xref: /openbmc/linux/drivers/spi/spi-cadence-quadspi.c (revision f019679ea5f2ab650c3348a79e7d9c3625f62899)
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of_device.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 #include <linux/sched.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/timer.h>
33 
34 #define CQSPI_NAME			"cadence-qspi"
35 #define CQSPI_MAX_CHIPSELECT		16
36 
37 /* Quirks */
38 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
39 #define CQSPI_DISABLE_DAC_MODE		BIT(1)
40 #define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
41 #define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
42 
43 /* Capabilities */
44 #define CQSPI_SUPPORTS_OCTAL		BIT(0)
45 
46 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
47 
48 struct cqspi_st;
49 
50 struct cqspi_flash_pdata {
51 	struct cqspi_st	*cqspi;
52 	u32		clk_rate;
53 	u32		read_delay;
54 	u32		tshsl_ns;
55 	u32		tsd2d_ns;
56 	u32		tchsh_ns;
57 	u32		tslch_ns;
58 	u8		cs;
59 };
60 
61 struct cqspi_st {
62 	struct platform_device	*pdev;
63 	struct spi_master	*master;
64 	struct clk		*clk;
65 	unsigned int		sclk;
66 
67 	void __iomem		*iobase;
68 	void __iomem		*ahb_base;
69 	resource_size_t		ahb_size;
70 	struct completion	transfer_complete;
71 
72 	struct dma_chan		*rx_chan;
73 	struct completion	rx_dma_complete;
74 	dma_addr_t		mmap_phys_base;
75 
76 	int			current_cs;
77 	unsigned long		master_ref_clk_hz;
78 	bool			is_decoded_cs;
79 	u32			fifo_depth;
80 	u32			fifo_width;
81 	u32			num_chipselect;
82 	bool			rclk_en;
83 	u32			trigger_address;
84 	u32			wr_delay;
85 	bool			use_direct_mode;
86 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
87 	bool			use_dma_read;
88 	u32			pd_dev_id;
89 	bool			wr_completion;
90 };
91 
92 struct cqspi_driver_platdata {
93 	u32 hwcaps_mask;
94 	u8 quirks;
95 	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
96 				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
97 	u32 (*get_dma_status)(struct cqspi_st *cqspi);
98 };
99 
100 /* Operation timeout value */
101 #define CQSPI_TIMEOUT_MS			500
102 #define CQSPI_READ_TIMEOUT_MS			10
103 
104 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
105 #define CQSPI_DUMMY_BYTES_MAX			4
106 #define CQSPI_DUMMY_CLKS_MAX			31
107 
108 #define CQSPI_STIG_DATA_LEN_MAX			8
109 
110 /* Register map */
111 #define CQSPI_REG_CONFIG			0x00
112 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
113 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
114 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
115 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
116 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
117 #define CQSPI_REG_CONFIG_BAUD_LSB		19
118 #define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
119 #define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
120 #define CQSPI_REG_CONFIG_IDLE_LSB		31
121 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
122 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
123 
124 #define CQSPI_REG_RD_INSTR			0x04
125 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
126 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
127 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
128 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
129 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
130 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
131 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
132 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
133 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
134 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
135 
136 #define CQSPI_REG_WR_INSTR			0x08
137 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
138 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
139 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
140 
141 #define CQSPI_REG_DELAY				0x0C
142 #define CQSPI_REG_DELAY_TSLCH_LSB		0
143 #define CQSPI_REG_DELAY_TCHSH_LSB		8
144 #define CQSPI_REG_DELAY_TSD2D_LSB		16
145 #define CQSPI_REG_DELAY_TSHSL_LSB		24
146 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
147 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
148 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
149 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
150 
151 #define CQSPI_REG_READCAPTURE			0x10
152 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
153 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
154 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
155 
156 #define CQSPI_REG_SIZE				0x14
157 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
158 #define CQSPI_REG_SIZE_PAGE_LSB			4
159 #define CQSPI_REG_SIZE_BLOCK_LSB		16
160 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
161 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
162 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
163 
164 #define CQSPI_REG_SRAMPARTITION			0x18
165 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
166 
167 #define CQSPI_REG_DMA				0x20
168 #define CQSPI_REG_DMA_SINGLE_LSB		0
169 #define CQSPI_REG_DMA_BURST_LSB			8
170 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
171 #define CQSPI_REG_DMA_BURST_MASK		0xFF
172 
173 #define CQSPI_REG_REMAP				0x24
174 #define CQSPI_REG_MODE_BIT			0x28
175 
176 #define CQSPI_REG_SDRAMLEVEL			0x2C
177 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
178 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
179 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
180 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
181 
182 #define CQSPI_REG_WR_COMPLETION_CTRL		0x38
183 #define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
184 
185 #define CQSPI_REG_IRQSTATUS			0x40
186 #define CQSPI_REG_IRQMASK			0x44
187 
188 #define CQSPI_REG_INDIRECTRD			0x60
189 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
190 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
191 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
192 
193 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
194 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
195 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
196 
197 #define CQSPI_REG_CMDCTRL			0x90
198 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
199 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
200 #define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
201 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
202 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
203 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
204 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
205 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
206 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
207 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
208 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
209 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
210 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
211 #define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
212 
213 #define CQSPI_REG_INDIRECTWR			0x70
214 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
215 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
216 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
217 
218 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
219 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
220 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
221 
222 #define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
223 
224 #define CQSPI_REG_CMDADDRESS			0x94
225 #define CQSPI_REG_CMDREADDATALOWER		0xA0
226 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
227 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
228 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
229 
230 #define CQSPI_REG_POLLING_STATUS		0xB0
231 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
232 
233 #define CQSPI_REG_OP_EXT_LOWER			0xE0
234 #define CQSPI_REG_OP_EXT_READ_LSB		24
235 #define CQSPI_REG_OP_EXT_WRITE_LSB		16
236 #define CQSPI_REG_OP_EXT_STIG_LSB		0
237 
238 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
239 
240 #define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
241 #define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
242 
243 #define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
244 
245 #define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
246 #define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
247 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
248 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
249 
250 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
251 
252 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
253 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
254 
255 /* Interrupt status bits */
256 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
257 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
258 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
259 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
260 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
261 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
262 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
263 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
264 
265 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
266 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
267 					 CQSPI_REG_IRQ_IND_COMP)
268 
269 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
270 					 CQSPI_REG_IRQ_WATERMARK	| \
271 					 CQSPI_REG_IRQ_UNDERFLOW)
272 
273 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
274 #define CQSPI_DMA_UNALIGN		0x3
275 
276 #define CQSPI_REG_VERSAL_DMA_VAL		0x602
277 
278 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
279 {
280 	u32 val;
281 
282 	return readl_relaxed_poll_timeout(reg, val,
283 					  (((clr ? ~val : val) & mask) == mask),
284 					  10, CQSPI_TIMEOUT_MS * 1000);
285 }
286 
287 static bool cqspi_is_idle(struct cqspi_st *cqspi)
288 {
289 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
290 
291 	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
292 }
293 
294 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
295 {
296 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
297 
298 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
299 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
300 }
301 
302 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
303 {
304 	u32 dma_status;
305 
306 	dma_status = readl(cqspi->iobase +
307 					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
308 	writel(dma_status, cqspi->iobase +
309 		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
310 
311 	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
312 }
313 
314 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
315 {
316 	struct cqspi_st *cqspi = dev;
317 	unsigned int irq_status;
318 	struct device *device = &cqspi->pdev->dev;
319 	const struct cqspi_driver_platdata *ddata;
320 
321 	ddata = of_device_get_match_data(device);
322 
323 	/* Read interrupt status */
324 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
325 
326 	/* Clear interrupt */
327 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
328 
329 	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
330 		if (ddata->get_dma_status(cqspi)) {
331 			complete(&cqspi->transfer_complete);
332 			return IRQ_HANDLED;
333 		}
334 	}
335 
336 	irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
337 
338 	if (irq_status)
339 		complete(&cqspi->transfer_complete);
340 
341 	return IRQ_HANDLED;
342 }
343 
344 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
345 {
346 	u32 rdreg = 0;
347 
348 	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
349 	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
350 	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
351 
352 	return rdreg;
353 }
354 
355 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
356 {
357 	unsigned int dummy_clk;
358 
359 	if (!op->dummy.nbytes)
360 		return 0;
361 
362 	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
363 	if (op->cmd.dtr)
364 		dummy_clk /= 2;
365 
366 	return dummy_clk;
367 }
368 
369 static int cqspi_wait_idle(struct cqspi_st *cqspi)
370 {
371 	const unsigned int poll_idle_retry = 3;
372 	unsigned int count = 0;
373 	unsigned long timeout;
374 
375 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
376 	while (1) {
377 		/*
378 		 * Read few times in succession to ensure the controller
379 		 * is indeed idle, that is, the bit does not transition
380 		 * low again.
381 		 */
382 		if (cqspi_is_idle(cqspi))
383 			count++;
384 		else
385 			count = 0;
386 
387 		if (count >= poll_idle_retry)
388 			return 0;
389 
390 		if (time_after(jiffies, timeout)) {
391 			/* Timeout, in busy mode. */
392 			dev_err(&cqspi->pdev->dev,
393 				"QSPI is still busy after %dms timeout.\n",
394 				CQSPI_TIMEOUT_MS);
395 			return -ETIMEDOUT;
396 		}
397 
398 		cpu_relax();
399 	}
400 }
401 
402 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
403 {
404 	void __iomem *reg_base = cqspi->iobase;
405 	int ret;
406 
407 	/* Write the CMDCTRL without start execution. */
408 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
409 	/* Start execute */
410 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
411 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
412 
413 	/* Polling for completion. */
414 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
415 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
416 	if (ret) {
417 		dev_err(&cqspi->pdev->dev,
418 			"Flash command execution timed out.\n");
419 		return ret;
420 	}
421 
422 	/* Polling QSPI idle status. */
423 	return cqspi_wait_idle(cqspi);
424 }
425 
426 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
427 				  const struct spi_mem_op *op,
428 				  unsigned int shift)
429 {
430 	struct cqspi_st *cqspi = f_pdata->cqspi;
431 	void __iomem *reg_base = cqspi->iobase;
432 	unsigned int reg;
433 	u8 ext;
434 
435 	if (op->cmd.nbytes != 2)
436 		return -EINVAL;
437 
438 	/* Opcode extension is the LSB. */
439 	ext = op->cmd.opcode & 0xff;
440 
441 	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
442 	reg &= ~(0xff << shift);
443 	reg |= ext << shift;
444 	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
445 
446 	return 0;
447 }
448 
449 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
450 			    const struct spi_mem_op *op, unsigned int shift)
451 {
452 	struct cqspi_st *cqspi = f_pdata->cqspi;
453 	void __iomem *reg_base = cqspi->iobase;
454 	unsigned int reg;
455 	int ret;
456 
457 	reg = readl(reg_base + CQSPI_REG_CONFIG);
458 
459 	/*
460 	 * We enable dual byte opcode here. The callers have to set up the
461 	 * extension opcode based on which type of operation it is.
462 	 */
463 	if (op->cmd.dtr) {
464 		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
465 		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
466 
467 		/* Set up command opcode extension. */
468 		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
469 		if (ret)
470 			return ret;
471 	} else {
472 		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
473 		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
474 	}
475 
476 	writel(reg, reg_base + CQSPI_REG_CONFIG);
477 
478 	return cqspi_wait_idle(cqspi);
479 }
480 
481 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
482 			      const struct spi_mem_op *op)
483 {
484 	struct cqspi_st *cqspi = f_pdata->cqspi;
485 	void __iomem *reg_base = cqspi->iobase;
486 	u8 *rxbuf = op->data.buf.in;
487 	u8 opcode;
488 	size_t n_rx = op->data.nbytes;
489 	unsigned int rdreg;
490 	unsigned int reg;
491 	unsigned int dummy_clk;
492 	size_t read_len;
493 	int status;
494 
495 	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
496 	if (status)
497 		return status;
498 
499 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
500 		dev_err(&cqspi->pdev->dev,
501 			"Invalid input argument, len %zu rxbuf 0x%p\n",
502 			n_rx, rxbuf);
503 		return -EINVAL;
504 	}
505 
506 	if (op->cmd.dtr)
507 		opcode = op->cmd.opcode >> 8;
508 	else
509 		opcode = op->cmd.opcode;
510 
511 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
512 
513 	rdreg = cqspi_calc_rdreg(op);
514 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
515 
516 	dummy_clk = cqspi_calc_dummy(op);
517 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
518 		return -EOPNOTSUPP;
519 
520 	if (dummy_clk)
521 		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
522 		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
523 
524 	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
525 
526 	/* 0 means 1 byte. */
527 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
528 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
529 	status = cqspi_exec_flash_cmd(cqspi, reg);
530 	if (status)
531 		return status;
532 
533 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
534 
535 	/* Put the read value into rx_buf */
536 	read_len = (n_rx > 4) ? 4 : n_rx;
537 	memcpy(rxbuf, &reg, read_len);
538 	rxbuf += read_len;
539 
540 	if (n_rx > 4) {
541 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
542 
543 		read_len = n_rx - read_len;
544 		memcpy(rxbuf, &reg, read_len);
545 	}
546 
547 	return 0;
548 }
549 
550 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
551 			       const struct spi_mem_op *op)
552 {
553 	struct cqspi_st *cqspi = f_pdata->cqspi;
554 	void __iomem *reg_base = cqspi->iobase;
555 	u8 opcode;
556 	const u8 *txbuf = op->data.buf.out;
557 	size_t n_tx = op->data.nbytes;
558 	unsigned int reg;
559 	unsigned int data;
560 	size_t write_len;
561 	int ret;
562 
563 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
564 	if (ret)
565 		return ret;
566 
567 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
568 		dev_err(&cqspi->pdev->dev,
569 			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
570 			n_tx, txbuf);
571 		return -EINVAL;
572 	}
573 
574 	reg = cqspi_calc_rdreg(op);
575 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
576 
577 	if (op->cmd.dtr)
578 		opcode = op->cmd.opcode >> 8;
579 	else
580 		opcode = op->cmd.opcode;
581 
582 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
583 
584 	if (op->addr.nbytes) {
585 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
586 		reg |= ((op->addr.nbytes - 1) &
587 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
588 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
589 
590 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
591 	}
592 
593 	if (n_tx) {
594 		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
595 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
596 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
597 		data = 0;
598 		write_len = (n_tx > 4) ? 4 : n_tx;
599 		memcpy(&data, txbuf, write_len);
600 		txbuf += write_len;
601 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
602 
603 		if (n_tx > 4) {
604 			data = 0;
605 			write_len = n_tx - 4;
606 			memcpy(&data, txbuf, write_len);
607 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
608 		}
609 	}
610 
611 	return cqspi_exec_flash_cmd(cqspi, reg);
612 }
613 
614 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
615 			    const struct spi_mem_op *op)
616 {
617 	struct cqspi_st *cqspi = f_pdata->cqspi;
618 	void __iomem *reg_base = cqspi->iobase;
619 	unsigned int dummy_clk = 0;
620 	unsigned int reg;
621 	int ret;
622 	u8 opcode;
623 
624 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
625 	if (ret)
626 		return ret;
627 
628 	if (op->cmd.dtr)
629 		opcode = op->cmd.opcode >> 8;
630 	else
631 		opcode = op->cmd.opcode;
632 
633 	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
634 	reg |= cqspi_calc_rdreg(op);
635 
636 	/* Setup dummy clock cycles */
637 	dummy_clk = cqspi_calc_dummy(op);
638 
639 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
640 		return -EOPNOTSUPP;
641 
642 	if (dummy_clk)
643 		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
644 		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
645 
646 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
647 
648 	/* Set address width */
649 	reg = readl(reg_base + CQSPI_REG_SIZE);
650 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
651 	reg |= (op->addr.nbytes - 1);
652 	writel(reg, reg_base + CQSPI_REG_SIZE);
653 	return 0;
654 }
655 
656 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
657 				       u8 *rxbuf, loff_t from_addr,
658 				       const size_t n_rx)
659 {
660 	struct cqspi_st *cqspi = f_pdata->cqspi;
661 	struct device *dev = &cqspi->pdev->dev;
662 	void __iomem *reg_base = cqspi->iobase;
663 	void __iomem *ahb_base = cqspi->ahb_base;
664 	unsigned int remaining = n_rx;
665 	unsigned int mod_bytes = n_rx % 4;
666 	unsigned int bytes_to_read = 0;
667 	u8 *rxbuf_end = rxbuf + n_rx;
668 	int ret = 0;
669 
670 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
671 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
672 
673 	/* Clear all interrupts. */
674 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
675 
676 	writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
677 
678 	reinit_completion(&cqspi->transfer_complete);
679 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
680 	       reg_base + CQSPI_REG_INDIRECTRD);
681 
682 	while (remaining > 0) {
683 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
684 						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
685 			ret = -ETIMEDOUT;
686 
687 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
688 
689 		if (ret && bytes_to_read == 0) {
690 			dev_err(dev, "Indirect read timeout, no bytes\n");
691 			goto failrd;
692 		}
693 
694 		while (bytes_to_read != 0) {
695 			unsigned int word_remain = round_down(remaining, 4);
696 
697 			bytes_to_read *= cqspi->fifo_width;
698 			bytes_to_read = bytes_to_read > remaining ?
699 					remaining : bytes_to_read;
700 			bytes_to_read = round_down(bytes_to_read, 4);
701 			/* Read 4 byte word chunks then single bytes */
702 			if (bytes_to_read) {
703 				ioread32_rep(ahb_base, rxbuf,
704 					     (bytes_to_read / 4));
705 			} else if (!word_remain && mod_bytes) {
706 				unsigned int temp = ioread32(ahb_base);
707 
708 				bytes_to_read = mod_bytes;
709 				memcpy(rxbuf, &temp, min((unsigned int)
710 							 (rxbuf_end - rxbuf),
711 							 bytes_to_read));
712 			}
713 			rxbuf += bytes_to_read;
714 			remaining -= bytes_to_read;
715 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
716 		}
717 
718 		if (remaining > 0)
719 			reinit_completion(&cqspi->transfer_complete);
720 	}
721 
722 	/* Check indirect done status */
723 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
724 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
725 	if (ret) {
726 		dev_err(dev, "Indirect read completion error (%i)\n", ret);
727 		goto failrd;
728 	}
729 
730 	/* Disable interrupt */
731 	writel(0, reg_base + CQSPI_REG_IRQMASK);
732 
733 	/* Clear indirect completion status */
734 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
735 
736 	return 0;
737 
738 failrd:
739 	/* Disable interrupt */
740 	writel(0, reg_base + CQSPI_REG_IRQMASK);
741 
742 	/* Cancel the indirect read */
743 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
744 	       reg_base + CQSPI_REG_INDIRECTRD);
745 	return ret;
746 }
747 
748 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
749 					  u_char *rxbuf, loff_t from_addr,
750 					  size_t n_rx)
751 {
752 	struct cqspi_st *cqspi = f_pdata->cqspi;
753 	struct device *dev = &cqspi->pdev->dev;
754 	void __iomem *reg_base = cqspi->iobase;
755 	u32 reg, bytes_to_dma;
756 	loff_t addr = from_addr;
757 	void *buf = rxbuf;
758 	dma_addr_t dma_addr;
759 	u8 bytes_rem;
760 	int ret = 0;
761 
762 	bytes_rem = n_rx % 4;
763 	bytes_to_dma = (n_rx - bytes_rem);
764 
765 	if (!bytes_to_dma)
766 		goto nondmard;
767 
768 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
769 	if (ret)
770 		return ret;
771 
772 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
773 	reg |= CQSPI_REG_CONFIG_DMA_MASK;
774 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
775 
776 	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
777 	if (dma_mapping_error(dev, dma_addr)) {
778 		dev_err(dev, "dma mapping failed\n");
779 		return -ENOMEM;
780 	}
781 
782 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
783 	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
784 	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
785 	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
786 
787 	/* Clear all interrupts. */
788 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
789 
790 	/* Enable DMA done interrupt */
791 	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
792 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
793 
794 	/* Default DMA periph configuration */
795 	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
796 
797 	/* Configure DMA Dst address */
798 	writel(lower_32_bits(dma_addr),
799 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
800 	writel(upper_32_bits(dma_addr),
801 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
802 
803 	/* Configure DMA Src address */
804 	writel(cqspi->trigger_address, reg_base +
805 	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
806 
807 	/* Set DMA destination size */
808 	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
809 
810 	/* Set DMA destination control */
811 	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
812 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
813 
814 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
815 	       reg_base + CQSPI_REG_INDIRECTRD);
816 
817 	reinit_completion(&cqspi->transfer_complete);
818 
819 	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
820 					 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) {
821 		ret = -ETIMEDOUT;
822 		goto failrd;
823 	}
824 
825 	/* Disable DMA interrupt */
826 	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
827 
828 	/* Clear indirect completion status */
829 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
830 	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
831 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
832 
833 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
834 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
835 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
836 
837 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
838 					PM_OSPI_MUX_SEL_LINEAR);
839 	if (ret)
840 		return ret;
841 
842 nondmard:
843 	if (bytes_rem) {
844 		addr += bytes_to_dma;
845 		buf += bytes_to_dma;
846 		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
847 						  bytes_rem);
848 		if (ret)
849 			return ret;
850 	}
851 
852 	return 0;
853 
854 failrd:
855 	/* Disable DMA interrupt */
856 	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
857 
858 	/* Cancel the indirect read */
859 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
860 	       reg_base + CQSPI_REG_INDIRECTRD);
861 
862 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
863 
864 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
865 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
866 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
867 
868 	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
869 
870 	return ret;
871 }
872 
873 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
874 			     const struct spi_mem_op *op)
875 {
876 	unsigned int reg;
877 	int ret;
878 	struct cqspi_st *cqspi = f_pdata->cqspi;
879 	void __iomem *reg_base = cqspi->iobase;
880 	u8 opcode;
881 
882 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
883 	if (ret)
884 		return ret;
885 
886 	if (op->cmd.dtr)
887 		opcode = op->cmd.opcode >> 8;
888 	else
889 		opcode = op->cmd.opcode;
890 
891 	/* Set opcode. */
892 	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
893 	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
894 	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
895 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
896 	reg = cqspi_calc_rdreg(op);
897 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
898 
899 	/*
900 	 * SPI NAND flashes require the address of the status register to be
901 	 * passed in the Read SR command. Also, some SPI NOR flashes like the
902 	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
903 	 * command in DTR mode.
904 	 *
905 	 * But this controller does not support address phase in the Read SR
906 	 * command when doing auto-HW polling. So, disable write completion
907 	 * polling on the controller's side. spinand and spi-nor will take
908 	 * care of polling the status register.
909 	 */
910 	if (cqspi->wr_completion) {
911 		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
912 		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
913 		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
914 	}
915 
916 	reg = readl(reg_base + CQSPI_REG_SIZE);
917 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
918 	reg |= (op->addr.nbytes - 1);
919 	writel(reg, reg_base + CQSPI_REG_SIZE);
920 	return 0;
921 }
922 
923 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
924 					loff_t to_addr, const u8 *txbuf,
925 					const size_t n_tx)
926 {
927 	struct cqspi_st *cqspi = f_pdata->cqspi;
928 	struct device *dev = &cqspi->pdev->dev;
929 	void __iomem *reg_base = cqspi->iobase;
930 	unsigned int remaining = n_tx;
931 	unsigned int write_bytes;
932 	int ret;
933 
934 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
935 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
936 
937 	/* Clear all interrupts. */
938 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
939 
940 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
941 
942 	reinit_completion(&cqspi->transfer_complete);
943 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
944 	       reg_base + CQSPI_REG_INDIRECTWR);
945 	/*
946 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
947 	 * Controller programming sequence, couple of cycles of
948 	 * QSPI_REF_CLK delay is required for the above bit to
949 	 * be internally synchronized by the QSPI module. Provide 5
950 	 * cycles of delay.
951 	 */
952 	if (cqspi->wr_delay)
953 		ndelay(cqspi->wr_delay);
954 
955 	while (remaining > 0) {
956 		size_t write_words, mod_bytes;
957 
958 		write_bytes = remaining;
959 		write_words = write_bytes / 4;
960 		mod_bytes = write_bytes % 4;
961 		/* Write 4 bytes at a time then single bytes. */
962 		if (write_words) {
963 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
964 			txbuf += (write_words * 4);
965 		}
966 		if (mod_bytes) {
967 			unsigned int temp = 0xFFFFFFFF;
968 
969 			memcpy(&temp, txbuf, mod_bytes);
970 			iowrite32(temp, cqspi->ahb_base);
971 			txbuf += mod_bytes;
972 		}
973 
974 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
975 						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
976 			dev_err(dev, "Indirect write timeout\n");
977 			ret = -ETIMEDOUT;
978 			goto failwr;
979 		}
980 
981 		remaining -= write_bytes;
982 
983 		if (remaining > 0)
984 			reinit_completion(&cqspi->transfer_complete);
985 	}
986 
987 	/* Check indirect done status */
988 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
989 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
990 	if (ret) {
991 		dev_err(dev, "Indirect write completion error (%i)\n", ret);
992 		goto failwr;
993 	}
994 
995 	/* Disable interrupt. */
996 	writel(0, reg_base + CQSPI_REG_IRQMASK);
997 
998 	/* Clear indirect completion status */
999 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1000 
1001 	cqspi_wait_idle(cqspi);
1002 
1003 	return 0;
1004 
1005 failwr:
1006 	/* Disable interrupt. */
1007 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1008 
1009 	/* Cancel the indirect write */
1010 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1011 	       reg_base + CQSPI_REG_INDIRECTWR);
1012 	return ret;
1013 }
1014 
1015 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1016 {
1017 	struct cqspi_st *cqspi = f_pdata->cqspi;
1018 	void __iomem *reg_base = cqspi->iobase;
1019 	unsigned int chip_select = f_pdata->cs;
1020 	unsigned int reg;
1021 
1022 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1023 	if (cqspi->is_decoded_cs) {
1024 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1025 	} else {
1026 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1027 
1028 		/* Convert CS if without decoder.
1029 		 * CS0 to 4b'1110
1030 		 * CS1 to 4b'1101
1031 		 * CS2 to 4b'1011
1032 		 * CS3 to 4b'0111
1033 		 */
1034 		chip_select = 0xF & ~(1 << chip_select);
1035 	}
1036 
1037 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1038 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1039 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1040 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1041 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1042 }
1043 
1044 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1045 					   const unsigned int ns_val)
1046 {
1047 	unsigned int ticks;
1048 
1049 	ticks = ref_clk_hz / 1000;	/* kHz */
1050 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1051 
1052 	return ticks;
1053 }
1054 
1055 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1056 {
1057 	struct cqspi_st *cqspi = f_pdata->cqspi;
1058 	void __iomem *iobase = cqspi->iobase;
1059 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1060 	unsigned int tshsl, tchsh, tslch, tsd2d;
1061 	unsigned int reg;
1062 	unsigned int tsclk;
1063 
1064 	/* calculate the number of ref ticks for one sclk tick */
1065 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1066 
1067 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1068 	/* this particular value must be at least one sclk */
1069 	if (tshsl < tsclk)
1070 		tshsl = tsclk;
1071 
1072 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1073 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1074 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1075 
1076 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1077 	       << CQSPI_REG_DELAY_TSHSL_LSB;
1078 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1079 		<< CQSPI_REG_DELAY_TCHSH_LSB;
1080 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1081 		<< CQSPI_REG_DELAY_TSLCH_LSB;
1082 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1083 		<< CQSPI_REG_DELAY_TSD2D_LSB;
1084 	writel(reg, iobase + CQSPI_REG_DELAY);
1085 }
1086 
1087 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1088 {
1089 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1090 	void __iomem *reg_base = cqspi->iobase;
1091 	u32 reg, div;
1092 
1093 	/* Recalculate the baudrate divisor based on QSPI specification. */
1094 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1095 
1096 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1097 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1098 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1099 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1100 }
1101 
1102 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1103 				   const bool bypass,
1104 				   const unsigned int delay)
1105 {
1106 	void __iomem *reg_base = cqspi->iobase;
1107 	unsigned int reg;
1108 
1109 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1110 
1111 	if (bypass)
1112 		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1113 	else
1114 		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1115 
1116 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1117 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1118 
1119 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1120 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1121 
1122 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1123 }
1124 
1125 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1126 {
1127 	void __iomem *reg_base = cqspi->iobase;
1128 	unsigned int reg;
1129 
1130 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1131 
1132 	if (enable)
1133 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1134 	else
1135 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1136 
1137 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1138 }
1139 
1140 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1141 			    unsigned long sclk)
1142 {
1143 	struct cqspi_st *cqspi = f_pdata->cqspi;
1144 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1145 	int switch_ck = (cqspi->sclk != sclk);
1146 
1147 	if (switch_cs || switch_ck)
1148 		cqspi_controller_enable(cqspi, 0);
1149 
1150 	/* Switch chip select. */
1151 	if (switch_cs) {
1152 		cqspi->current_cs = f_pdata->cs;
1153 		cqspi_chipselect(f_pdata);
1154 	}
1155 
1156 	/* Setup baudrate divisor and delays */
1157 	if (switch_ck) {
1158 		cqspi->sclk = sclk;
1159 		cqspi_config_baudrate_div(cqspi);
1160 		cqspi_delay(f_pdata);
1161 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1162 				       f_pdata->read_delay);
1163 	}
1164 
1165 	if (switch_cs || switch_ck)
1166 		cqspi_controller_enable(cqspi, 1);
1167 }
1168 
1169 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1170 			   const struct spi_mem_op *op)
1171 {
1172 	struct cqspi_st *cqspi = f_pdata->cqspi;
1173 	loff_t to = op->addr.val;
1174 	size_t len = op->data.nbytes;
1175 	const u_char *buf = op->data.buf.out;
1176 	int ret;
1177 
1178 	ret = cqspi_write_setup(f_pdata, op);
1179 	if (ret)
1180 		return ret;
1181 
1182 	/*
1183 	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1184 	 * address (all 0s) with the read status register command in DTR mode.
1185 	 * But this controller does not support sending dummy address bytes to
1186 	 * the flash when it is polling the write completion register in DTR
1187 	 * mode. So, we can not use direct mode when in DTR mode for writing
1188 	 * data.
1189 	 */
1190 	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1191 	    ((to + len) <= cqspi->ahb_size)) {
1192 		memcpy_toio(cqspi->ahb_base + to, buf, len);
1193 		return cqspi_wait_idle(cqspi);
1194 	}
1195 
1196 	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1197 }
1198 
1199 static void cqspi_rx_dma_callback(void *param)
1200 {
1201 	struct cqspi_st *cqspi = param;
1202 
1203 	complete(&cqspi->rx_dma_complete);
1204 }
1205 
1206 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1207 				     u_char *buf, loff_t from, size_t len)
1208 {
1209 	struct cqspi_st *cqspi = f_pdata->cqspi;
1210 	struct device *dev = &cqspi->pdev->dev;
1211 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1212 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1213 	int ret = 0;
1214 	struct dma_async_tx_descriptor *tx;
1215 	dma_cookie_t cookie;
1216 	dma_addr_t dma_dst;
1217 	struct device *ddev;
1218 
1219 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1220 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1221 		return 0;
1222 	}
1223 
1224 	ddev = cqspi->rx_chan->device->dev;
1225 	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1226 	if (dma_mapping_error(ddev, dma_dst)) {
1227 		dev_err(dev, "dma mapping failed\n");
1228 		return -ENOMEM;
1229 	}
1230 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1231 				       len, flags);
1232 	if (!tx) {
1233 		dev_err(dev, "device_prep_dma_memcpy error\n");
1234 		ret = -EIO;
1235 		goto err_unmap;
1236 	}
1237 
1238 	tx->callback = cqspi_rx_dma_callback;
1239 	tx->callback_param = cqspi;
1240 	cookie = tx->tx_submit(tx);
1241 	reinit_completion(&cqspi->rx_dma_complete);
1242 
1243 	ret = dma_submit_error(cookie);
1244 	if (ret) {
1245 		dev_err(dev, "dma_submit_error %d\n", cookie);
1246 		ret = -EIO;
1247 		goto err_unmap;
1248 	}
1249 
1250 	dma_async_issue_pending(cqspi->rx_chan);
1251 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1252 					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1253 		dmaengine_terminate_sync(cqspi->rx_chan);
1254 		dev_err(dev, "DMA wait_for_completion_timeout\n");
1255 		ret = -ETIMEDOUT;
1256 		goto err_unmap;
1257 	}
1258 
1259 err_unmap:
1260 	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1261 
1262 	return ret;
1263 }
1264 
1265 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1266 			  const struct spi_mem_op *op)
1267 {
1268 	struct cqspi_st *cqspi = f_pdata->cqspi;
1269 	struct device *dev = &cqspi->pdev->dev;
1270 	const struct cqspi_driver_platdata *ddata;
1271 	loff_t from = op->addr.val;
1272 	size_t len = op->data.nbytes;
1273 	u_char *buf = op->data.buf.in;
1274 	u64 dma_align = (u64)(uintptr_t)buf;
1275 	int ret;
1276 
1277 	ddata = of_device_get_match_data(dev);
1278 
1279 	ret = cqspi_read_setup(f_pdata, op);
1280 	if (ret)
1281 		return ret;
1282 
1283 	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1284 		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1285 
1286 	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1287 	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1288 		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1289 
1290 	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1291 }
1292 
1293 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1294 {
1295 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1296 	struct cqspi_flash_pdata *f_pdata;
1297 
1298 	f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1299 	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1300 
1301 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1302 		if (!op->addr.nbytes)
1303 			return cqspi_command_read(f_pdata, op);
1304 
1305 		return cqspi_read(f_pdata, op);
1306 	}
1307 
1308 	if (!op->addr.nbytes || !op->data.buf.out)
1309 		return cqspi_command_write(f_pdata, op);
1310 
1311 	return cqspi_write(f_pdata, op);
1312 }
1313 
1314 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1315 {
1316 	int ret;
1317 
1318 	ret = cqspi_mem_process(mem, op);
1319 	if (ret)
1320 		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1321 
1322 	return ret;
1323 }
1324 
1325 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1326 				  const struct spi_mem_op *op)
1327 {
1328 	bool all_true, all_false;
1329 
1330 	/*
1331 	 * op->dummy.dtr is required for converting nbytes into ncycles.
1332 	 * Also, don't check the dtr field of the op phase having zero nbytes.
1333 	 */
1334 	all_true = op->cmd.dtr &&
1335 		   (!op->addr.nbytes || op->addr.dtr) &&
1336 		   (!op->dummy.nbytes || op->dummy.dtr) &&
1337 		   (!op->data.nbytes || op->data.dtr);
1338 
1339 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1340 		    !op->data.dtr;
1341 
1342 	if (all_true) {
1343 		/* Right now we only support 8-8-8 DTR mode. */
1344 		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1345 			return false;
1346 		if (op->addr.nbytes && op->addr.buswidth != 8)
1347 			return false;
1348 		if (op->data.nbytes && op->data.buswidth != 8)
1349 			return false;
1350 	} else if (!all_false) {
1351 		/* Mixed DTR modes are not supported. */
1352 		return false;
1353 	}
1354 
1355 	return spi_mem_default_supports_op(mem, op);
1356 }
1357 
1358 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1359 				    struct cqspi_flash_pdata *f_pdata,
1360 				    struct device_node *np)
1361 {
1362 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1363 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1364 		return -ENXIO;
1365 	}
1366 
1367 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1368 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1369 		return -ENXIO;
1370 	}
1371 
1372 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1373 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1374 		return -ENXIO;
1375 	}
1376 
1377 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1378 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1379 		return -ENXIO;
1380 	}
1381 
1382 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1383 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1384 		return -ENXIO;
1385 	}
1386 
1387 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1388 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1389 		return -ENXIO;
1390 	}
1391 
1392 	return 0;
1393 }
1394 
1395 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1396 {
1397 	struct device *dev = &cqspi->pdev->dev;
1398 	struct device_node *np = dev->of_node;
1399 	u32 id[2];
1400 
1401 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1402 
1403 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1404 		dev_err(dev, "couldn't determine fifo-depth\n");
1405 		return -ENXIO;
1406 	}
1407 
1408 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1409 		dev_err(dev, "couldn't determine fifo-width\n");
1410 		return -ENXIO;
1411 	}
1412 
1413 	if (of_property_read_u32(np, "cdns,trigger-address",
1414 				 &cqspi->trigger_address)) {
1415 		dev_err(dev, "couldn't determine trigger-address\n");
1416 		return -ENXIO;
1417 	}
1418 
1419 	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1420 		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1421 
1422 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1423 
1424 	if (!of_property_read_u32_array(np, "power-domains", id,
1425 					ARRAY_SIZE(id)))
1426 		cqspi->pd_dev_id = id[1];
1427 
1428 	return 0;
1429 }
1430 
1431 static void cqspi_controller_init(struct cqspi_st *cqspi)
1432 {
1433 	u32 reg;
1434 
1435 	cqspi_controller_enable(cqspi, 0);
1436 
1437 	/* Configure the remap address register, no remap */
1438 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1439 
1440 	/* Disable all interrupts. */
1441 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1442 
1443 	/* Configure the SRAM split to 1:1 . */
1444 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1445 
1446 	/* Load indirect trigger address. */
1447 	writel(cqspi->trigger_address,
1448 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1449 
1450 	/* Program read watermark -- 1/2 of the FIFO. */
1451 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1452 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1453 	/* Program write watermark -- 1/8 of the FIFO. */
1454 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1455 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1456 
1457 	/* Disable direct access controller */
1458 	if (!cqspi->use_direct_mode) {
1459 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1460 		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1461 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1462 	}
1463 
1464 	/* Enable DMA interface */
1465 	if (cqspi->use_dma_read) {
1466 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1467 		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1468 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1469 	}
1470 
1471 	cqspi_controller_enable(cqspi, 1);
1472 }
1473 
1474 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1475 {
1476 	dma_cap_mask_t mask;
1477 
1478 	dma_cap_zero(mask);
1479 	dma_cap_set(DMA_MEMCPY, mask);
1480 
1481 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1482 	if (IS_ERR(cqspi->rx_chan)) {
1483 		int ret = PTR_ERR(cqspi->rx_chan);
1484 
1485 		cqspi->rx_chan = NULL;
1486 		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1487 	}
1488 	init_completion(&cqspi->rx_dma_complete);
1489 
1490 	return 0;
1491 }
1492 
1493 static const char *cqspi_get_name(struct spi_mem *mem)
1494 {
1495 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1496 	struct device *dev = &cqspi->pdev->dev;
1497 
1498 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1499 }
1500 
1501 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1502 	.exec_op = cqspi_exec_mem_op,
1503 	.get_name = cqspi_get_name,
1504 	.supports_op = cqspi_supports_mem_op,
1505 };
1506 
1507 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1508 	.dtr = true,
1509 };
1510 
1511 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1512 {
1513 	struct platform_device *pdev = cqspi->pdev;
1514 	struct device *dev = &pdev->dev;
1515 	struct device_node *np = dev->of_node;
1516 	struct cqspi_flash_pdata *f_pdata;
1517 	unsigned int cs;
1518 	int ret;
1519 
1520 	/* Get flash device data */
1521 	for_each_available_child_of_node(dev->of_node, np) {
1522 		ret = of_property_read_u32(np, "reg", &cs);
1523 		if (ret) {
1524 			dev_err(dev, "Couldn't determine chip select.\n");
1525 			of_node_put(np);
1526 			return ret;
1527 		}
1528 
1529 		if (cs >= CQSPI_MAX_CHIPSELECT) {
1530 			dev_err(dev, "Chip select %d out of range.\n", cs);
1531 			of_node_put(np);
1532 			return -EINVAL;
1533 		}
1534 
1535 		f_pdata = &cqspi->f_pdata[cs];
1536 		f_pdata->cqspi = cqspi;
1537 		f_pdata->cs = cs;
1538 
1539 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1540 		if (ret) {
1541 			of_node_put(np);
1542 			return ret;
1543 		}
1544 	}
1545 
1546 	return 0;
1547 }
1548 
1549 static int cqspi_probe(struct platform_device *pdev)
1550 {
1551 	const struct cqspi_driver_platdata *ddata;
1552 	struct reset_control *rstc, *rstc_ocp;
1553 	struct device *dev = &pdev->dev;
1554 	struct spi_master *master;
1555 	struct resource *res_ahb;
1556 	struct cqspi_st *cqspi;
1557 	struct resource *res;
1558 	int ret;
1559 	int irq;
1560 
1561 	master = devm_spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1562 	if (!master) {
1563 		dev_err(&pdev->dev, "spi_alloc_master failed\n");
1564 		return -ENOMEM;
1565 	}
1566 	master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1567 	master->mem_ops = &cqspi_mem_ops;
1568 	master->mem_caps = &cqspi_mem_caps;
1569 	master->dev.of_node = pdev->dev.of_node;
1570 
1571 	cqspi = spi_master_get_devdata(master);
1572 
1573 	cqspi->pdev = pdev;
1574 	cqspi->master = master;
1575 	platform_set_drvdata(pdev, cqspi);
1576 
1577 	/* Obtain configuration from OF. */
1578 	ret = cqspi_of_get_pdata(cqspi);
1579 	if (ret) {
1580 		dev_err(dev, "Cannot get mandatory OF data.\n");
1581 		ret = -ENODEV;
1582 		goto probe_master_put;
1583 	}
1584 
1585 	/* Obtain QSPI clock. */
1586 	cqspi->clk = devm_clk_get(dev, NULL);
1587 	if (IS_ERR(cqspi->clk)) {
1588 		dev_err(dev, "Cannot claim QSPI clock.\n");
1589 		ret = PTR_ERR(cqspi->clk);
1590 		goto probe_master_put;
1591 	}
1592 
1593 	/* Obtain and remap controller address. */
1594 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1595 	cqspi->iobase = devm_ioremap_resource(dev, res);
1596 	if (IS_ERR(cqspi->iobase)) {
1597 		dev_err(dev, "Cannot remap controller address.\n");
1598 		ret = PTR_ERR(cqspi->iobase);
1599 		goto probe_master_put;
1600 	}
1601 
1602 	/* Obtain and remap AHB address. */
1603 	res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1604 	cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1605 	if (IS_ERR(cqspi->ahb_base)) {
1606 		dev_err(dev, "Cannot remap AHB address.\n");
1607 		ret = PTR_ERR(cqspi->ahb_base);
1608 		goto probe_master_put;
1609 	}
1610 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1611 	cqspi->ahb_size = resource_size(res_ahb);
1612 
1613 	init_completion(&cqspi->transfer_complete);
1614 
1615 	/* Obtain IRQ line. */
1616 	irq = platform_get_irq(pdev, 0);
1617 	if (irq < 0) {
1618 		ret = -ENXIO;
1619 		goto probe_master_put;
1620 	}
1621 
1622 	pm_runtime_enable(dev);
1623 	ret = pm_runtime_resume_and_get(dev);
1624 	if (ret < 0)
1625 		goto probe_master_put;
1626 
1627 	ret = clk_prepare_enable(cqspi->clk);
1628 	if (ret) {
1629 		dev_err(dev, "Cannot enable QSPI clock.\n");
1630 		goto probe_clk_failed;
1631 	}
1632 
1633 	/* Obtain QSPI reset control */
1634 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1635 	if (IS_ERR(rstc)) {
1636 		ret = PTR_ERR(rstc);
1637 		dev_err(dev, "Cannot get QSPI reset.\n");
1638 		goto probe_reset_failed;
1639 	}
1640 
1641 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1642 	if (IS_ERR(rstc_ocp)) {
1643 		ret = PTR_ERR(rstc_ocp);
1644 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1645 		goto probe_reset_failed;
1646 	}
1647 
1648 	reset_control_assert(rstc);
1649 	reset_control_deassert(rstc);
1650 
1651 	reset_control_assert(rstc_ocp);
1652 	reset_control_deassert(rstc_ocp);
1653 
1654 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1655 	master->max_speed_hz = cqspi->master_ref_clk_hz;
1656 
1657 	/* write completion is supported by default */
1658 	cqspi->wr_completion = true;
1659 
1660 	ddata  = of_device_get_match_data(dev);
1661 	if (ddata) {
1662 		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1663 			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1664 						cqspi->master_ref_clk_hz);
1665 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1666 			master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1667 		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1668 			cqspi->use_direct_mode = true;
1669 		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1670 			cqspi->use_dma_read = true;
1671 		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1672 			cqspi->wr_completion = false;
1673 
1674 		if (of_device_is_compatible(pdev->dev.of_node,
1675 					    "xlnx,versal-ospi-1.0"))
1676 			dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1677 	}
1678 
1679 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1680 			       pdev->name, cqspi);
1681 	if (ret) {
1682 		dev_err(dev, "Cannot request IRQ.\n");
1683 		goto probe_reset_failed;
1684 	}
1685 
1686 	cqspi_wait_idle(cqspi);
1687 	cqspi_controller_init(cqspi);
1688 	cqspi->current_cs = -1;
1689 	cqspi->sclk = 0;
1690 
1691 	master->num_chipselect = cqspi->num_chipselect;
1692 
1693 	ret = cqspi_setup_flash(cqspi);
1694 	if (ret) {
1695 		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1696 		goto probe_setup_failed;
1697 	}
1698 
1699 	if (cqspi->use_direct_mode) {
1700 		ret = cqspi_request_mmap_dma(cqspi);
1701 		if (ret == -EPROBE_DEFER)
1702 			goto probe_setup_failed;
1703 	}
1704 
1705 	ret = spi_register_master(master);
1706 	if (ret) {
1707 		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1708 		goto probe_setup_failed;
1709 	}
1710 
1711 	return 0;
1712 probe_setup_failed:
1713 	cqspi_controller_enable(cqspi, 0);
1714 probe_reset_failed:
1715 	clk_disable_unprepare(cqspi->clk);
1716 probe_clk_failed:
1717 	pm_runtime_put_sync(dev);
1718 	pm_runtime_disable(dev);
1719 probe_master_put:
1720 	spi_master_put(master);
1721 	return ret;
1722 }
1723 
1724 static int cqspi_remove(struct platform_device *pdev)
1725 {
1726 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1727 
1728 	spi_unregister_master(cqspi->master);
1729 	cqspi_controller_enable(cqspi, 0);
1730 
1731 	if (cqspi->rx_chan)
1732 		dma_release_channel(cqspi->rx_chan);
1733 
1734 	clk_disable_unprepare(cqspi->clk);
1735 
1736 	pm_runtime_put_sync(&pdev->dev);
1737 	pm_runtime_disable(&pdev->dev);
1738 
1739 	return 0;
1740 }
1741 
1742 #ifdef CONFIG_PM_SLEEP
1743 static int cqspi_suspend(struct device *dev)
1744 {
1745 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1746 
1747 	cqspi_controller_enable(cqspi, 0);
1748 	return 0;
1749 }
1750 
1751 static int cqspi_resume(struct device *dev)
1752 {
1753 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1754 
1755 	cqspi_controller_enable(cqspi, 1);
1756 	return 0;
1757 }
1758 
1759 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1760 	.suspend = cqspi_suspend,
1761 	.resume = cqspi_resume,
1762 };
1763 
1764 #define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
1765 #else
1766 #define CQSPI_DEV_PM_OPS	NULL
1767 #endif
1768 
1769 static const struct cqspi_driver_platdata cdns_qspi = {
1770 	.quirks = CQSPI_DISABLE_DAC_MODE,
1771 };
1772 
1773 static const struct cqspi_driver_platdata k2g_qspi = {
1774 	.quirks = CQSPI_NEEDS_WR_DELAY,
1775 };
1776 
1777 static const struct cqspi_driver_platdata am654_ospi = {
1778 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1779 	.quirks = CQSPI_NEEDS_WR_DELAY,
1780 };
1781 
1782 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1783 	.quirks = CQSPI_DISABLE_DAC_MODE,
1784 };
1785 
1786 static const struct cqspi_driver_platdata socfpga_qspi = {
1787 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION,
1788 };
1789 
1790 static const struct cqspi_driver_platdata versal_ospi = {
1791 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1792 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1793 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
1794 	.get_dma_status = cqspi_get_versal_dma_status,
1795 };
1796 
1797 static const struct of_device_id cqspi_dt_ids[] = {
1798 	{
1799 		.compatible = "cdns,qspi-nor",
1800 		.data = &cdns_qspi,
1801 	},
1802 	{
1803 		.compatible = "ti,k2g-qspi",
1804 		.data = &k2g_qspi,
1805 	},
1806 	{
1807 		.compatible = "ti,am654-ospi",
1808 		.data = &am654_ospi,
1809 	},
1810 	{
1811 		.compatible = "intel,lgm-qspi",
1812 		.data = &intel_lgm_qspi,
1813 	},
1814 	{
1815 		.compatible = "xlnx,versal-ospi-1.0",
1816 		.data = &versal_ospi,
1817 	},
1818 	{
1819 		.compatible = "intel,socfpga-qspi",
1820 		.data = &socfpga_qspi,
1821 	},
1822 	{ /* end of table */ }
1823 };
1824 
1825 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1826 
1827 static struct platform_driver cqspi_platform_driver = {
1828 	.probe = cqspi_probe,
1829 	.remove = cqspi_remove,
1830 	.driver = {
1831 		.name = CQSPI_NAME,
1832 		.pm = CQSPI_DEV_PM_OPS,
1833 		.of_match_table = cqspi_dt_ids,
1834 	},
1835 };
1836 
1837 module_platform_driver(cqspi_platform_driver);
1838 
1839 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1840 MODULE_LICENSE("GPL v2");
1841 MODULE_ALIAS("platform:" CQSPI_NAME);
1842 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1843 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1844 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1845 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1846 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
1847