1 // SPDX-License-Identifier: GPL-2.0-only 2 // 3 // Driver for Cadence QSPI Controller 4 // 5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved. 6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved. 7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com 8 9 #include <linux/clk.h> 10 #include <linux/completion.h> 11 #include <linux/delay.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmaengine.h> 14 #include <linux/err.h> 15 #include <linux/errno.h> 16 #include <linux/interrupt.h> 17 #include <linux/io.h> 18 #include <linux/iopoll.h> 19 #include <linux/jiffies.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/of_device.h> 23 #include <linux/of.h> 24 #include <linux/platform_device.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/reset.h> 27 #include <linux/sched.h> 28 #include <linux/spi/spi.h> 29 #include <linux/spi/spi-mem.h> 30 #include <linux/timer.h> 31 32 #define CQSPI_NAME "cadence-qspi" 33 #define CQSPI_MAX_CHIPSELECT 16 34 35 /* Quirks */ 36 #define CQSPI_NEEDS_WR_DELAY BIT(0) 37 #define CQSPI_DISABLE_DAC_MODE BIT(1) 38 39 /* Capabilities */ 40 #define CQSPI_SUPPORTS_OCTAL BIT(0) 41 42 struct cqspi_st; 43 44 struct cqspi_flash_pdata { 45 struct cqspi_st *cqspi; 46 u32 clk_rate; 47 u32 read_delay; 48 u32 tshsl_ns; 49 u32 tsd2d_ns; 50 u32 tchsh_ns; 51 u32 tslch_ns; 52 u8 inst_width; 53 u8 addr_width; 54 u8 data_width; 55 u8 cs; 56 }; 57 58 struct cqspi_st { 59 struct platform_device *pdev; 60 61 struct clk *clk; 62 unsigned int sclk; 63 64 void __iomem *iobase; 65 void __iomem *ahb_base; 66 resource_size_t ahb_size; 67 struct completion transfer_complete; 68 69 struct dma_chan *rx_chan; 70 struct completion rx_dma_complete; 71 dma_addr_t mmap_phys_base; 72 73 int current_cs; 74 unsigned long master_ref_clk_hz; 75 bool is_decoded_cs; 76 u32 fifo_depth; 77 u32 fifo_width; 78 bool rclk_en; 79 u32 trigger_address; 80 u32 wr_delay; 81 bool use_direct_mode; 82 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT]; 83 }; 84 85 struct cqspi_driver_platdata { 86 u32 hwcaps_mask; 87 u8 quirks; 88 }; 89 90 /* Operation timeout value */ 91 #define CQSPI_TIMEOUT_MS 500 92 #define CQSPI_READ_TIMEOUT_MS 10 93 94 /* Instruction type */ 95 #define CQSPI_INST_TYPE_SINGLE 0 96 #define CQSPI_INST_TYPE_DUAL 1 97 #define CQSPI_INST_TYPE_QUAD 2 98 #define CQSPI_INST_TYPE_OCTAL 3 99 100 #define CQSPI_DUMMY_CLKS_PER_BYTE 8 101 #define CQSPI_DUMMY_BYTES_MAX 4 102 #define CQSPI_DUMMY_CLKS_MAX 31 103 104 #define CQSPI_STIG_DATA_LEN_MAX 8 105 106 /* Register map */ 107 #define CQSPI_REG_CONFIG 0x00 108 #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0) 109 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7) 110 #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9) 111 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10 112 #define CQSPI_REG_CONFIG_DMA_MASK BIT(15) 113 #define CQSPI_REG_CONFIG_BAUD_LSB 19 114 #define CQSPI_REG_CONFIG_IDLE_LSB 31 115 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF 116 #define CQSPI_REG_CONFIG_BAUD_MASK 0xF 117 118 #define CQSPI_REG_RD_INSTR 0x04 119 #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0 120 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8 121 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12 122 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16 123 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20 124 #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24 125 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3 126 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3 127 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3 128 #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F 129 130 #define CQSPI_REG_WR_INSTR 0x08 131 #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0 132 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12 133 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16 134 135 #define CQSPI_REG_DELAY 0x0C 136 #define CQSPI_REG_DELAY_TSLCH_LSB 0 137 #define CQSPI_REG_DELAY_TCHSH_LSB 8 138 #define CQSPI_REG_DELAY_TSD2D_LSB 16 139 #define CQSPI_REG_DELAY_TSHSL_LSB 24 140 #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF 141 #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF 142 #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF 143 #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF 144 145 #define CQSPI_REG_READCAPTURE 0x10 146 #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0 147 #define CQSPI_REG_READCAPTURE_DELAY_LSB 1 148 #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF 149 150 #define CQSPI_REG_SIZE 0x14 151 #define CQSPI_REG_SIZE_ADDRESS_LSB 0 152 #define CQSPI_REG_SIZE_PAGE_LSB 4 153 #define CQSPI_REG_SIZE_BLOCK_LSB 16 154 #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF 155 #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF 156 #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F 157 158 #define CQSPI_REG_SRAMPARTITION 0x18 159 #define CQSPI_REG_INDIRECTTRIGGER 0x1C 160 161 #define CQSPI_REG_DMA 0x20 162 #define CQSPI_REG_DMA_SINGLE_LSB 0 163 #define CQSPI_REG_DMA_BURST_LSB 8 164 #define CQSPI_REG_DMA_SINGLE_MASK 0xFF 165 #define CQSPI_REG_DMA_BURST_MASK 0xFF 166 167 #define CQSPI_REG_REMAP 0x24 168 #define CQSPI_REG_MODE_BIT 0x28 169 170 #define CQSPI_REG_SDRAMLEVEL 0x2C 171 #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0 172 #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16 173 #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF 174 #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF 175 176 #define CQSPI_REG_IRQSTATUS 0x40 177 #define CQSPI_REG_IRQMASK 0x44 178 179 #define CQSPI_REG_INDIRECTRD 0x60 180 #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0) 181 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1) 182 #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5) 183 184 #define CQSPI_REG_INDIRECTRDWATERMARK 0x64 185 #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68 186 #define CQSPI_REG_INDIRECTRDBYTES 0x6C 187 188 #define CQSPI_REG_CMDCTRL 0x90 189 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0) 190 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1) 191 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12 192 #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15 193 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16 194 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19 195 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20 196 #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23 197 #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24 198 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7 199 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3 200 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7 201 202 #define CQSPI_REG_INDIRECTWR 0x70 203 #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0) 204 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1) 205 #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5) 206 207 #define CQSPI_REG_INDIRECTWRWATERMARK 0x74 208 #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78 209 #define CQSPI_REG_INDIRECTWRBYTES 0x7C 210 211 #define CQSPI_REG_CMDADDRESS 0x94 212 #define CQSPI_REG_CMDREADDATALOWER 0xA0 213 #define CQSPI_REG_CMDREADDATAUPPER 0xA4 214 #define CQSPI_REG_CMDWRITEDATALOWER 0xA8 215 #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC 216 217 /* Interrupt status bits */ 218 #define CQSPI_REG_IRQ_MODE_ERR BIT(0) 219 #define CQSPI_REG_IRQ_UNDERFLOW BIT(1) 220 #define CQSPI_REG_IRQ_IND_COMP BIT(2) 221 #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3) 222 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4) 223 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5) 224 #define CQSPI_REG_IRQ_WATERMARK BIT(6) 225 #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12) 226 227 #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \ 228 CQSPI_REG_IRQ_IND_SRAM_FULL | \ 229 CQSPI_REG_IRQ_IND_COMP) 230 231 #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \ 232 CQSPI_REG_IRQ_WATERMARK | \ 233 CQSPI_REG_IRQ_UNDERFLOW) 234 235 #define CQSPI_IRQ_STATUS_MASK 0x1FFFF 236 237 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr) 238 { 239 u32 val; 240 241 return readl_relaxed_poll_timeout(reg, val, 242 (((clr ? ~val : val) & mask) == mask), 243 10, CQSPI_TIMEOUT_MS * 1000); 244 } 245 246 static bool cqspi_is_idle(struct cqspi_st *cqspi) 247 { 248 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); 249 250 return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB); 251 } 252 253 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi) 254 { 255 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL); 256 257 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB; 258 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK; 259 } 260 261 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev) 262 { 263 struct cqspi_st *cqspi = dev; 264 unsigned int irq_status; 265 266 /* Read interrupt status */ 267 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS); 268 269 /* Clear interrupt */ 270 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS); 271 272 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR; 273 274 if (irq_status) 275 complete(&cqspi->transfer_complete); 276 277 return IRQ_HANDLED; 278 } 279 280 static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata) 281 { 282 u32 rdreg = 0; 283 284 rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB; 285 rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB; 286 rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB; 287 288 return rdreg; 289 } 290 291 static int cqspi_wait_idle(struct cqspi_st *cqspi) 292 { 293 const unsigned int poll_idle_retry = 3; 294 unsigned int count = 0; 295 unsigned long timeout; 296 297 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS); 298 while (1) { 299 /* 300 * Read few times in succession to ensure the controller 301 * is indeed idle, that is, the bit does not transition 302 * low again. 303 */ 304 if (cqspi_is_idle(cqspi)) 305 count++; 306 else 307 count = 0; 308 309 if (count >= poll_idle_retry) 310 return 0; 311 312 if (time_after(jiffies, timeout)) { 313 /* Timeout, in busy mode. */ 314 dev_err(&cqspi->pdev->dev, 315 "QSPI is still busy after %dms timeout.\n", 316 CQSPI_TIMEOUT_MS); 317 return -ETIMEDOUT; 318 } 319 320 cpu_relax(); 321 } 322 } 323 324 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg) 325 { 326 void __iomem *reg_base = cqspi->iobase; 327 int ret; 328 329 /* Write the CMDCTRL without start execution. */ 330 writel(reg, reg_base + CQSPI_REG_CMDCTRL); 331 /* Start execute */ 332 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK; 333 writel(reg, reg_base + CQSPI_REG_CMDCTRL); 334 335 /* Polling for completion. */ 336 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL, 337 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1); 338 if (ret) { 339 dev_err(&cqspi->pdev->dev, 340 "Flash command execution timed out.\n"); 341 return ret; 342 } 343 344 /* Polling QSPI idle status. */ 345 return cqspi_wait_idle(cqspi); 346 } 347 348 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata, 349 const struct spi_mem_op *op) 350 { 351 struct cqspi_st *cqspi = f_pdata->cqspi; 352 void __iomem *reg_base = cqspi->iobase; 353 u8 *rxbuf = op->data.buf.in; 354 u8 opcode = op->cmd.opcode; 355 size_t n_rx = op->data.nbytes; 356 unsigned int rdreg; 357 unsigned int reg; 358 size_t read_len; 359 int status; 360 361 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) { 362 dev_err(&cqspi->pdev->dev, 363 "Invalid input argument, len %zu rxbuf 0x%p\n", 364 n_rx, rxbuf); 365 return -EINVAL; 366 } 367 368 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB; 369 370 rdreg = cqspi_calc_rdreg(f_pdata); 371 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR); 372 373 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB); 374 375 /* 0 means 1 byte. */ 376 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK) 377 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB); 378 status = cqspi_exec_flash_cmd(cqspi, reg); 379 if (status) 380 return status; 381 382 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER); 383 384 /* Put the read value into rx_buf */ 385 read_len = (n_rx > 4) ? 4 : n_rx; 386 memcpy(rxbuf, ®, read_len); 387 rxbuf += read_len; 388 389 if (n_rx > 4) { 390 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER); 391 392 read_len = n_rx - read_len; 393 memcpy(rxbuf, ®, read_len); 394 } 395 396 return 0; 397 } 398 399 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata, 400 const struct spi_mem_op *op) 401 { 402 struct cqspi_st *cqspi = f_pdata->cqspi; 403 void __iomem *reg_base = cqspi->iobase; 404 const u8 opcode = op->cmd.opcode; 405 const u8 *txbuf = op->data.buf.out; 406 size_t n_tx = op->data.nbytes; 407 unsigned int reg; 408 unsigned int data; 409 size_t write_len; 410 411 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) { 412 dev_err(&cqspi->pdev->dev, 413 "Invalid input argument, cmdlen %zu txbuf 0x%p\n", 414 n_tx, txbuf); 415 return -EINVAL; 416 } 417 418 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB; 419 420 if (op->addr.nbytes) { 421 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB); 422 reg |= ((op->addr.nbytes - 1) & 423 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK) 424 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB; 425 426 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS); 427 } 428 429 if (n_tx) { 430 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB); 431 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK) 432 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB; 433 data = 0; 434 write_len = (n_tx > 4) ? 4 : n_tx; 435 memcpy(&data, txbuf, write_len); 436 txbuf += write_len; 437 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER); 438 439 if (n_tx > 4) { 440 data = 0; 441 write_len = n_tx - 4; 442 memcpy(&data, txbuf, write_len); 443 writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER); 444 } 445 } 446 447 return cqspi_exec_flash_cmd(cqspi, reg); 448 } 449 450 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata, 451 const struct spi_mem_op *op) 452 { 453 struct cqspi_st *cqspi = f_pdata->cqspi; 454 void __iomem *reg_base = cqspi->iobase; 455 unsigned int dummy_clk = 0; 456 unsigned int reg; 457 458 reg = op->cmd.opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB; 459 reg |= cqspi_calc_rdreg(f_pdata); 460 461 /* Setup dummy clock cycles */ 462 dummy_clk = op->dummy.nbytes * 8; 463 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX) 464 dummy_clk = CQSPI_DUMMY_CLKS_MAX; 465 466 if (dummy_clk) 467 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK) 468 << CQSPI_REG_RD_INSTR_DUMMY_LSB; 469 470 writel(reg, reg_base + CQSPI_REG_RD_INSTR); 471 472 /* Set address width */ 473 reg = readl(reg_base + CQSPI_REG_SIZE); 474 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK; 475 reg |= (op->addr.nbytes - 1); 476 writel(reg, reg_base + CQSPI_REG_SIZE); 477 return 0; 478 } 479 480 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata, 481 u8 *rxbuf, loff_t from_addr, 482 const size_t n_rx) 483 { 484 struct cqspi_st *cqspi = f_pdata->cqspi; 485 struct device *dev = &cqspi->pdev->dev; 486 void __iomem *reg_base = cqspi->iobase; 487 void __iomem *ahb_base = cqspi->ahb_base; 488 unsigned int remaining = n_rx; 489 unsigned int mod_bytes = n_rx % 4; 490 unsigned int bytes_to_read = 0; 491 u8 *rxbuf_end = rxbuf + n_rx; 492 int ret = 0; 493 494 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR); 495 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES); 496 497 /* Clear all interrupts. */ 498 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS); 499 500 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK); 501 502 reinit_completion(&cqspi->transfer_complete); 503 writel(CQSPI_REG_INDIRECTRD_START_MASK, 504 reg_base + CQSPI_REG_INDIRECTRD); 505 506 while (remaining > 0) { 507 if (!wait_for_completion_timeout(&cqspi->transfer_complete, 508 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) 509 ret = -ETIMEDOUT; 510 511 bytes_to_read = cqspi_get_rd_sram_level(cqspi); 512 513 if (ret && bytes_to_read == 0) { 514 dev_err(dev, "Indirect read timeout, no bytes\n"); 515 goto failrd; 516 } 517 518 while (bytes_to_read != 0) { 519 unsigned int word_remain = round_down(remaining, 4); 520 521 bytes_to_read *= cqspi->fifo_width; 522 bytes_to_read = bytes_to_read > remaining ? 523 remaining : bytes_to_read; 524 bytes_to_read = round_down(bytes_to_read, 4); 525 /* Read 4 byte word chunks then single bytes */ 526 if (bytes_to_read) { 527 ioread32_rep(ahb_base, rxbuf, 528 (bytes_to_read / 4)); 529 } else if (!word_remain && mod_bytes) { 530 unsigned int temp = ioread32(ahb_base); 531 532 bytes_to_read = mod_bytes; 533 memcpy(rxbuf, &temp, min((unsigned int) 534 (rxbuf_end - rxbuf), 535 bytes_to_read)); 536 } 537 rxbuf += bytes_to_read; 538 remaining -= bytes_to_read; 539 bytes_to_read = cqspi_get_rd_sram_level(cqspi); 540 } 541 542 if (remaining > 0) 543 reinit_completion(&cqspi->transfer_complete); 544 } 545 546 /* Check indirect done status */ 547 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD, 548 CQSPI_REG_INDIRECTRD_DONE_MASK, 0); 549 if (ret) { 550 dev_err(dev, "Indirect read completion error (%i)\n", ret); 551 goto failrd; 552 } 553 554 /* Disable interrupt */ 555 writel(0, reg_base + CQSPI_REG_IRQMASK); 556 557 /* Clear indirect completion status */ 558 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD); 559 560 return 0; 561 562 failrd: 563 /* Disable interrupt */ 564 writel(0, reg_base + CQSPI_REG_IRQMASK); 565 566 /* Cancel the indirect read */ 567 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK, 568 reg_base + CQSPI_REG_INDIRECTRD); 569 return ret; 570 } 571 572 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata, 573 const struct spi_mem_op *op) 574 { 575 unsigned int reg; 576 struct cqspi_st *cqspi = f_pdata->cqspi; 577 void __iomem *reg_base = cqspi->iobase; 578 579 /* Set opcode. */ 580 reg = op->cmd.opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB; 581 writel(reg, reg_base + CQSPI_REG_WR_INSTR); 582 reg = cqspi_calc_rdreg(f_pdata); 583 writel(reg, reg_base + CQSPI_REG_RD_INSTR); 584 585 reg = readl(reg_base + CQSPI_REG_SIZE); 586 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK; 587 reg |= (op->addr.nbytes - 1); 588 writel(reg, reg_base + CQSPI_REG_SIZE); 589 return 0; 590 } 591 592 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata, 593 loff_t to_addr, const u8 *txbuf, 594 const size_t n_tx) 595 { 596 struct cqspi_st *cqspi = f_pdata->cqspi; 597 struct device *dev = &cqspi->pdev->dev; 598 void __iomem *reg_base = cqspi->iobase; 599 unsigned int remaining = n_tx; 600 unsigned int write_bytes; 601 int ret; 602 603 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR); 604 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES); 605 606 /* Clear all interrupts. */ 607 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS); 608 609 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK); 610 611 reinit_completion(&cqspi->transfer_complete); 612 writel(CQSPI_REG_INDIRECTWR_START_MASK, 613 reg_base + CQSPI_REG_INDIRECTWR); 614 /* 615 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access 616 * Controller programming sequence, couple of cycles of 617 * QSPI_REF_CLK delay is required for the above bit to 618 * be internally synchronized by the QSPI module. Provide 5 619 * cycles of delay. 620 */ 621 if (cqspi->wr_delay) 622 ndelay(cqspi->wr_delay); 623 624 while (remaining > 0) { 625 size_t write_words, mod_bytes; 626 627 write_bytes = remaining; 628 write_words = write_bytes / 4; 629 mod_bytes = write_bytes % 4; 630 /* Write 4 bytes at a time then single bytes. */ 631 if (write_words) { 632 iowrite32_rep(cqspi->ahb_base, txbuf, write_words); 633 txbuf += (write_words * 4); 634 } 635 if (mod_bytes) { 636 unsigned int temp = 0xFFFFFFFF; 637 638 memcpy(&temp, txbuf, mod_bytes); 639 iowrite32(temp, cqspi->ahb_base); 640 txbuf += mod_bytes; 641 } 642 643 if (!wait_for_completion_timeout(&cqspi->transfer_complete, 644 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) { 645 dev_err(dev, "Indirect write timeout\n"); 646 ret = -ETIMEDOUT; 647 goto failwr; 648 } 649 650 remaining -= write_bytes; 651 652 if (remaining > 0) 653 reinit_completion(&cqspi->transfer_complete); 654 } 655 656 /* Check indirect done status */ 657 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR, 658 CQSPI_REG_INDIRECTWR_DONE_MASK, 0); 659 if (ret) { 660 dev_err(dev, "Indirect write completion error (%i)\n", ret); 661 goto failwr; 662 } 663 664 /* Disable interrupt. */ 665 writel(0, reg_base + CQSPI_REG_IRQMASK); 666 667 /* Clear indirect completion status */ 668 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR); 669 670 cqspi_wait_idle(cqspi); 671 672 return 0; 673 674 failwr: 675 /* Disable interrupt. */ 676 writel(0, reg_base + CQSPI_REG_IRQMASK); 677 678 /* Cancel the indirect write */ 679 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK, 680 reg_base + CQSPI_REG_INDIRECTWR); 681 return ret; 682 } 683 684 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata) 685 { 686 struct cqspi_st *cqspi = f_pdata->cqspi; 687 void __iomem *reg_base = cqspi->iobase; 688 unsigned int chip_select = f_pdata->cs; 689 unsigned int reg; 690 691 reg = readl(reg_base + CQSPI_REG_CONFIG); 692 if (cqspi->is_decoded_cs) { 693 reg |= CQSPI_REG_CONFIG_DECODE_MASK; 694 } else { 695 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK; 696 697 /* Convert CS if without decoder. 698 * CS0 to 4b'1110 699 * CS1 to 4b'1101 700 * CS2 to 4b'1011 701 * CS3 to 4b'0111 702 */ 703 chip_select = 0xF & ~(1 << chip_select); 704 } 705 706 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK 707 << CQSPI_REG_CONFIG_CHIPSELECT_LSB); 708 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK) 709 << CQSPI_REG_CONFIG_CHIPSELECT_LSB; 710 writel(reg, reg_base + CQSPI_REG_CONFIG); 711 } 712 713 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz, 714 const unsigned int ns_val) 715 { 716 unsigned int ticks; 717 718 ticks = ref_clk_hz / 1000; /* kHz */ 719 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000); 720 721 return ticks; 722 } 723 724 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata) 725 { 726 struct cqspi_st *cqspi = f_pdata->cqspi; 727 void __iomem *iobase = cqspi->iobase; 728 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz; 729 unsigned int tshsl, tchsh, tslch, tsd2d; 730 unsigned int reg; 731 unsigned int tsclk; 732 733 /* calculate the number of ref ticks for one sclk tick */ 734 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk); 735 736 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns); 737 /* this particular value must be at least one sclk */ 738 if (tshsl < tsclk) 739 tshsl = tsclk; 740 741 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns); 742 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns); 743 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns); 744 745 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK) 746 << CQSPI_REG_DELAY_TSHSL_LSB; 747 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK) 748 << CQSPI_REG_DELAY_TCHSH_LSB; 749 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK) 750 << CQSPI_REG_DELAY_TSLCH_LSB; 751 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK) 752 << CQSPI_REG_DELAY_TSD2D_LSB; 753 writel(reg, iobase + CQSPI_REG_DELAY); 754 } 755 756 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi) 757 { 758 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz; 759 void __iomem *reg_base = cqspi->iobase; 760 u32 reg, div; 761 762 /* Recalculate the baudrate divisor based on QSPI specification. */ 763 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1; 764 765 reg = readl(reg_base + CQSPI_REG_CONFIG); 766 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB); 767 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB; 768 writel(reg, reg_base + CQSPI_REG_CONFIG); 769 } 770 771 static void cqspi_readdata_capture(struct cqspi_st *cqspi, 772 const bool bypass, 773 const unsigned int delay) 774 { 775 void __iomem *reg_base = cqspi->iobase; 776 unsigned int reg; 777 778 reg = readl(reg_base + CQSPI_REG_READCAPTURE); 779 780 if (bypass) 781 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB); 782 else 783 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB); 784 785 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK 786 << CQSPI_REG_READCAPTURE_DELAY_LSB); 787 788 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK) 789 << CQSPI_REG_READCAPTURE_DELAY_LSB; 790 791 writel(reg, reg_base + CQSPI_REG_READCAPTURE); 792 } 793 794 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable) 795 { 796 void __iomem *reg_base = cqspi->iobase; 797 unsigned int reg; 798 799 reg = readl(reg_base + CQSPI_REG_CONFIG); 800 801 if (enable) 802 reg |= CQSPI_REG_CONFIG_ENABLE_MASK; 803 else 804 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK; 805 806 writel(reg, reg_base + CQSPI_REG_CONFIG); 807 } 808 809 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata, 810 unsigned long sclk) 811 { 812 struct cqspi_st *cqspi = f_pdata->cqspi; 813 int switch_cs = (cqspi->current_cs != f_pdata->cs); 814 int switch_ck = (cqspi->sclk != sclk); 815 816 if (switch_cs || switch_ck) 817 cqspi_controller_enable(cqspi, 0); 818 819 /* Switch chip select. */ 820 if (switch_cs) { 821 cqspi->current_cs = f_pdata->cs; 822 cqspi_chipselect(f_pdata); 823 } 824 825 /* Setup baudrate divisor and delays */ 826 if (switch_ck) { 827 cqspi->sclk = sclk; 828 cqspi_config_baudrate_div(cqspi); 829 cqspi_delay(f_pdata); 830 cqspi_readdata_capture(cqspi, !cqspi->rclk_en, 831 f_pdata->read_delay); 832 } 833 834 if (switch_cs || switch_ck) 835 cqspi_controller_enable(cqspi, 1); 836 } 837 838 static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata, 839 const struct spi_mem_op *op) 840 { 841 f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE; 842 f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE; 843 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE; 844 845 if (op->data.dir == SPI_MEM_DATA_IN) { 846 switch (op->data.buswidth) { 847 case 1: 848 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE; 849 break; 850 case 2: 851 f_pdata->data_width = CQSPI_INST_TYPE_DUAL; 852 break; 853 case 4: 854 f_pdata->data_width = CQSPI_INST_TYPE_QUAD; 855 break; 856 case 8: 857 f_pdata->data_width = CQSPI_INST_TYPE_OCTAL; 858 break; 859 default: 860 return -EINVAL; 861 } 862 } 863 864 return 0; 865 } 866 867 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata, 868 const struct spi_mem_op *op) 869 { 870 struct cqspi_st *cqspi = f_pdata->cqspi; 871 loff_t to = op->addr.val; 872 size_t len = op->data.nbytes; 873 const u_char *buf = op->data.buf.out; 874 int ret; 875 876 ret = cqspi_set_protocol(f_pdata, op); 877 if (ret) 878 return ret; 879 880 ret = cqspi_write_setup(f_pdata, op); 881 if (ret) 882 return ret; 883 884 if (cqspi->use_direct_mode && ((to + len) <= cqspi->ahb_size)) { 885 memcpy_toio(cqspi->ahb_base + to, buf, len); 886 return cqspi_wait_idle(cqspi); 887 } 888 889 return cqspi_indirect_write_execute(f_pdata, to, buf, len); 890 } 891 892 static void cqspi_rx_dma_callback(void *param) 893 { 894 struct cqspi_st *cqspi = param; 895 896 complete(&cqspi->rx_dma_complete); 897 } 898 899 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata, 900 u_char *buf, loff_t from, size_t len) 901 { 902 struct cqspi_st *cqspi = f_pdata->cqspi; 903 struct device *dev = &cqspi->pdev->dev; 904 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; 905 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from; 906 int ret = 0; 907 struct dma_async_tx_descriptor *tx; 908 dma_cookie_t cookie; 909 dma_addr_t dma_dst; 910 struct device *ddev; 911 912 if (!cqspi->rx_chan || !virt_addr_valid(buf)) { 913 memcpy_fromio(buf, cqspi->ahb_base + from, len); 914 return 0; 915 } 916 917 ddev = cqspi->rx_chan->device->dev; 918 dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE); 919 if (dma_mapping_error(ddev, dma_dst)) { 920 dev_err(dev, "dma mapping failed\n"); 921 return -ENOMEM; 922 } 923 tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src, 924 len, flags); 925 if (!tx) { 926 dev_err(dev, "device_prep_dma_memcpy error\n"); 927 ret = -EIO; 928 goto err_unmap; 929 } 930 931 tx->callback = cqspi_rx_dma_callback; 932 tx->callback_param = cqspi; 933 cookie = tx->tx_submit(tx); 934 reinit_completion(&cqspi->rx_dma_complete); 935 936 ret = dma_submit_error(cookie); 937 if (ret) { 938 dev_err(dev, "dma_submit_error %d\n", cookie); 939 ret = -EIO; 940 goto err_unmap; 941 } 942 943 dma_async_issue_pending(cqspi->rx_chan); 944 if (!wait_for_completion_timeout(&cqspi->rx_dma_complete, 945 msecs_to_jiffies(len))) { 946 dmaengine_terminate_sync(cqspi->rx_chan); 947 dev_err(dev, "DMA wait_for_completion_timeout\n"); 948 ret = -ETIMEDOUT; 949 goto err_unmap; 950 } 951 952 err_unmap: 953 dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE); 954 955 return ret; 956 } 957 958 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata, 959 const struct spi_mem_op *op) 960 { 961 struct cqspi_st *cqspi = f_pdata->cqspi; 962 loff_t from = op->addr.val; 963 size_t len = op->data.nbytes; 964 u_char *buf = op->data.buf.in; 965 int ret; 966 967 ret = cqspi_set_protocol(f_pdata, op); 968 if (ret) 969 return ret; 970 971 ret = cqspi_read_setup(f_pdata, op); 972 if (ret) 973 return ret; 974 975 if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size)) 976 return cqspi_direct_read_execute(f_pdata, buf, from, len); 977 978 return cqspi_indirect_read_execute(f_pdata, buf, from, len); 979 } 980 981 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op) 982 { 983 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master); 984 struct cqspi_flash_pdata *f_pdata; 985 986 f_pdata = &cqspi->f_pdata[mem->spi->chip_select]; 987 cqspi_configure(f_pdata, mem->spi->max_speed_hz); 988 989 if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) { 990 if (!op->addr.nbytes) 991 return cqspi_command_read(f_pdata, op); 992 993 return cqspi_read(f_pdata, op); 994 } 995 996 if (!op->addr.nbytes || !op->data.buf.out) 997 return cqspi_command_write(f_pdata, op); 998 999 return cqspi_write(f_pdata, op); 1000 } 1001 1002 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) 1003 { 1004 int ret; 1005 1006 ret = cqspi_mem_process(mem, op); 1007 if (ret) 1008 dev_err(&mem->spi->dev, "operation failed with %d\n", ret); 1009 1010 return ret; 1011 } 1012 1013 static int cqspi_of_get_flash_pdata(struct platform_device *pdev, 1014 struct cqspi_flash_pdata *f_pdata, 1015 struct device_node *np) 1016 { 1017 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) { 1018 dev_err(&pdev->dev, "couldn't determine read-delay\n"); 1019 return -ENXIO; 1020 } 1021 1022 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) { 1023 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n"); 1024 return -ENXIO; 1025 } 1026 1027 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) { 1028 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n"); 1029 return -ENXIO; 1030 } 1031 1032 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) { 1033 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n"); 1034 return -ENXIO; 1035 } 1036 1037 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) { 1038 dev_err(&pdev->dev, "couldn't determine tslch-ns\n"); 1039 return -ENXIO; 1040 } 1041 1042 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) { 1043 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n"); 1044 return -ENXIO; 1045 } 1046 1047 return 0; 1048 } 1049 1050 static int cqspi_of_get_pdata(struct cqspi_st *cqspi) 1051 { 1052 struct device *dev = &cqspi->pdev->dev; 1053 struct device_node *np = dev->of_node; 1054 1055 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs"); 1056 1057 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) { 1058 dev_err(dev, "couldn't determine fifo-depth\n"); 1059 return -ENXIO; 1060 } 1061 1062 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) { 1063 dev_err(dev, "couldn't determine fifo-width\n"); 1064 return -ENXIO; 1065 } 1066 1067 if (of_property_read_u32(np, "cdns,trigger-address", 1068 &cqspi->trigger_address)) { 1069 dev_err(dev, "couldn't determine trigger-address\n"); 1070 return -ENXIO; 1071 } 1072 1073 cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en"); 1074 1075 return 0; 1076 } 1077 1078 static void cqspi_controller_init(struct cqspi_st *cqspi) 1079 { 1080 u32 reg; 1081 1082 cqspi_controller_enable(cqspi, 0); 1083 1084 /* Configure the remap address register, no remap */ 1085 writel(0, cqspi->iobase + CQSPI_REG_REMAP); 1086 1087 /* Disable all interrupts. */ 1088 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK); 1089 1090 /* Configure the SRAM split to 1:1 . */ 1091 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION); 1092 1093 /* Load indirect trigger address. */ 1094 writel(cqspi->trigger_address, 1095 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER); 1096 1097 /* Program read watermark -- 1/2 of the FIFO. */ 1098 writel(cqspi->fifo_depth * cqspi->fifo_width / 2, 1099 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK); 1100 /* Program write watermark -- 1/8 of the FIFO. */ 1101 writel(cqspi->fifo_depth * cqspi->fifo_width / 8, 1102 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK); 1103 1104 /* Enable Direct Access Controller */ 1105 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); 1106 reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL; 1107 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); 1108 1109 cqspi_controller_enable(cqspi, 1); 1110 } 1111 1112 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi) 1113 { 1114 dma_cap_mask_t mask; 1115 1116 dma_cap_zero(mask); 1117 dma_cap_set(DMA_MEMCPY, mask); 1118 1119 cqspi->rx_chan = dma_request_chan_by_mask(&mask); 1120 if (IS_ERR(cqspi->rx_chan)) { 1121 int ret = PTR_ERR(cqspi->rx_chan); 1122 1123 if (ret != -EPROBE_DEFER) 1124 dev_err(&cqspi->pdev->dev, "No Rx DMA available\n"); 1125 cqspi->rx_chan = NULL; 1126 return ret; 1127 } 1128 init_completion(&cqspi->rx_dma_complete); 1129 1130 return 0; 1131 } 1132 1133 static const char *cqspi_get_name(struct spi_mem *mem) 1134 { 1135 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master); 1136 struct device *dev = &cqspi->pdev->dev; 1137 1138 return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select); 1139 } 1140 1141 static const struct spi_controller_mem_ops cqspi_mem_ops = { 1142 .exec_op = cqspi_exec_mem_op, 1143 .get_name = cqspi_get_name, 1144 }; 1145 1146 static int cqspi_setup_flash(struct cqspi_st *cqspi) 1147 { 1148 struct platform_device *pdev = cqspi->pdev; 1149 struct device *dev = &pdev->dev; 1150 struct device_node *np = dev->of_node; 1151 struct cqspi_flash_pdata *f_pdata; 1152 unsigned int cs; 1153 int ret; 1154 1155 /* Get flash device data */ 1156 for_each_available_child_of_node(dev->of_node, np) { 1157 ret = of_property_read_u32(np, "reg", &cs); 1158 if (ret) { 1159 dev_err(dev, "Couldn't determine chip select.\n"); 1160 return ret; 1161 } 1162 1163 if (cs >= CQSPI_MAX_CHIPSELECT) { 1164 dev_err(dev, "Chip select %d out of range.\n", cs); 1165 return -EINVAL; 1166 } 1167 1168 f_pdata = &cqspi->f_pdata[cs]; 1169 f_pdata->cqspi = cqspi; 1170 f_pdata->cs = cs; 1171 1172 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np); 1173 if (ret) 1174 return ret; 1175 } 1176 1177 return 0; 1178 } 1179 1180 static int cqspi_probe(struct platform_device *pdev) 1181 { 1182 const struct cqspi_driver_platdata *ddata; 1183 struct reset_control *rstc, *rstc_ocp; 1184 struct device *dev = &pdev->dev; 1185 struct spi_master *master; 1186 struct resource *res_ahb; 1187 struct cqspi_st *cqspi; 1188 struct resource *res; 1189 int ret; 1190 int irq; 1191 1192 master = spi_alloc_master(&pdev->dev, sizeof(*cqspi)); 1193 if (!master) { 1194 dev_err(&pdev->dev, "spi_alloc_master failed\n"); 1195 return -ENOMEM; 1196 } 1197 master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL; 1198 master->mem_ops = &cqspi_mem_ops; 1199 master->dev.of_node = pdev->dev.of_node; 1200 1201 cqspi = spi_master_get_devdata(master); 1202 1203 cqspi->pdev = pdev; 1204 1205 /* Obtain configuration from OF. */ 1206 ret = cqspi_of_get_pdata(cqspi); 1207 if (ret) { 1208 dev_err(dev, "Cannot get mandatory OF data.\n"); 1209 ret = -ENODEV; 1210 goto probe_master_put; 1211 } 1212 1213 /* Obtain QSPI clock. */ 1214 cqspi->clk = devm_clk_get(dev, NULL); 1215 if (IS_ERR(cqspi->clk)) { 1216 dev_err(dev, "Cannot claim QSPI clock.\n"); 1217 ret = PTR_ERR(cqspi->clk); 1218 goto probe_master_put; 1219 } 1220 1221 /* Obtain and remap controller address. */ 1222 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1223 cqspi->iobase = devm_ioremap_resource(dev, res); 1224 if (IS_ERR(cqspi->iobase)) { 1225 dev_err(dev, "Cannot remap controller address.\n"); 1226 ret = PTR_ERR(cqspi->iobase); 1227 goto probe_master_put; 1228 } 1229 1230 /* Obtain and remap AHB address. */ 1231 res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1232 cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb); 1233 if (IS_ERR(cqspi->ahb_base)) { 1234 dev_err(dev, "Cannot remap AHB address.\n"); 1235 ret = PTR_ERR(cqspi->ahb_base); 1236 goto probe_master_put; 1237 } 1238 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start; 1239 cqspi->ahb_size = resource_size(res_ahb); 1240 1241 init_completion(&cqspi->transfer_complete); 1242 1243 /* Obtain IRQ line. */ 1244 irq = platform_get_irq(pdev, 0); 1245 if (irq < 0) { 1246 ret = -ENXIO; 1247 goto probe_master_put; 1248 } 1249 1250 pm_runtime_enable(dev); 1251 ret = pm_runtime_get_sync(dev); 1252 if (ret < 0) { 1253 pm_runtime_put_noidle(dev); 1254 goto probe_master_put; 1255 } 1256 1257 ret = clk_prepare_enable(cqspi->clk); 1258 if (ret) { 1259 dev_err(dev, "Cannot enable QSPI clock.\n"); 1260 goto probe_clk_failed; 1261 } 1262 1263 /* Obtain QSPI reset control */ 1264 rstc = devm_reset_control_get_optional_exclusive(dev, "qspi"); 1265 if (IS_ERR(rstc)) { 1266 dev_err(dev, "Cannot get QSPI reset.\n"); 1267 goto probe_reset_failed; 1268 } 1269 1270 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp"); 1271 if (IS_ERR(rstc_ocp)) { 1272 dev_err(dev, "Cannot get QSPI OCP reset.\n"); 1273 goto probe_reset_failed; 1274 } 1275 1276 reset_control_assert(rstc); 1277 reset_control_deassert(rstc); 1278 1279 reset_control_assert(rstc_ocp); 1280 reset_control_deassert(rstc_ocp); 1281 1282 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk); 1283 ddata = of_device_get_match_data(dev); 1284 if (ddata) { 1285 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY) 1286 cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC, 1287 cqspi->master_ref_clk_hz); 1288 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL) 1289 master->mode_bits |= SPI_RX_OCTAL; 1290 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) 1291 cqspi->use_direct_mode = true; 1292 } 1293 1294 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0, 1295 pdev->name, cqspi); 1296 if (ret) { 1297 dev_err(dev, "Cannot request IRQ.\n"); 1298 goto probe_reset_failed; 1299 } 1300 1301 cqspi_wait_idle(cqspi); 1302 cqspi_controller_init(cqspi); 1303 cqspi->current_cs = -1; 1304 cqspi->sclk = 0; 1305 1306 ret = cqspi_setup_flash(cqspi); 1307 if (ret) { 1308 dev_err(dev, "failed to setup flash parameters %d\n", ret); 1309 goto probe_setup_failed; 1310 } 1311 1312 if (cqspi->use_direct_mode) { 1313 ret = cqspi_request_mmap_dma(cqspi); 1314 if (ret == -EPROBE_DEFER) 1315 goto probe_setup_failed; 1316 } 1317 1318 ret = devm_spi_register_master(dev, master); 1319 if (ret) { 1320 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret); 1321 goto probe_setup_failed; 1322 } 1323 1324 return 0; 1325 probe_setup_failed: 1326 cqspi_controller_enable(cqspi, 0); 1327 probe_reset_failed: 1328 clk_disable_unprepare(cqspi->clk); 1329 probe_clk_failed: 1330 pm_runtime_put_sync(dev); 1331 pm_runtime_disable(dev); 1332 probe_master_put: 1333 spi_master_put(master); 1334 return ret; 1335 } 1336 1337 static int cqspi_remove(struct platform_device *pdev) 1338 { 1339 struct cqspi_st *cqspi = platform_get_drvdata(pdev); 1340 1341 cqspi_controller_enable(cqspi, 0); 1342 1343 if (cqspi->rx_chan) 1344 dma_release_channel(cqspi->rx_chan); 1345 1346 clk_disable_unprepare(cqspi->clk); 1347 1348 pm_runtime_put_sync(&pdev->dev); 1349 pm_runtime_disable(&pdev->dev); 1350 1351 return 0; 1352 } 1353 1354 #ifdef CONFIG_PM_SLEEP 1355 static int cqspi_suspend(struct device *dev) 1356 { 1357 struct cqspi_st *cqspi = dev_get_drvdata(dev); 1358 1359 cqspi_controller_enable(cqspi, 0); 1360 return 0; 1361 } 1362 1363 static int cqspi_resume(struct device *dev) 1364 { 1365 struct cqspi_st *cqspi = dev_get_drvdata(dev); 1366 1367 cqspi_controller_enable(cqspi, 1); 1368 return 0; 1369 } 1370 1371 static const struct dev_pm_ops cqspi__dev_pm_ops = { 1372 .suspend = cqspi_suspend, 1373 .resume = cqspi_resume, 1374 }; 1375 1376 #define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops) 1377 #else 1378 #define CQSPI_DEV_PM_OPS NULL 1379 #endif 1380 1381 static const struct cqspi_driver_platdata cdns_qspi = { 1382 .quirks = CQSPI_DISABLE_DAC_MODE, 1383 }; 1384 1385 static const struct cqspi_driver_platdata k2g_qspi = { 1386 .quirks = CQSPI_NEEDS_WR_DELAY, 1387 }; 1388 1389 static const struct cqspi_driver_platdata am654_ospi = { 1390 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL, 1391 .quirks = CQSPI_NEEDS_WR_DELAY, 1392 }; 1393 1394 static const struct of_device_id cqspi_dt_ids[] = { 1395 { 1396 .compatible = "cdns,qspi-nor", 1397 .data = &cdns_qspi, 1398 }, 1399 { 1400 .compatible = "ti,k2g-qspi", 1401 .data = &k2g_qspi, 1402 }, 1403 { 1404 .compatible = "ti,am654-ospi", 1405 .data = &am654_ospi, 1406 }, 1407 { /* end of table */ } 1408 }; 1409 1410 MODULE_DEVICE_TABLE(of, cqspi_dt_ids); 1411 1412 static struct platform_driver cqspi_platform_driver = { 1413 .probe = cqspi_probe, 1414 .remove = cqspi_remove, 1415 .driver = { 1416 .name = CQSPI_NAME, 1417 .pm = CQSPI_DEV_PM_OPS, 1418 .of_match_table = cqspi_dt_ids, 1419 }, 1420 }; 1421 1422 module_platform_driver(cqspi_platform_driver); 1423 1424 MODULE_DESCRIPTION("Cadence QSPI Controller Driver"); 1425 MODULE_LICENSE("GPL v2"); 1426 MODULE_ALIAS("platform:" CQSPI_NAME); 1427 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>"); 1428 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>"); 1429 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>"); 1430 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>"); 1431