1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Designware SPI core controller driver (refer pxa2xx_spi.c) 4 * 5 * Copyright (c) 2009, Intel Corporation. 6 */ 7 8 #include <linux/bitfield.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/interrupt.h> 11 #include <linux/module.h> 12 #include <linux/preempt.h> 13 #include <linux/highmem.h> 14 #include <linux/delay.h> 15 #include <linux/slab.h> 16 #include <linux/spi/spi.h> 17 #include <linux/spi/spi-mem.h> 18 #include <linux/string.h> 19 #include <linux/of.h> 20 21 #include "spi-dw.h" 22 23 #ifdef CONFIG_DEBUG_FS 24 #include <linux/debugfs.h> 25 #endif 26 27 /* Slave spi_device related */ 28 struct dw_spi_chip_data { 29 u32 cr0; 30 u32 rx_sample_dly; /* RX sample delay */ 31 }; 32 33 #ifdef CONFIG_DEBUG_FS 34 35 #define DW_SPI_DBGFS_REG(_name, _off) \ 36 { \ 37 .name = _name, \ 38 .offset = _off, \ 39 } 40 41 static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = { 42 DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0), 43 DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1), 44 DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR), 45 DW_SPI_DBGFS_REG("SER", DW_SPI_SER), 46 DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR), 47 DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR), 48 DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR), 49 DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR), 50 DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR), 51 DW_SPI_DBGFS_REG("SR", DW_SPI_SR), 52 DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR), 53 DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR), 54 DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR), 55 DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR), 56 DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR), 57 DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY), 58 }; 59 60 static int dw_spi_debugfs_init(struct dw_spi *dws) 61 { 62 char name[32]; 63 64 snprintf(name, 32, "dw_spi%d", dws->master->bus_num); 65 dws->debugfs = debugfs_create_dir(name, NULL); 66 if (!dws->debugfs) 67 return -ENOMEM; 68 69 dws->regset.regs = dw_spi_dbgfs_regs; 70 dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs); 71 dws->regset.base = dws->regs; 72 debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset); 73 74 return 0; 75 } 76 77 static void dw_spi_debugfs_remove(struct dw_spi *dws) 78 { 79 debugfs_remove_recursive(dws->debugfs); 80 } 81 82 #else 83 static inline int dw_spi_debugfs_init(struct dw_spi *dws) 84 { 85 return 0; 86 } 87 88 static inline void dw_spi_debugfs_remove(struct dw_spi *dws) 89 { 90 } 91 #endif /* CONFIG_DEBUG_FS */ 92 93 void dw_spi_set_cs(struct spi_device *spi, bool enable) 94 { 95 struct dw_spi *dws = spi_controller_get_devdata(spi->controller); 96 bool cs_high = !!(spi->mode & SPI_CS_HIGH); 97 98 /* 99 * DW SPI controller demands any native CS being set in order to 100 * proceed with data transfer. So in order to activate the SPI 101 * communications we must set a corresponding bit in the Slave 102 * Enable register no matter whether the SPI core is configured to 103 * support active-high or active-low CS level. 104 */ 105 if (cs_high == enable) 106 dw_writel(dws, DW_SPI_SER, BIT(spi_get_chipselect(spi, 0))); 107 else 108 dw_writel(dws, DW_SPI_SER, 0); 109 } 110 EXPORT_SYMBOL_NS_GPL(dw_spi_set_cs, SPI_DW_CORE); 111 112 /* Return the max entries we can fill into tx fifo */ 113 static inline u32 dw_spi_tx_max(struct dw_spi *dws) 114 { 115 u32 tx_room, rxtx_gap; 116 117 tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR); 118 119 /* 120 * Another concern is about the tx/rx mismatch, we 121 * though to use (dws->fifo_len - rxflr - txflr) as 122 * one maximum value for tx, but it doesn't cover the 123 * data which is out of tx/rx fifo and inside the 124 * shift registers. So a control from sw point of 125 * view is taken. 126 */ 127 rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len); 128 129 return min3((u32)dws->tx_len, tx_room, rxtx_gap); 130 } 131 132 /* Return the max entries we should read out of rx fifo */ 133 static inline u32 dw_spi_rx_max(struct dw_spi *dws) 134 { 135 return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR)); 136 } 137 138 static void dw_writer(struct dw_spi *dws) 139 { 140 u32 max = dw_spi_tx_max(dws); 141 u32 txw = 0; 142 143 while (max--) { 144 if (dws->tx) { 145 if (dws->n_bytes == 1) 146 txw = *(u8 *)(dws->tx); 147 else if (dws->n_bytes == 2) 148 txw = *(u16 *)(dws->tx); 149 else 150 txw = *(u32 *)(dws->tx); 151 152 dws->tx += dws->n_bytes; 153 } 154 dw_write_io_reg(dws, DW_SPI_DR, txw); 155 --dws->tx_len; 156 } 157 } 158 159 static void dw_reader(struct dw_spi *dws) 160 { 161 u32 max = dw_spi_rx_max(dws); 162 u32 rxw; 163 164 while (max--) { 165 rxw = dw_read_io_reg(dws, DW_SPI_DR); 166 if (dws->rx) { 167 if (dws->n_bytes == 1) 168 *(u8 *)(dws->rx) = rxw; 169 else if (dws->n_bytes == 2) 170 *(u16 *)(dws->rx) = rxw; 171 else 172 *(u32 *)(dws->rx) = rxw; 173 174 dws->rx += dws->n_bytes; 175 } 176 --dws->rx_len; 177 } 178 } 179 180 int dw_spi_check_status(struct dw_spi *dws, bool raw) 181 { 182 u32 irq_status; 183 int ret = 0; 184 185 if (raw) 186 irq_status = dw_readl(dws, DW_SPI_RISR); 187 else 188 irq_status = dw_readl(dws, DW_SPI_ISR); 189 190 if (irq_status & DW_SPI_INT_RXOI) { 191 dev_err(&dws->master->dev, "RX FIFO overflow detected\n"); 192 ret = -EIO; 193 } 194 195 if (irq_status & DW_SPI_INT_RXUI) { 196 dev_err(&dws->master->dev, "RX FIFO underflow detected\n"); 197 ret = -EIO; 198 } 199 200 if (irq_status & DW_SPI_INT_TXOI) { 201 dev_err(&dws->master->dev, "TX FIFO overflow detected\n"); 202 ret = -EIO; 203 } 204 205 /* Generically handle the erroneous situation */ 206 if (ret) { 207 dw_spi_reset_chip(dws); 208 if (dws->master->cur_msg) 209 dws->master->cur_msg->status = ret; 210 } 211 212 return ret; 213 } 214 EXPORT_SYMBOL_NS_GPL(dw_spi_check_status, SPI_DW_CORE); 215 216 static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws) 217 { 218 u16 irq_status = dw_readl(dws, DW_SPI_ISR); 219 220 if (dw_spi_check_status(dws, false)) { 221 spi_finalize_current_transfer(dws->master); 222 return IRQ_HANDLED; 223 } 224 225 /* 226 * Read data from the Rx FIFO every time we've got a chance executing 227 * this method. If there is nothing left to receive, terminate the 228 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a 229 * final stage of the transfer. By doing so we'll get the next IRQ 230 * right when the leftover incoming data is received. 231 */ 232 dw_reader(dws); 233 if (!dws->rx_len) { 234 dw_spi_mask_intr(dws, 0xff); 235 spi_finalize_current_transfer(dws->master); 236 } else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) { 237 dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1); 238 } 239 240 /* 241 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be 242 * disabled after the data transmission is finished so not to 243 * have the TXE IRQ flood at the final stage of the transfer. 244 */ 245 if (irq_status & DW_SPI_INT_TXEI) { 246 dw_writer(dws); 247 if (!dws->tx_len) 248 dw_spi_mask_intr(dws, DW_SPI_INT_TXEI); 249 } 250 251 return IRQ_HANDLED; 252 } 253 254 static irqreturn_t dw_spi_irq(int irq, void *dev_id) 255 { 256 struct spi_controller *master = dev_id; 257 struct dw_spi *dws = spi_controller_get_devdata(master); 258 u16 irq_status = dw_readl(dws, DW_SPI_ISR) & DW_SPI_INT_MASK; 259 260 if (!irq_status) 261 return IRQ_NONE; 262 263 if (!master->cur_msg) { 264 dw_spi_mask_intr(dws, 0xff); 265 return IRQ_HANDLED; 266 } 267 268 return dws->transfer_handler(dws); 269 } 270 271 static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi) 272 { 273 u32 cr0 = 0; 274 275 if (dw_spi_ip_is(dws, PSSI)) { 276 /* CTRLR0[ 5: 4] Frame Format */ 277 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI); 278 279 /* 280 * SPI mode (SCPOL|SCPH) 281 * CTRLR0[ 6] Serial Clock Phase 282 * CTRLR0[ 7] Serial Clock Polarity 283 */ 284 if (spi->mode & SPI_CPOL) 285 cr0 |= DW_PSSI_CTRLR0_SCPOL; 286 if (spi->mode & SPI_CPHA) 287 cr0 |= DW_PSSI_CTRLR0_SCPHA; 288 289 /* CTRLR0[11] Shift Register Loop */ 290 if (spi->mode & SPI_LOOP) 291 cr0 |= DW_PSSI_CTRLR0_SRL; 292 } else { 293 /* CTRLR0[ 7: 6] Frame Format */ 294 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI); 295 296 /* 297 * SPI mode (SCPOL|SCPH) 298 * CTRLR0[ 8] Serial Clock Phase 299 * CTRLR0[ 9] Serial Clock Polarity 300 */ 301 if (spi->mode & SPI_CPOL) 302 cr0 |= DW_HSSI_CTRLR0_SCPOL; 303 if (spi->mode & SPI_CPHA) 304 cr0 |= DW_HSSI_CTRLR0_SCPHA; 305 306 /* CTRLR0[13] Shift Register Loop */ 307 if (spi->mode & SPI_LOOP) 308 cr0 |= DW_HSSI_CTRLR0_SRL; 309 310 /* CTRLR0[31] MST */ 311 if (dw_spi_ver_is_ge(dws, HSSI, 102A)) 312 cr0 |= DW_HSSI_CTRLR0_MST; 313 } 314 315 return cr0; 316 } 317 318 void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi, 319 struct dw_spi_cfg *cfg) 320 { 321 struct dw_spi_chip_data *chip = spi_get_ctldata(spi); 322 u32 cr0 = chip->cr0; 323 u32 speed_hz; 324 u16 clk_div; 325 326 /* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */ 327 cr0 |= (cfg->dfs - 1) << dws->dfs_offset; 328 329 if (dw_spi_ip_is(dws, PSSI)) 330 /* CTRLR0[ 9:8] Transfer Mode */ 331 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_TMOD_MASK, cfg->tmode); 332 else 333 /* CTRLR0[11:10] Transfer Mode */ 334 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_TMOD_MASK, cfg->tmode); 335 336 dw_writel(dws, DW_SPI_CTRLR0, cr0); 337 338 if (cfg->tmode == DW_SPI_CTRLR0_TMOD_EPROMREAD || 339 cfg->tmode == DW_SPI_CTRLR0_TMOD_RO) 340 dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0); 341 342 /* Note DW APB SSI clock divider doesn't support odd numbers */ 343 clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe; 344 speed_hz = dws->max_freq / clk_div; 345 346 if (dws->current_freq != speed_hz) { 347 dw_spi_set_clk(dws, clk_div); 348 dws->current_freq = speed_hz; 349 } 350 351 /* Update RX sample delay if required */ 352 if (dws->cur_rx_sample_dly != chip->rx_sample_dly) { 353 dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly); 354 dws->cur_rx_sample_dly = chip->rx_sample_dly; 355 } 356 } 357 EXPORT_SYMBOL_NS_GPL(dw_spi_update_config, SPI_DW_CORE); 358 359 static void dw_spi_irq_setup(struct dw_spi *dws) 360 { 361 u16 level; 362 u8 imask; 363 364 /* 365 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level 366 * will be adjusted at the final stage of the IRQ-based SPI transfer 367 * execution so not to lose the leftover of the incoming data. 368 */ 369 level = min_t(unsigned int, dws->fifo_len / 2, dws->tx_len); 370 dw_writel(dws, DW_SPI_TXFTLR, level); 371 dw_writel(dws, DW_SPI_RXFTLR, level - 1); 372 373 dws->transfer_handler = dw_spi_transfer_handler; 374 375 imask = DW_SPI_INT_TXEI | DW_SPI_INT_TXOI | 376 DW_SPI_INT_RXUI | DW_SPI_INT_RXOI | DW_SPI_INT_RXFI; 377 dw_spi_umask_intr(dws, imask); 378 } 379 380 /* 381 * The iterative procedure of the poll-based transfer is simple: write as much 382 * as possible to the Tx FIFO, wait until the pending to receive data is ready 383 * to be read, read it from the Rx FIFO and check whether the performed 384 * procedure has been successful. 385 * 386 * Note this method the same way as the IRQ-based transfer won't work well for 387 * the SPI devices connected to the controller with native CS due to the 388 * automatic CS assertion/de-assertion. 389 */ 390 static int dw_spi_poll_transfer(struct dw_spi *dws, 391 struct spi_transfer *transfer) 392 { 393 struct spi_delay delay; 394 u16 nbits; 395 int ret; 396 397 delay.unit = SPI_DELAY_UNIT_SCK; 398 nbits = dws->n_bytes * BITS_PER_BYTE; 399 400 do { 401 dw_writer(dws); 402 403 delay.value = nbits * (dws->rx_len - dws->tx_len); 404 spi_delay_exec(&delay, transfer); 405 406 dw_reader(dws); 407 408 ret = dw_spi_check_status(dws, true); 409 if (ret) 410 return ret; 411 } while (dws->rx_len); 412 413 return 0; 414 } 415 416 static int dw_spi_transfer_one(struct spi_controller *master, 417 struct spi_device *spi, 418 struct spi_transfer *transfer) 419 { 420 struct dw_spi *dws = spi_controller_get_devdata(master); 421 struct dw_spi_cfg cfg = { 422 .tmode = DW_SPI_CTRLR0_TMOD_TR, 423 .dfs = transfer->bits_per_word, 424 .freq = transfer->speed_hz, 425 }; 426 int ret; 427 428 dws->dma_mapped = 0; 429 dws->n_bytes = DIV_ROUND_UP(transfer->bits_per_word, BITS_PER_BYTE); 430 dws->tx = (void *)transfer->tx_buf; 431 dws->tx_len = transfer->len / dws->n_bytes; 432 dws->rx = transfer->rx_buf; 433 dws->rx_len = dws->tx_len; 434 435 /* Ensure the data above is visible for all CPUs */ 436 smp_mb(); 437 438 dw_spi_enable_chip(dws, 0); 439 440 dw_spi_update_config(dws, spi, &cfg); 441 442 transfer->effective_speed_hz = dws->current_freq; 443 444 /* Check if current transfer is a DMA transaction */ 445 if (master->can_dma && master->can_dma(master, spi, transfer)) 446 dws->dma_mapped = master->cur_msg_mapped; 447 448 /* For poll mode just disable all interrupts */ 449 dw_spi_mask_intr(dws, 0xff); 450 451 if (dws->dma_mapped) { 452 ret = dws->dma_ops->dma_setup(dws, transfer); 453 if (ret) 454 return ret; 455 } 456 457 dw_spi_enable_chip(dws, 1); 458 459 if (dws->dma_mapped) 460 return dws->dma_ops->dma_transfer(dws, transfer); 461 else if (dws->irq == IRQ_NOTCONNECTED) 462 return dw_spi_poll_transfer(dws, transfer); 463 464 dw_spi_irq_setup(dws); 465 466 return 1; 467 } 468 469 static void dw_spi_handle_err(struct spi_controller *master, 470 struct spi_message *msg) 471 { 472 struct dw_spi *dws = spi_controller_get_devdata(master); 473 474 if (dws->dma_mapped) 475 dws->dma_ops->dma_stop(dws); 476 477 dw_spi_reset_chip(dws); 478 } 479 480 static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op) 481 { 482 if (op->data.dir == SPI_MEM_DATA_IN) 483 op->data.nbytes = clamp_val(op->data.nbytes, 0, DW_SPI_NDF_MASK + 1); 484 485 return 0; 486 } 487 488 static bool dw_spi_supports_mem_op(struct spi_mem *mem, 489 const struct spi_mem_op *op) 490 { 491 if (op->data.buswidth > 1 || op->addr.buswidth > 1 || 492 op->dummy.buswidth > 1 || op->cmd.buswidth > 1) 493 return false; 494 495 return spi_mem_default_supports_op(mem, op); 496 } 497 498 static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op) 499 { 500 unsigned int i, j, len; 501 u8 *out; 502 503 /* 504 * Calculate the total length of the EEPROM command transfer and 505 * either use the pre-allocated buffer or create a temporary one. 506 */ 507 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; 508 if (op->data.dir == SPI_MEM_DATA_OUT) 509 len += op->data.nbytes; 510 511 if (len <= DW_SPI_BUF_SIZE) { 512 out = dws->buf; 513 } else { 514 out = kzalloc(len, GFP_KERNEL); 515 if (!out) 516 return -ENOMEM; 517 } 518 519 /* 520 * Collect the operation code, address and dummy bytes into the single 521 * buffer. If it's a transfer with data to be sent, also copy it into the 522 * single buffer in order to speed the data transmission up. 523 */ 524 for (i = 0; i < op->cmd.nbytes; ++i) 525 out[i] = DW_SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1); 526 for (j = 0; j < op->addr.nbytes; ++i, ++j) 527 out[i] = DW_SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1); 528 for (j = 0; j < op->dummy.nbytes; ++i, ++j) 529 out[i] = 0x0; 530 531 if (op->data.dir == SPI_MEM_DATA_OUT) 532 memcpy(&out[i], op->data.buf.out, op->data.nbytes); 533 534 dws->n_bytes = 1; 535 dws->tx = out; 536 dws->tx_len = len; 537 if (op->data.dir == SPI_MEM_DATA_IN) { 538 dws->rx = op->data.buf.in; 539 dws->rx_len = op->data.nbytes; 540 } else { 541 dws->rx = NULL; 542 dws->rx_len = 0; 543 } 544 545 return 0; 546 } 547 548 static void dw_spi_free_mem_buf(struct dw_spi *dws) 549 { 550 if (dws->tx != dws->buf) 551 kfree(dws->tx); 552 } 553 554 static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi) 555 { 556 u32 room, entries, sts; 557 unsigned int len; 558 u8 *buf; 559 560 /* 561 * At initial stage we just pre-fill the Tx FIFO in with no rush, 562 * since native CS hasn't been enabled yet and the automatic data 563 * transmission won't start til we do that. 564 */ 565 len = min(dws->fifo_len, dws->tx_len); 566 buf = dws->tx; 567 while (len--) 568 dw_write_io_reg(dws, DW_SPI_DR, *buf++); 569 570 /* 571 * After setting any bit in the SER register the transmission will 572 * start automatically. We have to keep up with that procedure 573 * otherwise the CS de-assertion will happen whereupon the memory 574 * operation will be pre-terminated. 575 */ 576 len = dws->tx_len - ((void *)buf - dws->tx); 577 dw_spi_set_cs(spi, false); 578 while (len) { 579 entries = readl_relaxed(dws->regs + DW_SPI_TXFLR); 580 if (!entries) { 581 dev_err(&dws->master->dev, "CS de-assertion on Tx\n"); 582 return -EIO; 583 } 584 room = min(dws->fifo_len - entries, len); 585 for (; room; --room, --len) 586 dw_write_io_reg(dws, DW_SPI_DR, *buf++); 587 } 588 589 /* 590 * Data fetching will start automatically if the EEPROM-read mode is 591 * activated. We have to keep up with the incoming data pace to 592 * prevent the Rx FIFO overflow causing the inbound data loss. 593 */ 594 len = dws->rx_len; 595 buf = dws->rx; 596 while (len) { 597 entries = readl_relaxed(dws->regs + DW_SPI_RXFLR); 598 if (!entries) { 599 sts = readl_relaxed(dws->regs + DW_SPI_RISR); 600 if (sts & DW_SPI_INT_RXOI) { 601 dev_err(&dws->master->dev, "FIFO overflow on Rx\n"); 602 return -EIO; 603 } 604 continue; 605 } 606 entries = min(entries, len); 607 for (; entries; --entries, --len) 608 *buf++ = dw_read_io_reg(dws, DW_SPI_DR); 609 } 610 611 return 0; 612 } 613 614 static inline bool dw_spi_ctlr_busy(struct dw_spi *dws) 615 { 616 return dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_BUSY; 617 } 618 619 static int dw_spi_wait_mem_op_done(struct dw_spi *dws) 620 { 621 int retry = DW_SPI_WAIT_RETRIES; 622 struct spi_delay delay; 623 unsigned long ns, us; 624 u32 nents; 625 626 nents = dw_readl(dws, DW_SPI_TXFLR); 627 ns = NSEC_PER_SEC / dws->current_freq * nents; 628 ns *= dws->n_bytes * BITS_PER_BYTE; 629 if (ns <= NSEC_PER_USEC) { 630 delay.unit = SPI_DELAY_UNIT_NSECS; 631 delay.value = ns; 632 } else { 633 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 634 delay.unit = SPI_DELAY_UNIT_USECS; 635 delay.value = clamp_val(us, 0, USHRT_MAX); 636 } 637 638 while (dw_spi_ctlr_busy(dws) && retry--) 639 spi_delay_exec(&delay, NULL); 640 641 if (retry < 0) { 642 dev_err(&dws->master->dev, "Mem op hanged up\n"); 643 return -EIO; 644 } 645 646 return 0; 647 } 648 649 static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi) 650 { 651 dw_spi_enable_chip(dws, 0); 652 dw_spi_set_cs(spi, true); 653 dw_spi_enable_chip(dws, 1); 654 } 655 656 /* 657 * The SPI memory operation implementation below is the best choice for the 658 * devices, which are selected by the native chip-select lane. It's 659 * specifically developed to workaround the problem with automatic chip-select 660 * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current 661 * SPI-mem core calls exec_op() callback only if the GPIO-based CS is 662 * unavailable. 663 */ 664 static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) 665 { 666 struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller); 667 struct dw_spi_cfg cfg; 668 unsigned long flags; 669 int ret; 670 671 /* 672 * Collect the outbound data into a single buffer to speed the 673 * transmission up at least on the initial stage. 674 */ 675 ret = dw_spi_init_mem_buf(dws, op); 676 if (ret) 677 return ret; 678 679 /* 680 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN 681 * operation. Transmit-only mode is suitable for the rest of them. 682 */ 683 cfg.dfs = 8; 684 cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq); 685 if (op->data.dir == SPI_MEM_DATA_IN) { 686 cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD; 687 cfg.ndf = op->data.nbytes; 688 } else { 689 cfg.tmode = DW_SPI_CTRLR0_TMOD_TO; 690 } 691 692 dw_spi_enable_chip(dws, 0); 693 694 dw_spi_update_config(dws, mem->spi, &cfg); 695 696 dw_spi_mask_intr(dws, 0xff); 697 698 dw_spi_enable_chip(dws, 1); 699 700 /* 701 * DW APB SSI controller has very nasty peculiarities. First originally 702 * (without any vendor-specific modifications) it doesn't provide a 703 * direct way to set and clear the native chip-select signal. Instead 704 * the controller asserts the CS lane if Tx FIFO isn't empty and a 705 * transmission is going on, and automatically de-asserts it back to 706 * the high level if the Tx FIFO doesn't have anything to be pushed 707 * out. Due to that a multi-tasking or heavy IRQs activity might be 708 * fatal, since the transfer procedure preemption may cause the Tx FIFO 709 * getting empty and sudden CS de-assertion, which in the middle of the 710 * transfer will most likely cause the data loss. Secondly the 711 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming 712 * data being automatically pulled in into the Rx FIFO. So if the 713 * driver software is late in fetching the data from the FIFO before 714 * it's overflown, new incoming data will be lost. In order to make 715 * sure the executed memory operations are CS-atomic and to prevent the 716 * Rx FIFO overflow we have to disable the local interrupts so to block 717 * any preemption during the subsequent IO operations. 718 * 719 * Note. At some circumstances disabling IRQs may not help to prevent 720 * the problems described above. The CS de-assertion and Rx FIFO 721 * overflow may still happen due to the relatively slow system bus or 722 * CPU not working fast enough, so the write-then-read algo implemented 723 * here just won't keep up with the SPI bus data transfer. Such 724 * situation is highly platform specific and is supposed to be fixed by 725 * manually restricting the SPI bus frequency using the 726 * dws->max_mem_freq parameter. 727 */ 728 local_irq_save(flags); 729 preempt_disable(); 730 731 ret = dw_spi_write_then_read(dws, mem->spi); 732 733 local_irq_restore(flags); 734 preempt_enable(); 735 736 /* 737 * Wait for the operation being finished and check the controller 738 * status only if there hasn't been any run-time error detected. In the 739 * former case it's just pointless. In the later one to prevent an 740 * additional error message printing since any hw error flag being set 741 * would be due to an error detected on the data transfer. 742 */ 743 if (!ret) { 744 ret = dw_spi_wait_mem_op_done(dws); 745 if (!ret) 746 ret = dw_spi_check_status(dws, true); 747 } 748 749 dw_spi_stop_mem_op(dws, mem->spi); 750 751 dw_spi_free_mem_buf(dws); 752 753 return ret; 754 } 755 756 /* 757 * Initialize the default memory operations if a glue layer hasn't specified 758 * custom ones. Direct mapping operations will be preserved anyway since DW SPI 759 * controller doesn't have an embedded dirmap interface. Note the memory 760 * operations implemented in this driver is the best choice only for the DW APB 761 * SSI controller with standard native CS functionality. If a hardware vendor 762 * has fixed the automatic CS assertion/de-assertion peculiarity, then it will 763 * be safer to use the normal SPI-messages-based transfers implementation. 764 */ 765 static void dw_spi_init_mem_ops(struct dw_spi *dws) 766 { 767 if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) && 768 !dws->set_cs) { 769 dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size; 770 dws->mem_ops.supports_op = dw_spi_supports_mem_op; 771 dws->mem_ops.exec_op = dw_spi_exec_mem_op; 772 if (!dws->max_mem_freq) 773 dws->max_mem_freq = dws->max_freq; 774 } 775 } 776 777 /* This may be called twice for each spi dev */ 778 static int dw_spi_setup(struct spi_device *spi) 779 { 780 struct dw_spi *dws = spi_controller_get_devdata(spi->controller); 781 struct dw_spi_chip_data *chip; 782 783 /* Only alloc on first setup */ 784 chip = spi_get_ctldata(spi); 785 if (!chip) { 786 struct dw_spi *dws = spi_controller_get_devdata(spi->controller); 787 u32 rx_sample_dly_ns; 788 789 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 790 if (!chip) 791 return -ENOMEM; 792 spi_set_ctldata(spi, chip); 793 /* Get specific / default rx-sample-delay */ 794 if (device_property_read_u32(&spi->dev, 795 "rx-sample-delay-ns", 796 &rx_sample_dly_ns) != 0) 797 /* Use default controller value */ 798 rx_sample_dly_ns = dws->def_rx_sample_dly_ns; 799 chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns, 800 NSEC_PER_SEC / 801 dws->max_freq); 802 } 803 804 /* 805 * Update CR0 data each time the setup callback is invoked since 806 * the device parameters could have been changed, for instance, by 807 * the MMC SPI driver or something else. 808 */ 809 chip->cr0 = dw_spi_prepare_cr0(dws, spi); 810 811 return 0; 812 } 813 814 static void dw_spi_cleanup(struct spi_device *spi) 815 { 816 struct dw_spi_chip_data *chip = spi_get_ctldata(spi); 817 818 kfree(chip); 819 spi_set_ctldata(spi, NULL); 820 } 821 822 /* Restart the controller, disable all interrupts, clean rx fifo */ 823 static void dw_spi_hw_init(struct device *dev, struct dw_spi *dws) 824 { 825 dw_spi_reset_chip(dws); 826 827 /* 828 * Retrieve the Synopsys component version if it hasn't been specified 829 * by the platform. CoreKit version ID is encoded as a 3-chars ASCII 830 * code enclosed with '*' (typical for the most of Synopsys IP-cores). 831 */ 832 if (!dws->ver) { 833 dws->ver = dw_readl(dws, DW_SPI_VERSION); 834 835 dev_dbg(dev, "Synopsys DWC%sSSI v%c.%c%c\n", 836 dw_spi_ip_is(dws, PSSI) ? " APB " : " ", 837 DW_SPI_GET_BYTE(dws->ver, 3), DW_SPI_GET_BYTE(dws->ver, 2), 838 DW_SPI_GET_BYTE(dws->ver, 1)); 839 } 840 841 /* 842 * Try to detect the FIFO depth if not set by interface driver, 843 * the depth could be from 2 to 256 from HW spec 844 */ 845 if (!dws->fifo_len) { 846 u32 fifo; 847 848 for (fifo = 1; fifo < 256; fifo++) { 849 dw_writel(dws, DW_SPI_TXFTLR, fifo); 850 if (fifo != dw_readl(dws, DW_SPI_TXFTLR)) 851 break; 852 } 853 dw_writel(dws, DW_SPI_TXFTLR, 0); 854 855 dws->fifo_len = (fifo == 1) ? 0 : fifo; 856 dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len); 857 } 858 859 /* 860 * Detect CTRLR0.DFS field size and offset by testing the lowest bits 861 * writability. Note DWC SSI controller also has the extended DFS, but 862 * with zero offset. 863 */ 864 if (dw_spi_ip_is(dws, PSSI)) { 865 u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0); 866 867 dw_spi_enable_chip(dws, 0); 868 dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff); 869 cr0 = dw_readl(dws, DW_SPI_CTRLR0); 870 dw_writel(dws, DW_SPI_CTRLR0, tmp); 871 dw_spi_enable_chip(dws, 1); 872 873 if (!(cr0 & DW_PSSI_CTRLR0_DFS_MASK)) { 874 dws->caps |= DW_SPI_CAP_DFS32; 875 dws->dfs_offset = __bf_shf(DW_PSSI_CTRLR0_DFS32_MASK); 876 dev_dbg(dev, "Detected 32-bits max data frame size\n"); 877 } 878 } else { 879 dws->caps |= DW_SPI_CAP_DFS32; 880 } 881 882 /* enable HW fixup for explicit CS deselect for Amazon's alpine chip */ 883 if (dws->caps & DW_SPI_CAP_CS_OVERRIDE) 884 dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF); 885 } 886 887 int dw_spi_add_host(struct device *dev, struct dw_spi *dws) 888 { 889 struct spi_controller *master; 890 int ret; 891 892 if (!dws) 893 return -EINVAL; 894 895 master = spi_alloc_master(dev, 0); 896 if (!master) 897 return -ENOMEM; 898 899 device_set_node(&master->dev, dev_fwnode(dev)); 900 901 dws->master = master; 902 dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR); 903 904 spi_controller_set_devdata(master, dws); 905 906 /* Basic HW init */ 907 dw_spi_hw_init(dev, dws); 908 909 ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev), 910 master); 911 if (ret < 0 && ret != -ENOTCONN) { 912 dev_err(dev, "can not get IRQ\n"); 913 goto err_free_master; 914 } 915 916 dw_spi_init_mem_ops(dws); 917 918 master->use_gpio_descriptors = true; 919 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP; 920 if (dws->caps & DW_SPI_CAP_DFS32) 921 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 922 else 923 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 924 master->bus_num = dws->bus_num; 925 master->num_chipselect = dws->num_cs; 926 master->setup = dw_spi_setup; 927 master->cleanup = dw_spi_cleanup; 928 if (dws->set_cs) 929 master->set_cs = dws->set_cs; 930 else 931 master->set_cs = dw_spi_set_cs; 932 master->transfer_one = dw_spi_transfer_one; 933 master->handle_err = dw_spi_handle_err; 934 if (dws->mem_ops.exec_op) 935 master->mem_ops = &dws->mem_ops; 936 master->max_speed_hz = dws->max_freq; 937 master->flags = SPI_MASTER_GPIO_SS; 938 master->auto_runtime_pm = true; 939 940 /* Get default rx sample delay */ 941 device_property_read_u32(dev, "rx-sample-delay-ns", 942 &dws->def_rx_sample_dly_ns); 943 944 if (dws->dma_ops && dws->dma_ops->dma_init) { 945 ret = dws->dma_ops->dma_init(dev, dws); 946 if (ret == -EPROBE_DEFER) { 947 goto err_free_irq; 948 } else if (ret) { 949 dev_warn(dev, "DMA init failed\n"); 950 } else { 951 master->can_dma = dws->dma_ops->can_dma; 952 master->flags |= SPI_CONTROLLER_MUST_TX; 953 } 954 } 955 956 ret = spi_register_controller(master); 957 if (ret) { 958 dev_err_probe(dev, ret, "problem registering spi master\n"); 959 goto err_dma_exit; 960 } 961 962 dw_spi_debugfs_init(dws); 963 return 0; 964 965 err_dma_exit: 966 if (dws->dma_ops && dws->dma_ops->dma_exit) 967 dws->dma_ops->dma_exit(dws); 968 dw_spi_enable_chip(dws, 0); 969 err_free_irq: 970 free_irq(dws->irq, master); 971 err_free_master: 972 spi_controller_put(master); 973 return ret; 974 } 975 EXPORT_SYMBOL_NS_GPL(dw_spi_add_host, SPI_DW_CORE); 976 977 void dw_spi_remove_host(struct dw_spi *dws) 978 { 979 dw_spi_debugfs_remove(dws); 980 981 spi_unregister_controller(dws->master); 982 983 if (dws->dma_ops && dws->dma_ops->dma_exit) 984 dws->dma_ops->dma_exit(dws); 985 986 dw_spi_shutdown_chip(dws); 987 988 free_irq(dws->irq, dws->master); 989 } 990 EXPORT_SYMBOL_NS_GPL(dw_spi_remove_host, SPI_DW_CORE); 991 992 int dw_spi_suspend_host(struct dw_spi *dws) 993 { 994 int ret; 995 996 ret = spi_controller_suspend(dws->master); 997 if (ret) 998 return ret; 999 1000 dw_spi_shutdown_chip(dws); 1001 return 0; 1002 } 1003 EXPORT_SYMBOL_NS_GPL(dw_spi_suspend_host, SPI_DW_CORE); 1004 1005 int dw_spi_resume_host(struct dw_spi *dws) 1006 { 1007 dw_spi_hw_init(&dws->master->dev, dws); 1008 return spi_controller_resume(dws->master); 1009 } 1010 EXPORT_SYMBOL_NS_GPL(dw_spi_resume_host, SPI_DW_CORE); 1011 1012 MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>"); 1013 MODULE_DESCRIPTION("Driver for DesignWare SPI controller core"); 1014 MODULE_LICENSE("GPL v2"); 1015