns;
774 
775 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
776 		if (!chip)
777 			return -ENOMEM;
778 		spi_set_ctldata(spi, chip);
779 		/* Get specific / default rx-sample-delay */
780 		if (device_property_read_u32(&spi->dev,
781 					     "rx-sample-delay-ns",
782 					     &rx_sample_dly_ns) != 0)
783 			/* Use default controller value */
784 			rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
785 		chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
786 							NSEC_PER_SEC /
787 							dws->max_freq);
788 	}
789 
790 	/*
791 	 * Update CR0 data each time the setup callback is invoked since
792 	 * the device parameters could have been changed, for instance, by
793 	 * the MMC SPI driver or something else.
794 	 */
795 	chip->cr0 = dw_spi_prepare_cr0(dws, spi);
796 
797 	return 0;
798 }
799 
800 static void dw_spi_cleanup(struct spi_device *spi)
801 {
802 	struct chip_data *chip = spi_get_ctldata(spi);
803 
804 	kfree(chip);
805 	spi_set_ctldata(spi, NULL);
806 }
807 
808 /* Restart the controller, disable all interrupts, clean rx fifo */
809 static void spi_hw_init(struct device *dev, struct dw_spi *dws)
810 {
811 	spi_reset_chip(dws);
812 
813 	/*
814 	 * Try to detect the FIFO depth if not set by interface driver,
815 	 * the depth could be from 2 to 256 from HW spec
816 	 */
817 	if (!dws->fifo_len) {
818 		u32 fifo;
819 
820 		for (fifo = 1; fifo < 256; fifo++) {
821 			dw_writel(dws, DW_SPI_TXFTLR, fifo);
822 			if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
823 				break;
824 		}
825 		dw_writel(dws, DW_SPI_TXFTLR, 0);
826 
827 		dws->fifo_len = (fifo == 1) ? 0 : fifo;
828 		dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
829 	}
830 
831 	/* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
832 	if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
833 		dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
834 }
835 
836 int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
837 {
838 	struct spi_controller *master;
839 	int ret;
840 
841 	if (!dws)
842 		return -EINVAL;
843 
844 	master = spi_alloc_master(dev, 0);
845 	if (!master)
846 		return -ENOMEM;
847 
848 	dws->master = master;
849 	dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
850 
851 	spi_controller_set_devdata(master, dws);
852 
853 	/* Basic HW init */
854 	spi_hw_init(dev, dws);
855 
856 	ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
857 			  master);
858 	if (ret < 0 && ret != -ENOTCONN) {
859 		dev_err(dev, "can not get IRQ\n");
860 		goto err_free_master;
861 	}
862 
863 	dw_spi_init_mem_ops(dws);
864 
865 	master->use_gpio_descriptors = true;
866 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
867 	master->bits_per_word_mask =  SPI_BPW_RANGE_MASK(4, 16);
868 	master->bus_num = dws->bus_num;
869 	master->num_chipselect = dws->num_cs;
870 	master->setup = dw_spi_setup;
871 	master->cleanup = dw_spi_cleanup;
872 	if (dws->set_cs)
873 		master->set_cs = dws->set_cs;
874 	else
875 		master->set_cs = dw_spi_set_cs;
876 	master->transfer_one = dw_spi_transfer_one;
877 	master->handle_err = dw_spi_handle_err;
878 	master->mem_ops = &dws->mem_ops;
879 	master->max_speed_hz = dws->max_freq;
880 	master->dev.of_node = dev->of_node;
881 	master->dev.fwnode = dev->fwnode;
882 	master->flags = SPI_MASTER_GPIO_SS;
883 	master->auto_runtime_pm = true;
884 
885 	/* Get default rx sample delay */
886 	device_property_read_u32(dev, "rx-sample-delay-ns",
887 				 &dws->def_rx_sample_dly_ns);
888 
889 	if (dws->dma_ops && dws->dma_ops->dma_init) {
890 		ret = dws->dma_ops->dma_init(dev, dws);
891 		if (ret) {
892 			dev_warn(dev, "DMA init failed\n");
893 		} else {
894 			master->can_dma = dws->dma_ops->can_dma;
895 			master->flags |= SPI_CONTROLLER_MUST_TX;
896 		}
897 	}
898 
899 	ret = spi_register_controller(master);
900 	if (ret) {
901 		dev_err(&master->dev, "problem registering spi master\n");
902 		goto err_dma_exit;
903 	}
904 
905 	dw_spi_debugfs_init(dws);
906 	return 0;
907 
908 err_dma_exit:
909 	if (dws->dma_ops && dws->dma_ops->dma_exit)
910 		dws->dma_ops->dma_exit(dws);
911 	spi_enable_chip(dws, 0);
912 	free_irq(dws->irq, master);
913 err_free_master:
914 	spi_controller_put(master);
915 	return ret;
916 }
917 EXPORT_SYMBOL_GPL(dw_spi_add_host);
918 
919 void dw_spi_remove_host(struct dw_spi *dws)
920 {
921 	dw_spi_debugfs_remove(dws);
922 
923 	spi_unregister_controller(dws->master);
924 
925 	if (dws->dma_ops && dws->dma_ops->dma_exit)
926 		dws->dma_ops->dma_exit(dws);
927 
928 	spi_shutdown_chip(dws);
929 
930 	free_irq(dws->irq, dws->master);
931 }
932 EXPORT_SYMBOL_GPL(dw_spi_remove_host);
933 
934 int dw_spi_suspend_host(struct dw_spi *dws)
935 {
936 	int ret;
937 
938 	ret = spi_controller_suspend(dws->master);
939 	if (ret)
940 		return ret;
941 
942 	spi_shutdown_chip(dws);
943 	return 0;
944 }
945 EXPORT_SYMBOL_GPL(dw_spi_suspend_host);
946 
947 int dw_spi_resume_host(struct dw_spi *dws)
948 {
949 	spi_hw_init(&dws->master->dev, dws);
950 	return spi_controller_resume(dws->master);
951 }
952 EXPORT_SYMBOL_GPL(dw_spi_resume_host);
953 
954 MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
955 MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
956 MODULE_LICENSE("GPL v2");
957