1 // SPDX-License-Identifier: GPL-2.0-only 2 // 3 // Driver for Cadence QSPI Controller 4 // 5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved. 6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved. 7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com 8 9 #include <linux/clk.h> 10 #include <linux/completion.h> 11 #include <linux/delay.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmaengine.h> 14 #include <linux/err.h> 15 #include <linux/errno.h> 16 #include <linux/firmware/xlnx-zynqmp.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/iopoll.h> 20 #include <linux/jiffies.h> 21 #include <linux/kernel.h> 22 #include <linux/log2.h> 23 #include <linux/module.h> 24 #include <linux/of_device.h> 25 #include <linux/of.h> 26 #include <linux/platform_device.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/reset.h> 29 #include <linux/sched.h> 30 #include <linux/spi/spi.h> 31 #include <linux/spi/spi-mem.h> 32 #include <linux/timer.h> 33 34 #define CQSPI_NAME "cadence-qspi" 35 #define CQSPI_MAX_CHIPSELECT 16 36 37 /* Quirks */ 38 #define CQSPI_NEEDS_WR_DELAY BIT(0) 39 #define CQSPI_DISABLE_DAC_MODE BIT(1) 40 #define CQSPI_SUPPORT_EXTERNAL_DMA BIT(2) 41 #define CQSPI_NO_SUPPORT_WR_COMPLETION BIT(3) 42 43 /* Capabilities */ 44 #define CQSPI_SUPPORTS_OCTAL BIT(0) 45 46 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0) 47 48 struct cqspi_st; 49 50 struct cqspi_flash_pdata { 51 struct cqspi_st *cqspi; 52 u32 clk_rate; 53 u32 read_delay; 54 u32 tshsl_ns; 55 u32 tsd2d_ns; 56 u32 tchsh_ns; 57 u32 tslch_ns; 58 u8 cs; 59 }; 60 61 struct cqspi_st { 62 struct platform_device *pdev; 63 struct spi_master *master; 64 struct clk *clk; 65 unsigned int sclk; 66 67 void __iomem *iobase; 68 void __iomem *ahb_base; 69 resource_size_t ahb_size; 70 struct completion transfer_complete; 71 72 struct dma_chan *rx_chan; 73 struct completion rx_dma_complete; 74 dma_addr_t mmap_phys_base; 75 76 int current_cs; 77 unsigned long master_ref_clk_hz; 78 bool is_decoded_cs; 79 u32 fifo_depth; 80 u32 fifo_width; 81 u32 num_chipselect; 82 bool rclk_en; 83 u32 trigger_address; 84 u32 wr_delay; 85 bool use_direct_mode; 86 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT]; 87 bool use_dma_read; 88 u32 pd_dev_id; 89 bool wr_completion; 90 }; 91 92 struct cqspi_driver_platdata { 93 u32 hwcaps_mask; 94 u8 quirks; 95 int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata, 96 u_char *rxbuf, loff_t from_addr, size_t n_rx); 97 u32 (*get_dma_status)(struct cqspi_st *cqspi); 98 }; 99 100 /* Operation timeout value */ 101 #define CQSPI_TIMEOUT_MS 500 102 #define CQSPI_READ_TIMEOUT_MS 10 103 104 #define CQSPI_DUMMY_CLKS_PER_BYTE 8 105 #define CQSPI_DUMMY_BYTES_MAX 4 106 #define CQSPI_DUMMY_CLKS_MAX 31 107 108 #define CQSPI_STIG_DATA_LEN_MAX 8 109 110 /* Register map */ 111 #define CQSPI_REG_CONFIG 0x00 112 #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0) 113 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7) 114 #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9) 115 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10 116 #define CQSPI_REG_CONFIG_DMA_MASK BIT(15) 117 #define CQSPI_REG_CONFIG_BAUD_LSB 19 118 #define CQSPI_REG_CONFIG_DTR_PROTO BIT(24) 119 #define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30) 120 #define CQSPI_REG_CONFIG_IDLE_LSB 31 121 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF 122 #define CQSPI_REG_CONFIG_BAUD_MASK 0xF 123 124 #define CQSPI_REG_RD_INSTR 0x04 125 #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0 126 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8 127 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12 128 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16 129 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20 130 #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24 131 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3 132 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3 133 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3 134 #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F 135 136 #define CQSPI_REG_WR_INSTR 0x08 137 #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0 138 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12 139 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16 140 141 #define CQSPI_REG_DELAY 0x0C 142 #define CQSPI_REG_DELAY_TSLCH_LSB 0 143 #define CQSPI_REG_DELAY_TCHSH_LSB 8 144 #define CQSPI_REG_DELAY_TSD2D_LSB 16 145 #define CQSPI_REG_DELAY_TSHSL_LSB 24 146 #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF 147 #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF 148 #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF 149 #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF 150 151 #define CQSPI_REG_READCAPTURE 0x10 152 #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0 153 #define CQSPI_REG_READCAPTURE_DELAY_LSB 1 154 #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF 155 156 #define CQSPI_REG_SIZE 0x14 157 #define CQSPI_REG_SIZE_ADDRESS_LSB 0 158 #define CQSPI_REG_SIZE_PAGE_LSB 4 159 #define CQSPI_REG_SIZE_BLOCK_LSB 16 160 #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF 161 #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF 162 #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F 163 164 #define CQSPI_REG_SRAMPARTITION 0x18 165 #define CQSPI_REG_INDIRECTTRIGGER 0x1C 166 167 #define CQSPI_REG_DMA 0x20 168 #define CQSPI_REG_DMA_SINGLE_LSB 0 169 #define CQSPI_REG_DMA_BURST_LSB 8 170 #define CQSPI_REG_DMA_SINGLE_MASK 0xFF 171 #define CQSPI_REG_DMA_BURST_MASK 0xFF 172 173 #define CQSPI_REG_REMAP 0x24 174 #define CQSPI_REG_MODE_BIT 0x28 175 176 #define CQSPI_REG_SDRAMLEVEL 0x2C 177 #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0 178 #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16 179 #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF 180 #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF 181 182 #define CQSPI_REG_WR_COMPLETION_CTRL 0x38 183 #define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14) 184 185 #define CQSPI_REG_IRQSTATUS 0x40 186 #define CQSPI_REG_IRQMASK 0x44 187 188 #define CQSPI_REG_INDIRECTRD 0x60 189 #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0) 190 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1) 191 #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5) 192 193 #define CQSPI_REG_INDIRECTRDWATERMARK 0x64 194 #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68 195 #define CQSPI_REG_INDIRECTRDBYTES 0x6C 196 197 #define CQSPI_REG_CMDCTRL 0x90 198 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0) 199 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1) 200 #define CQSPI_REG_CMDCTRL_DUMMY_LSB 7 201 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12 202 #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15 203 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16 204 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19 205 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20 206 #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23 207 #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24 208 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7 209 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3 210 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7 211 #define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F 212 213 #define CQSPI_REG_INDIRECTWR 0x70 214 #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0) 215 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1) 216 #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5) 217 218 #define CQSPI_REG_INDIRECTWRWATERMARK 0x74 219 #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78 220 #define CQSPI_REG_INDIRECTWRBYTES 0x7C 221 222 #define CQSPI_REG_INDTRIG_ADDRRANGE 0x80 223 224 #define CQSPI_REG_CMDADDRESS 0x94 225 #define CQSPI_REG_CMDREADDATALOWER 0xA0 226 #define CQSPI_REG_CMDREADDATAUPPER 0xA4 227 #define CQSPI_REG_CMDWRITEDATALOWER 0xA8 228 #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC 229 230 #define CQSPI_REG_POLLING_STATUS 0xB0 231 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16 232 233 #define CQSPI_REG_OP_EXT_LOWER 0xE0 234 #define CQSPI_REG_OP_EXT_READ_LSB 24 235 #define CQSPI_REG_OP_EXT_WRITE_LSB 16 236 #define CQSPI_REG_OP_EXT_STIG_LSB 0 237 238 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR 0x1000 239 240 #define CQSPI_REG_VERSAL_DMA_DST_ADDR 0x1800 241 #define CQSPI_REG_VERSAL_DMA_DST_SIZE 0x1804 242 243 #define CQSPI_REG_VERSAL_DMA_DST_CTRL 0x180C 244 245 #define CQSPI_REG_VERSAL_DMA_DST_I_STS 0x1814 246 #define CQSPI_REG_VERSAL_DMA_DST_I_EN 0x1818 247 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS 0x181C 248 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK BIT(1) 249 250 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB 0x1828 251 252 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL 0xF43FFA00 253 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL 0x6 254 255 /* Interrupt status bits */ 256 #define CQSPI_REG_IRQ_MODE_ERR BIT(0) 257 #define CQSPI_REG_IRQ_UNDERFLOW BIT(1) 258 #define CQSPI_REG_IRQ_IND_COMP BIT(2) 259 #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3) 260 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4) 261 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5) 262 #define CQSPI_REG_IRQ_WATERMARK BIT(6) 263 #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12) 264 265 #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \ 266 CQSPI_REG_IRQ_IND_SRAM_FULL | \ 267 CQSPI_REG_IRQ_IND_COMP) 268 269 #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \ 270 CQSPI_REG_IRQ_WATERMARK | \ 271 CQSPI_REG_IRQ_UNDERFLOW) 272 273 #define CQSPI_IRQ_STATUS_MASK 0x1FFFF 274 #define CQSPI_DMA_UNALIGN 0x3 275 276 #define CQSPI_REG_VERSAL_DMA_VAL 0x602 277 278 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr) 279 { 280 u32 val; 281 282 return readl_relaxed_poll_timeout(reg, val, 283 (((clr ? ~val : val) & mask) == mask), 284 10, CQSPI_TIMEOUT_MS * 1000); 285 } 286 287 static bool cqspi_is_idle(struct cqspi_st *cqspi) 288 { 289 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); 290 291 return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB); 292 } 293 294 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi) 295 { 296 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL); 297 298 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB; 299 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK; 300 } 301 302 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi) 303 { 304 u32 dma_status; 305 306 dma_status = readl(cqspi->iobase + 307 CQSPI_REG_VERSAL_DMA_DST_I_STS); 308 writel(dma_status, cqspi->iobase + 309 CQSPI_REG_VERSAL_DMA_DST_I_STS); 310 311 return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK; 312 } 313 314 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev) 315 { 316 struct cqspi_st *cqspi = dev; 317 unsigned int irq_status; 318 struct device *device = &cqspi->pdev->dev; 319 const struct cqspi_driver_platdata *ddata; 320 321 ddata = of_device_get_match_data(device); 322 323 /* Read interrupt status */ 324 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS); 325 326 /* Clear interrupt */ 327 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS); 328 329 if (cqspi->use_dma_read && ddata && ddata->get_dma_status) { 330 if (ddata->get_dma_status(cqspi)) { 331 complete(&cqspi->transfer_complete); 332 return IRQ_HANDLED; 333 } 334 } 335 336 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR; 337 338 if (irq_status) 339 complete(&cqspi->transfer_complete); 340 341 return IRQ_HANDLED; 342 } 343 344 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op) 345 { 346 u32 rdreg = 0; 347 348 rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB; 349 rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB; 350 rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB; 351 352 return rdreg; 353 } 354 355 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op) 356 { 357 unsigned int dummy_clk; 358 359 if (!op->dummy.nbytes) 360 return 0; 361 362 dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth); 363 if (op->cmd.dtr) 364 dummy_clk /= 2; 365 366 return dummy_clk; 367 } 368 369 static int cqspi_wait_idle(struct cqspi_st *cqspi) 370 { 371 const unsigned int poll_idle_retry = 3; 372 unsigned int count = 0; 373 unsigned long timeout; 374 375 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS); 376 while (1) { 377 /* 378 * Read few times in succession to ensure the controller 379 * is indeed idle, that is, the bit does not transition 380 * low again. 381 */ 382 if (cqspi_is_idle(cqspi)) 383 count++; 384 else 385 count = 0; 386 387 if (count >= poll_idle_retry) 388 return 0; 389 390 if (time_after(jiffies, timeout)) { 391 /* Timeout, in busy mode. */ 392 dev_err(&cqspi->pdev->dev, 393 "QSPI is still busy after %dms timeout.\n", 394 CQSPI_TIMEOUT_MS); 395 return -ETIMEDOUT; 396 } 397 398 cpu_relax(); 399 } 400 } 401 402 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg) 403 { 404 void __iomem *reg_base = cqspi->iobase; 405 int ret; 406 407 /* Write the CMDCTRL without start execution. */ 408 writel(reg, reg_base + CQSPI_REG_CMDCTRL); 409 /* Start execute */ 410 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK; 411 writel(reg, reg_base + CQSPI_REG_CMDCTRL); 412 413 /* Polling for completion. */ 414 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL, 415 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1); 416 if (ret) { 417 dev_err(&cqspi->pdev->dev, 418 "Flash command execution timed out.\n"); 419 return ret; 420 } 421 422 /* Polling QSPI idle status. */ 423 return cqspi_wait_idle(cqspi); 424 } 425 426 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata, 427 const struct spi_mem_op *op, 428 unsigned int shift) 429 { 430 struct cqspi_st *cqspi = f_pdata->cqspi; 431 void __iomem *reg_base = cqspi->iobase; 432 unsigned int reg; 433 u8 ext; 434 435 if (op->cmd.nbytes != 2) 436 return -EINVAL; 437 438 /* Opcode extension is the LSB. */ 439 ext = op->cmd.opcode & 0xff; 440 441 reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER); 442 reg &= ~(0xff << shift); 443 reg |= ext << shift; 444 writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER); 445 446 return 0; 447 } 448 449 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata, 450 const struct spi_mem_op *op, unsigned int shift) 451 { 452 struct cqspi_st *cqspi = f_pdata->cqspi; 453 void __iomem *reg_base = cqspi->iobase; 454 unsigned int reg; 455 int ret; 456 457 reg = readl(reg_base + CQSPI_REG_CONFIG); 458 459 /* 460 * We enable dual byte opcode here. The callers have to set up the 461 * extension opcode based on which type of operation it is. 462 */ 463 if (op->cmd.dtr) { 464 reg |= CQSPI_REG_CONFIG_DTR_PROTO; 465 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE; 466 467 /* Set up command opcode extension. */ 468 ret = cqspi_setup_opcode_ext(f_pdata, op, shift); 469 if (ret) 470 return ret; 471 } else { 472 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO; 473 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE; 474 } 475 476 writel(reg, reg_base + CQSPI_REG_CONFIG); 477 478 return cqspi_wait_idle(cqspi); 479 } 480 481 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata, 482 const struct spi_mem_op *op) 483 { 484 struct cqspi_st *cqspi = f_pdata->cqspi; 485 void __iomem *reg_base = cqspi->iobase; 486 u8 *rxbuf = op->data.buf.in; 487 u8 opcode; 488 size_t n_rx = op->data.nbytes; 489 unsigned int rdreg; 490 unsigned int reg; 491 unsigned int dummy_clk; 492 size_t read_len; 493 int status; 494 495 status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB); 496 if (status) 497 return status; 498 499 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) { 500 dev_err(&cqspi->pdev->dev, 501 "Invalid input argument, len %zu rxbuf 0x%p\n", 502 n_rx, rxbuf); 503 return -EINVAL; 504 } 505 506 if (op->cmd.dtr) 507 opcode = op->cmd.opcode >> 8; 508 else 509 opcode = op->cmd.opcode; 510 511 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB; 512 513 rdreg = cqspi_calc_rdreg(op); 514 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR); 515 516 dummy_clk = cqspi_calc_dummy(op); 517 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX) 518 return -EOPNOTSUPP; 519 520 if (dummy_clk) 521 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK) 522 << CQSPI_REG_CMDCTRL_DUMMY_LSB; 523 524 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB); 525 526 /* 0 means 1 byte. */ 527 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK) 528 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB); 529 status = cqspi_exec_flash_cmd(cqspi, reg); 530 if (status) 531 return status; 532 533 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER); 534 535 /* Put the read value into rx_buf */ 536 read_len = (n_rx > 4) ? 4 : n_rx; 537 memcpy(rxbuf, ®, read_len); 538 rxbuf += read_len; 539 540 if (n_rx > 4) { 541 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER); 542 543 read_len = n_rx - read_len; 544 memcpy(rxbuf, ®, read_len); 545 } 546 547 return 0; 548 } 549 550 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata, 551 const struct spi_mem_op *op) 552 { 553 struct cqspi_st *cqspi = f_pdata->cqspi; 554 void __iomem *reg_base = cqspi->iobase; 555 u8 opcode; 556 const u8 *txbuf = op->data.buf.out; 557 size_t n_tx = op->data.nbytes; 558 unsigned int reg; 559 unsigned int data; 560 size_t write_len; 561 int ret; 562 563 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB); 564 if (ret) 565 return ret; 566 567 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) { 568 dev_err(&cqspi->pdev->dev, 569 "Invalid input argument, cmdlen %zu txbuf 0x%p\n", 570 n_tx, txbuf); 571 return -EINVAL; 572 } 573 574 reg = cqspi_calc_rdreg(op); 575 writel(reg, reg_base + CQSPI_REG_RD_INSTR); 576 577 if (op->cmd.dtr) 578 opcode = op->cmd.opcode >> 8; 579 else 580 opcode = op->cmd.opcode; 581 582 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB; 583 584 if (op->addr.nbytes) { 585 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB); 586 reg |= ((op->addr.nbytes - 1) & 587 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK) 588 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB; 589 590 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS); 591 } 592 593 if (n_tx) { 594 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB); 595 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK) 596 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB; 597 data = 0; 598 write_len = (n_tx > 4) ? 4 : n_tx; 599 memcpy(&data, txbuf, write_len); 600 txbuf += write_len; 601 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER); 602 603 if (n_tx > 4) { 604 data = 0; 605 write_len = n_tx - 4; 606 memcpy(&data, txbuf, write_len); 607 writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER); 608 } 609 } 610 611 return cqspi_exec_flash_cmd(cqspi, reg); 612 } 613 614 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata, 615 const struct spi_mem_op *op) 616 { 617 struct cqspi_st *cqspi = f_pdata->cqspi; 618 void __iomem *reg_base = cqspi->iobase; 619 unsigned int dummy_clk = 0; 620 unsigned int reg; 621 int ret; 622 u8 opcode; 623 624 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB); 625 if (ret) 626 return ret; 627 628 if (op->cmd.dtr) 629 opcode = op->cmd.opcode >> 8; 630 else 631 opcode = op->cmd.opcode; 632 633 reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB; 634 reg |= cqspi_calc_rdreg(op); 635 636 /* Setup dummy clock cycles */ 637 dummy_clk = cqspi_calc_dummy(op); 638 639 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX) 640 return -EOPNOTSUPP; 641 642 if (dummy_clk) 643 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK) 644 << CQSPI_REG_RD_INSTR_DUMMY_LSB; 645 646 writel(reg, reg_base + CQSPI_REG_RD_INSTR); 647 648 /* Set address width */ 649 reg = readl(reg_base + CQSPI_REG_SIZE); 650 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK; 651 reg |= (op->addr.nbytes - 1); 652 writel(reg, reg_base + CQSPI_REG_SIZE); 653 return 0; 654 } 655 656 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata, 657 u8 *rxbuf, loff_t from_addr, 658 const size_t n_rx) 659 { 660 struct cqspi_st *cqspi = f_pdata->cqspi; 661 struct device *dev = &cqspi->pdev->dev; 662 void __iomem *reg_base = cqspi->iobase; 663 void __iomem *ahb_base = cqspi->ahb_base; 664 unsigned int remaining = n_rx; 665 unsigned int mod_bytes = n_rx % 4; 666 unsigned int bytes_to_read = 0; 667 u8 *rxbuf_end = rxbuf + n_rx; 668 int ret = 0; 669 670 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR); 671 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES); 672 673 /* Clear all interrupts. */ 674 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS); 675 676 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK); 677 678 reinit_completion(&cqspi->transfer_complete); 679 writel(CQSPI_REG_INDIRECTRD_START_MASK, 680 reg_base + CQSPI_REG_INDIRECTRD); 681 682 while (remaining > 0) { 683 if (!wait_for_completion_timeout(&cqspi->transfer_complete, 684 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) 685 ret = -ETIMEDOUT; 686 687 bytes_to_read = cqspi_get_rd_sram_level(cqspi); 688 689 if (ret && bytes_to_read == 0) { 690 dev_err(dev, "Indirect read timeout, no bytes\n"); 691 goto failrd; 692 } 693 694 while (bytes_to_read != 0) { 695 unsigned int word_remain = round_down(remaining, 4); 696 697 bytes_to_read *= cqspi->fifo_width; 698 bytes_to_read = bytes_to_read > remaining ? 699 remaining : bytes_to_read; 700 bytes_to_read = round_down(bytes_to_read, 4); 701 /* Read 4 byte word chunks then single bytes */ 702 if (bytes_to_read) { 703 ioread32_rep(ahb_base, rxbuf, 704 (bytes_to_read / 4)); 705 } else if (!word_remain && mod_bytes) { 706 unsigned int temp = ioread32(ahb_base); 707 708 bytes_to_read = mod_bytes; 709 memcpy(rxbuf, &temp, min((unsigned int) 710 (rxbuf_end - rxbuf), 711 bytes_to_read)); 712 } 713 rxbuf += bytes_to_read; 714 remaining -= bytes_to_read; 715 bytes_to_read = cqspi_get_rd_sram_level(cqspi); 716 } 717 718 if (remaining > 0) 719 reinit_completion(&cqspi->transfer_complete); 720 } 721 722 /* Check indirect done status */ 723 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD, 724 CQSPI_REG_INDIRECTRD_DONE_MASK, 0); 725 if (ret) { 726 dev_err(dev, "Indirect read completion error (%i)\n", ret); 727 goto failrd; 728 } 729 730 /* Disable interrupt */ 731 writel(0, reg_base + CQSPI_REG_IRQMASK); 732 733 /* Clear indirect completion status */ 734 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD); 735 736 return 0; 737 738 failrd: 739 /* Disable interrupt */ 740 writel(0, reg_base + CQSPI_REG_IRQMASK); 741 742 /* Cancel the indirect read */ 743 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK, 744 reg_base + CQSPI_REG_INDIRECTRD); 745 return ret; 746 } 747 748 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata, 749 u_char *rxbuf, loff_t from_addr, 750 size_t n_rx) 751 { 752 struct cqspi_st *cqspi = f_pdata->cqspi; 753 struct device *dev = &cqspi->pdev->dev; 754 void __iomem *reg_base = cqspi->iobase; 755 u32 reg, bytes_to_dma; 756 loff_t addr = from_addr; 757 void *buf = rxbuf; 758 dma_addr_t dma_addr; 759 u8 bytes_rem; 760 int ret = 0; 761 762 bytes_rem = n_rx % 4; 763 bytes_to_dma = (n_rx - bytes_rem); 764 765 if (!bytes_to_dma) 766 goto nondmard; 767 768 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA); 769 if (ret) 770 return ret; 771 772 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); 773 reg |= CQSPI_REG_CONFIG_DMA_MASK; 774 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); 775 776 dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE); 777 if (dma_mapping_error(dev, dma_addr)) { 778 dev_err(dev, "dma mapping failed\n"); 779 return -ENOMEM; 780 } 781 782 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR); 783 writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES); 784 writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL, 785 reg_base + CQSPI_REG_INDTRIG_ADDRRANGE); 786 787 /* Clear all interrupts. */ 788 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS); 789 790 /* Enable DMA done interrupt */ 791 writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK, 792 reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN); 793 794 /* Default DMA periph configuration */ 795 writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA); 796 797 /* Configure DMA Dst address */ 798 writel(lower_32_bits(dma_addr), 799 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR); 800 writel(upper_32_bits(dma_addr), 801 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB); 802 803 /* Configure DMA Src address */ 804 writel(cqspi->trigger_address, reg_base + 805 CQSPI_REG_VERSAL_DMA_SRC_ADDR); 806 807 /* Set DMA destination size */ 808 writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE); 809 810 /* Set DMA destination control */ 811 writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL, 812 reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL); 813 814 writel(CQSPI_REG_INDIRECTRD_START_MASK, 815 reg_base + CQSPI_REG_INDIRECTRD); 816 817 reinit_completion(&cqspi->transfer_complete); 818 819 if (!wait_for_completion_timeout(&cqspi->transfer_complete, 820 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) { 821 ret = -ETIMEDOUT; 822 goto failrd; 823 } 824 825 /* Disable DMA interrupt */ 826 writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS); 827 828 /* Clear indirect completion status */ 829 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, 830 cqspi->iobase + CQSPI_REG_INDIRECTRD); 831 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE); 832 833 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); 834 reg &= ~CQSPI_REG_CONFIG_DMA_MASK; 835 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); 836 837 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, 838 PM_OSPI_MUX_SEL_LINEAR); 839 if (ret) 840 return ret; 841 842 nondmard: 843 if (bytes_rem) { 844 addr += bytes_to_dma; 845 buf += bytes_to_dma; 846 ret = cqspi_indirect_read_execute(f_pdata, buf, addr, 847 bytes_rem); 848 if (ret) 849 return ret; 850 } 851 852 return 0; 853 854 failrd: 855 /* Disable DMA interrupt */ 856 writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS); 857 858 /* Cancel the indirect read */ 859 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK, 860 reg_base + CQSPI_REG_INDIRECTRD); 861 862 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE); 863 864 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); 865 reg &= ~CQSPI_REG_CONFIG_DMA_MASK; 866 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); 867 868 zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR); 869 870 return ret; 871 } 872 873 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata, 874 const struct spi_mem_op *op) 875 { 876 unsigned int reg; 877 int ret; 878 struct cqspi_st *cqspi = f_pdata->cqspi; 879 void __iomem *reg_base = cqspi->iobase; 880 u8 opcode; 881 882 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB); 883 if (ret) 884 return ret; 885 886 if (op->cmd.dtr) 887 opcode = op->cmd.opcode >> 8; 888 else 889 opcode = op->cmd.opcode; 890 891 /* Set opcode. */ 892 reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB; 893 reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB; 894 reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB; 895 writel(reg, reg_base + CQSPI_REG_WR_INSTR); 896 reg = cqspi_calc_rdreg(op); 897 writel(reg, reg_base + CQSPI_REG_RD_INSTR); 898 899 /* 900 * SPI NAND flashes require the address of the status register to be 901 * passed in the Read SR command. Also, some SPI NOR flashes like the 902 * cypress Semper flash expect a 4-byte dummy address in the Read SR 903 * command in DTR mode. 904 * 905 * But this controller does not support address phase in the Read SR 906 * command when doing auto-HW polling. So, disable write completion 907 * polling on the controller's side. spinand and spi-nor will take 908 * care of polling the status register. 909 */ 910 if (cqspi->wr_completion) { 911 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL); 912 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL; 913 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL); 914 } 915 916 reg = readl(reg_base + CQSPI_REG_SIZE); 917 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK; 918 reg |= (op->addr.nbytes - 1); 919 writel(reg, reg_base + CQSPI_REG_SIZE); 920 return 0; 921 } 922 923 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata, 924 loff_t to_addr, const u8 *txbuf, 925 const size_t n_tx) 926 { 927 struct cqspi_st *cqspi = f_pdata->cqspi; 928 struct device *dev = &cqspi->pdev->dev; 929 void __iomem *reg_base = cqspi->iobase; 930 unsigned int remaining = n_tx; 931 unsigned int write_bytes; 932 int ret; 933 934 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR); 935 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES); 936 937 /* Clear all interrupts. */ 938 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS); 939 940 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK); 941 942 reinit_completion(&cqspi->transfer_complete); 943 writel(CQSPI_REG_INDIRECTWR_START_MASK, 944 reg_base + CQSPI_REG_INDIRECTWR); 945 /* 946 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access 947 * Controller programming sequence, couple of cycles of 948 * QSPI_REF_CLK delay is required for the above bit to 949 * be internally synchronized by the QSPI module. Provide 5 950 * cycles of delay. 951 */ 952 if (cqspi->wr_delay) 953 ndelay(cqspi->wr_delay); 954 955 while (remaining > 0) { 956 size_t write_words, mod_bytes; 957 958 write_bytes = remaining; 959 write_words = write_bytes / 4; 960 mod_bytes = write_bytes % 4; 961 /* Write 4 bytes at a time then single bytes. */ 962 if (write_words) { 963 iowrite32_rep(cqspi->ahb_base, txbuf, write_words); 964 txbuf += (write_words * 4); 965 } 966 if (mod_bytes) { 967 unsigned int temp = 0xFFFFFFFF; 968 969 memcpy(&temp, txbuf, mod_bytes); 970 iowrite32(temp, cqspi->ahb_base); 971 txbuf += mod_bytes; 972 } 973 974 if (!wait_for_completion_timeout(&cqspi->transfer_complete, 975 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) { 976 dev_err(dev, "Indirect write timeout\n"); 977 ret = -ETIMEDOUT; 978 goto failwr; 979 } 980 981 remaining -= write_bytes; 982 983 if (remaining > 0) 984 reinit_completion(&cqspi->transfer_complete); 985 } 986 987 /* Check indirect done status */ 988 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR, 989 CQSPI_REG_INDIRECTWR_DONE_MASK, 0); 990 if (ret) { 991 dev_err(dev, "Indirect write completion error (%i)\n", ret); 992 goto failwr; 993 } 994 995 /* Disable interrupt. */ 996 writel(0, reg_base + CQSPI_REG_IRQMASK); 997 998 /* Clear indirect completion status */ 999 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR); 1000 1001 cqspi_wait_idle(cqspi); 1002 1003 return 0; 1004 1005 failwr: 1006 /* Disable interrupt. */ 1007 writel(0, reg_base + CQSPI_REG_IRQMASK); 1008 1009 /* Cancel the indirect write */ 1010 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK, 1011 reg_base + CQSPI_REG_INDIRECTWR); 1012 return ret; 1013 } 1014 1015 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata) 1016 { 1017 struct cqspi_st *cqspi = f_pdata->cqspi; 1018 void __iomem *reg_base = cqspi->iobase; 1019 unsigned int chip_select = f_pdata->cs; 1020 unsigned int reg; 1021 1022 reg = readl(reg_base + CQSPI_REG_CONFIG); 1023 if (cqspi->is_decoded_cs) { 1024 reg |= CQSPI_REG_CONFIG_DECODE_MASK; 1025 } else { 1026 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK; 1027 1028 /* Convert CS if without decoder. 1029 * CS0 to 4b'1110 1030 * CS1 to 4b'1101 1031 * CS2 to 4b'1011 1032 * CS3 to 4b'0111 1033 */ 1034 chip_select = 0xF & ~(1 << chip_select); 1035 } 1036 1037 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK 1038 << CQSPI_REG_CONFIG_CHIPSELECT_LSB); 1039 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK) 1040 << CQSPI_REG_CONFIG_CHIPSELECT_LSB; 1041 writel(reg, reg_base + CQSPI_REG_CONFIG); 1042 } 1043 1044 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz, 1045 const unsigned int ns_val) 1046 { 1047 unsigned int ticks; 1048 1049 ticks = ref_clk_hz / 1000; /* kHz */ 1050 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000); 1051 1052 return ticks; 1053 } 1054 1055 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata) 1056 { 1057 struct cqspi_st *cqspi = f_pdata->cqspi; 1058 void __iomem *iobase = cqspi->iobase; 1059 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz; 1060 unsigned int tshsl, tchsh, tslch, tsd2d; 1061 unsigned int reg; 1062 unsigned int tsclk; 1063 1064 /* calculate the number of ref ticks for one sclk tick */ 1065 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk); 1066 1067 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns); 1068 /* this particular value must be at least one sclk */ 1069 if (tshsl < tsclk) 1070 tshsl = tsclk; 1071 1072 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns); 1073 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns); 1074 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns); 1075 1076 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK) 1077 << CQSPI_REG_DELAY_TSHSL_LSB; 1078 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK) 1079 << CQSPI_REG_DELAY_TCHSH_LSB; 1080 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK) 1081 << CQSPI_REG_DELAY_TSLCH_LSB; 1082 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK) 1083 << CQSPI_REG_DELAY_TSD2D_LSB; 1084 writel(reg, iobase + CQSPI_REG_DELAY); 1085 } 1086 1087 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi) 1088 { 1089 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz; 1090 void __iomem *reg_base = cqspi->iobase; 1091 u32 reg, div; 1092 1093 /* Recalculate the baudrate divisor based on QSPI specification. */ 1094 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1; 1095 1096 reg = readl(reg_base + CQSPI_REG_CONFIG); 1097 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB); 1098 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB; 1099 writel(reg, reg_base + CQSPI_REG_CONFIG); 1100 } 1101 1102 static void cqspi_readdata_capture(struct cqspi_st *cqspi, 1103 const bool bypass, 1104 const unsigned int delay) 1105 { 1106 void __iomem *reg_base = cqspi->iobase; 1107 unsigned int reg; 1108 1109 reg = readl(reg_base + CQSPI_REG_READCAPTURE); 1110 1111 if (bypass) 1112 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB); 1113 else 1114 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB); 1115 1116 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK 1117 << CQSPI_REG_READCAPTURE_DELAY_LSB); 1118 1119 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK) 1120 << CQSPI_REG_READCAPTURE_DELAY_LSB; 1121 1122 writel(reg, reg_base + CQSPI_REG_READCAPTURE); 1123 } 1124 1125 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable) 1126 { 1127 void __iomem *reg_base = cqspi->iobase; 1128 unsigned int reg; 1129 1130 reg = readl(reg_base + CQSPI_REG_CONFIG); 1131 1132 if (enable) 1133 reg |= CQSPI_REG_CONFIG_ENABLE_MASK; 1134 else 1135 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK; 1136 1137 writel(reg, reg_base + CQSPI_REG_CONFIG); 1138 } 1139 1140 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata, 1141 unsigned long sclk) 1142 { 1143 struct cqspi_st *cqspi = f_pdata->cqspi; 1144 int switch_cs = (cqspi->current_cs != f_pdata->cs); 1145 int switch_ck = (cqspi->sclk != sclk); 1146 1147 if (switch_cs || switch_ck) 1148 cqspi_controller_enable(cqspi, 0); 1149 1150 /* Switch chip select. */ 1151 if (switch_cs) { 1152 cqspi->current_cs = f_pdata->cs; 1153 cqspi_chipselect(f_pdata); 1154 } 1155 1156 /* Setup baudrate divisor and delays */ 1157 if (switch_ck) { 1158 cqspi->sclk = sclk; 1159 cqspi_config_baudrate_div(cqspi); 1160 cqspi_delay(f_pdata); 1161 cqspi_readdata_capture(cqspi, !cqspi->rclk_en, 1162 f_pdata->read_delay); 1163 } 1164 1165 if (switch_cs || switch_ck) 1166 cqspi_controller_enable(cqspi, 1); 1167 } 1168 1169 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata, 1170 const struct spi_mem_op *op) 1171 { 1172 struct cqspi_st *cqspi = f_pdata->cqspi; 1173 loff_t to = op->addr.val; 1174 size_t len = op->data.nbytes; 1175 const u_char *buf = op->data.buf.out; 1176 int ret; 1177 1178 ret = cqspi_write_setup(f_pdata, op); 1179 if (ret) 1180 return ret; 1181 1182 /* 1183 * Some flashes like the Cypress Semper flash expect a dummy 4-byte 1184 * address (all 0s) with the read status register command in DTR mode. 1185 * But this controller does not support sending dummy address bytes to 1186 * the flash when it is polling the write completion register in DTR 1187 * mode. So, we can not use direct mode when in DTR mode for writing 1188 * data. 1189 */ 1190 if (!op->cmd.dtr && cqspi->use_direct_mode && 1191 ((to + len) <= cqspi->ahb_size)) { 1192 memcpy_toio(cqspi->ahb_base + to, buf, len); 1193 return cqspi_wait_idle(cqspi); 1194 } 1195 1196 return cqspi_indirect_write_execute(f_pdata, to, buf, len); 1197 } 1198 1199 static void cqspi_rx_dma_callback(void *param) 1200 { 1201 struct cqspi_st *cqspi = param; 1202 1203 complete(&cqspi->rx_dma_complete); 1204 } 1205 1206 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata, 1207 u_char *buf, loff_t from, size_t len) 1208 { 1209 struct cqspi_st *cqspi = f_pdata->cqspi; 1210 struct device *dev = &cqspi->pdev->dev; 1211 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; 1212 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from; 1213 int ret = 0; 1214 struct dma_async_tx_descriptor *tx; 1215 dma_cookie_t cookie; 1216 dma_addr_t dma_dst; 1217 struct device *ddev; 1218 1219 if (!cqspi->rx_chan || !virt_addr_valid(buf)) { 1220 memcpy_fromio(buf, cqspi->ahb_base + from, len); 1221 return 0; 1222 } 1223 1224 ddev = cqspi->rx_chan->device->dev; 1225 dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE); 1226 if (dma_mapping_error(ddev, dma_dst)) { 1227 dev_err(dev, "dma mapping failed\n"); 1228 return -ENOMEM; 1229 } 1230 tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src, 1231 len, flags); 1232 if (!tx) { 1233 dev_err(dev, "device_prep_dma_memcpy error\n"); 1234 ret = -EIO; 1235 goto err_unmap; 1236 } 1237 1238 tx->callback = cqspi_rx_dma_callback; 1239 tx->callback_param = cqspi; 1240 cookie = tx->tx_submit(tx); 1241 reinit_completion(&cqspi->rx_dma_complete); 1242 1243 ret = dma_submit_error(cookie); 1244 if (ret) { 1245 dev_err(dev, "dma_submit_error %d\n", cookie); 1246 ret = -EIO; 1247 goto err_unmap; 1248 } 1249 1250 dma_async_issue_pending(cqspi->rx_chan); 1251 if (!wait_for_completion_timeout(&cqspi->rx_dma_complete, 1252 msecs_to_jiffies(max_t(size_t, len, 500)))) { 1253 dmaengine_terminate_sync(cqspi->rx_chan); 1254 dev_err(dev, "DMA wait_for_completion_timeout\n"); 1255 ret = -ETIMEDOUT; 1256 goto err_unmap; 1257 } 1258 1259 err_unmap: 1260 dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE); 1261 1262 return ret; 1263 } 1264 1265 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata, 1266 const struct spi_mem_op *op) 1267 { 1268 struct cqspi_st *cqspi = f_pdata->cqspi; 1269 struct device *dev = &cqspi->pdev->dev; 1270 const struct cqspi_driver_platdata *ddata; 1271 loff_t from = op->addr.val; 1272 size_t len = op->data.nbytes; 1273 u_char *buf = op->data.buf.in; 1274 u64 dma_align = (u64)(uintptr_t)buf; 1275 int ret; 1276 1277 ddata = of_device_get_match_data(dev); 1278 1279 ret = cqspi_read_setup(f_pdata, op); 1280 if (ret) 1281 return ret; 1282 1283 if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size)) 1284 return cqspi_direct_read_execute(f_pdata, buf, from, len); 1285 1286 if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma && 1287 virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0)) 1288 return ddata->indirect_read_dma(f_pdata, buf, from, len); 1289 1290 return cqspi_indirect_read_execute(f_pdata, buf, from, len); 1291 } 1292 1293 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op) 1294 { 1295 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master); 1296 struct cqspi_flash_pdata *f_pdata; 1297 1298 f_pdata = &cqspi->f_pdata[mem->spi->chip_select]; 1299 cqspi_configure(f_pdata, mem->spi->max_speed_hz); 1300 1301 if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) { 1302 if (!op->addr.nbytes) 1303 return cqspi_command_read(f_pdata, op); 1304 1305 return cqspi_read(f_pdata, op); 1306 } 1307 1308 if (!op->addr.nbytes || !op->data.buf.out) 1309 return cqspi_command_write(f_pdata, op); 1310 1311 return cqspi_write(f_pdata, op); 1312 } 1313 1314 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) 1315 { 1316 int ret; 1317 1318 ret = cqspi_mem_process(mem, op); 1319 if (ret) 1320 dev_err(&mem->spi->dev, "operation failed with %d\n", ret); 1321 1322 return ret; 1323 } 1324 1325 static bool cqspi_supports_mem_op(struct spi_mem *mem, 1326 const struct spi_mem_op *op) 1327 { 1328 bool all_true, all_false; 1329 1330 /* 1331 * op->dummy.dtr is required for converting nbytes into ncycles. 1332 * Also, don't check the dtr field of the op phase having zero nbytes. 1333 */ 1334 all_true = op->cmd.dtr && 1335 (!op->addr.nbytes || op->addr.dtr) && 1336 (!op->dummy.nbytes || op->dummy.dtr) && 1337 (!op->data.nbytes || op->data.dtr); 1338 1339 all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr && 1340 !op->data.dtr; 1341 1342 if (all_true) { 1343 /* Right now we only support 8-8-8 DTR mode. */ 1344 if (op->cmd.nbytes && op->cmd.buswidth != 8) 1345 return false; 1346 if (op->addr.nbytes && op->addr.buswidth != 8) 1347 return false; 1348 if (op->data.nbytes && op->data.buswidth != 8) 1349 return false; 1350 } else if (!all_false) { 1351 /* Mixed DTR modes are not supported. */ 1352 return false; 1353 } 1354 1355 return spi_mem_default_supports_op(mem, op); 1356 } 1357 1358 static int cqspi_of_get_flash_pdata(struct platform_device *pdev, 1359 struct cqspi_flash_pdata *f_pdata, 1360 struct device_node *np) 1361 { 1362 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) { 1363 dev_err(&pdev->dev, "couldn't determine read-delay\n"); 1364 return -ENXIO; 1365 } 1366 1367 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) { 1368 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n"); 1369 return -ENXIO; 1370 } 1371 1372 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) { 1373 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n"); 1374 return -ENXIO; 1375 } 1376 1377 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) { 1378 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n"); 1379 return -ENXIO; 1380 } 1381 1382 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) { 1383 dev_err(&pdev->dev, "couldn't determine tslch-ns\n"); 1384 return -ENXIO; 1385 } 1386 1387 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) { 1388 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n"); 1389 return -ENXIO; 1390 } 1391 1392 return 0; 1393 } 1394 1395 static int cqspi_of_get_pdata(struct cqspi_st *cqspi) 1396 { 1397 struct device *dev = &cqspi->pdev->dev; 1398 struct device_node *np = dev->of_node; 1399 u32 id[2]; 1400 1401 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs"); 1402 1403 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) { 1404 dev_err(dev, "couldn't determine fifo-depth\n"); 1405 return -ENXIO; 1406 } 1407 1408 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) { 1409 dev_err(dev, "couldn't determine fifo-width\n"); 1410 return -ENXIO; 1411 } 1412 1413 if (of_property_read_u32(np, "cdns,trigger-address", 1414 &cqspi->trigger_address)) { 1415 dev_err(dev, "couldn't determine trigger-address\n"); 1416 return -ENXIO; 1417 } 1418 1419 if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect)) 1420 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT; 1421 1422 cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en"); 1423 1424 if (!of_property_read_u32_array(np, "power-domains", id, 1425 ARRAY_SIZE(id))) 1426 cqspi->pd_dev_id = id[1]; 1427 1428 return 0; 1429 } 1430 1431 static void cqspi_controller_init(struct cqspi_st *cqspi) 1432 { 1433 u32 reg; 1434 1435 cqspi_controller_enable(cqspi, 0); 1436 1437 /* Configure the remap address register, no remap */ 1438 writel(0, cqspi->iobase + CQSPI_REG_REMAP); 1439 1440 /* Disable all interrupts. */ 1441 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK); 1442 1443 /* Configure the SRAM split to 1:1 . */ 1444 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION); 1445 1446 /* Load indirect trigger address. */ 1447 writel(cqspi->trigger_address, 1448 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER); 1449 1450 /* Program read watermark -- 1/2 of the FIFO. */ 1451 writel(cqspi->fifo_depth * cqspi->fifo_width / 2, 1452 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK); 1453 /* Program write watermark -- 1/8 of the FIFO. */ 1454 writel(cqspi->fifo_depth * cqspi->fifo_width / 8, 1455 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK); 1456 1457 /* Disable direct access controller */ 1458 if (!cqspi->use_direct_mode) { 1459 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); 1460 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL; 1461 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); 1462 } 1463 1464 /* Enable DMA interface */ 1465 if (cqspi->use_dma_read) { 1466 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); 1467 reg |= CQSPI_REG_CONFIG_DMA_MASK; 1468 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); 1469 } 1470 1471 cqspi_controller_enable(cqspi, 1); 1472 } 1473 1474 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi) 1475 { 1476 dma_cap_mask_t mask; 1477 1478 dma_cap_zero(mask); 1479 dma_cap_set(DMA_MEMCPY, mask); 1480 1481 cqspi->rx_chan = dma_request_chan_by_mask(&mask); 1482 if (IS_ERR(cqspi->rx_chan)) { 1483 int ret = PTR_ERR(cqspi->rx_chan); 1484 1485 cqspi->rx_chan = NULL; 1486 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n"); 1487 } 1488 init_completion(&cqspi->rx_dma_complete); 1489 1490 return 0; 1491 } 1492 1493 static const char *cqspi_get_name(struct spi_mem *mem) 1494 { 1495 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master); 1496 struct device *dev = &cqspi->pdev->dev; 1497 1498 return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select); 1499 } 1500 1501 static const struct spi_controller_mem_ops cqspi_mem_ops = { 1502 .exec_op = cqspi_exec_mem_op, 1503 .get_name = cqspi_get_name, 1504 .supports_op = cqspi_supports_mem_op, 1505 }; 1506 1507 static const struct spi_controller_mem_caps cqspi_mem_caps = { 1508 .dtr = true, 1509 }; 1510 1511 static int cqspi_setup_flash(struct cqspi_st *cqspi) 1512 { 1513 struct platform_device *pdev = cqspi->pdev; 1514 struct device *dev = &pdev->dev; 1515 struct device_node *np = dev->of_node; 1516 struct cqspi_flash_pdata *f_pdata; 1517 unsigned int cs; 1518 int ret; 1519 1520 /* Get flash device data */ 1521 for_each_available_child_of_node(dev->of_node, np) { 1522 ret = of_property_read_u32(np, "reg", &cs); 1523 if (ret) { 1524 dev_err(dev, "Couldn't determine chip select.\n"); 1525 of_node_put(np); 1526 return ret; 1527 } 1528 1529 if (cs >= CQSPI_MAX_CHIPSELECT) { 1530 dev_err(dev, "Chip select %d out of range.\n", cs); 1531 of_node_put(np); 1532 return -EINVAL; 1533 } 1534 1535 f_pdata = &cqspi->f_pdata[cs]; 1536 f_pdata->cqspi = cqspi; 1537 f_pdata->cs = cs; 1538 1539 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np); 1540 if (ret) { 1541 of_node_put(np); 1542 return ret; 1543 } 1544 } 1545 1546 return 0; 1547 } 1548 1549 static int cqspi_probe(struct platform_device *pdev) 1550 { 1551 const struct cqspi_driver_platdata *ddata; 1552 struct reset_control *rstc, *rstc_ocp; 1553 struct device *dev = &pdev->dev; 1554 struct spi_master *master; 1555 struct resource *res_ahb; 1556 struct cqspi_st *cqspi; 1557 struct resource *res; 1558 int ret; 1559 int irq; 1560 1561 master = devm_spi_alloc_master(&pdev->dev, sizeof(*cqspi)); 1562 if (!master) { 1563 dev_err(&pdev->dev, "spi_alloc_master failed\n"); 1564 return -ENOMEM; 1565 } 1566 master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL; 1567 master->mem_ops = &cqspi_mem_ops; 1568 master->mem_caps = &cqspi_mem_caps; 1569 master->dev.of_node = pdev->dev.of_node; 1570 1571 cqspi = spi_master_get_devdata(master); 1572 1573 cqspi->pdev = pdev; 1574 cqspi->master = master; 1575 platform_set_drvdata(pdev, cqspi); 1576 1577 /* Obtain configuration from OF. */ 1578 ret = cqspi_of_get_pdata(cqspi); 1579 if (ret) { 1580 dev_err(dev, "Cannot get mandatory OF data.\n"); 1581 return -ENODEV; 1582 } 1583 1584 /* Obtain QSPI clock. */ 1585 cqspi->clk = devm_clk_get(dev, NULL); 1586 if (IS_ERR(cqspi->clk)) { 1587 dev_err(dev, "Cannot claim QSPI clock.\n"); 1588 ret = PTR_ERR(cqspi->clk); 1589 return ret; 1590 } 1591 1592 /* Obtain and remap controller address. */ 1593 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1594 cqspi->iobase = devm_ioremap_resource(dev, res); 1595 if (IS_ERR(cqspi->iobase)) { 1596 dev_err(dev, "Cannot remap controller address.\n"); 1597 ret = PTR_ERR(cqspi->iobase); 1598 return ret; 1599 } 1600 1601 /* Obtain and remap AHB address. */ 1602 res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1603 cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb); 1604 if (IS_ERR(cqspi->ahb_base)) { 1605 dev_err(dev, "Cannot remap AHB address.\n"); 1606 ret = PTR_ERR(cqspi->ahb_base); 1607 return ret; 1608 } 1609 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start; 1610 cqspi->ahb_size = resource_size(res_ahb); 1611 1612 init_completion(&cqspi->transfer_complete); 1613 1614 /* Obtain IRQ line. */ 1615 irq = platform_get_irq(pdev, 0); 1616 if (irq < 0) 1617 return -ENXIO; 1618 1619 pm_runtime_enable(dev); 1620 ret = pm_runtime_resume_and_get(dev); 1621 if (ret < 0) 1622 return ret; 1623 1624 ret = clk_prepare_enable(cqspi->clk); 1625 if (ret) { 1626 dev_err(dev, "Cannot enable QSPI clock.\n"); 1627 goto probe_clk_failed; 1628 } 1629 1630 /* Obtain QSPI reset control */ 1631 rstc = devm_reset_control_get_optional_exclusive(dev, "qspi"); 1632 if (IS_ERR(rstc)) { 1633 ret = PTR_ERR(rstc); 1634 dev_err(dev, "Cannot get QSPI reset.\n"); 1635 goto probe_reset_failed; 1636 } 1637 1638 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp"); 1639 if (IS_ERR(rstc_ocp)) { 1640 ret = PTR_ERR(rstc_ocp); 1641 dev_err(dev, "Cannot get QSPI OCP reset.\n"); 1642 goto probe_reset_failed; 1643 } 1644 1645 reset_control_assert(rstc); 1646 reset_control_deassert(rstc); 1647 1648 reset_control_assert(rstc_ocp); 1649 reset_control_deassert(rstc_ocp); 1650 1651 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk); 1652 master->max_speed_hz = cqspi->master_ref_clk_hz; 1653 1654 /* write completion is supported by default */ 1655 cqspi->wr_completion = true; 1656 1657 ddata = of_device_get_match_data(dev); 1658 if (ddata) { 1659 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY) 1660 cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC, 1661 cqspi->master_ref_clk_hz); 1662 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL) 1663 master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL; 1664 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) 1665 cqspi->use_direct_mode = true; 1666 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA) 1667 cqspi->use_dma_read = true; 1668 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION) 1669 cqspi->wr_completion = false; 1670 1671 if (of_device_is_compatible(pdev->dev.of_node, 1672 "xlnx,versal-ospi-1.0")) 1673 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 1674 } 1675 1676 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0, 1677 pdev->name, cqspi); 1678 if (ret) { 1679 dev_err(dev, "Cannot request IRQ.\n"); 1680 goto probe_reset_failed; 1681 } 1682 1683 cqspi_wait_idle(cqspi); 1684 cqspi_controller_init(cqspi); 1685 cqspi->current_cs = -1; 1686 cqspi->sclk = 0; 1687 1688 master->num_chipselect = cqspi->num_chipselect; 1689 1690 ret = cqspi_setup_flash(cqspi); 1691 if (ret) { 1692 dev_err(dev, "failed to setup flash parameters %d\n", ret); 1693 goto probe_setup_failed; 1694 } 1695 1696 if (cqspi->use_direct_mode) { 1697 ret = cqspi_request_mmap_dma(cqspi); 1698 if (ret == -EPROBE_DEFER) 1699 goto probe_setup_failed; 1700 } 1701 1702 ret = spi_register_master(master); 1703 if (ret) { 1704 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret); 1705 goto probe_setup_failed; 1706 } 1707 1708 return 0; 1709 probe_setup_failed: 1710 cqspi_controller_enable(cqspi, 0); 1711 probe_reset_failed: 1712 clk_disable_unprepare(cqspi->clk); 1713 probe_clk_failed: 1714 pm_runtime_put_sync(dev); 1715 pm_runtime_disable(dev); 1716 return ret; 1717 } 1718 1719 static int cqspi_remove(struct platform_device *pdev) 1720 { 1721 struct cqspi_st *cqspi = platform_get_drvdata(pdev); 1722 1723 spi_unregister_master(cqspi->master); 1724 cqspi_controller_enable(cqspi, 0); 1725 1726 if (cqspi->rx_chan) 1727 dma_release_channel(cqspi->rx_chan); 1728 1729 clk_disable_unprepare(cqspi->clk); 1730 1731 pm_runtime_put_sync(&pdev->dev); 1732 pm_runtime_disable(&pdev->dev); 1733 1734 return 0; 1735 } 1736 1737 #ifdef CONFIG_PM_SLEEP 1738 static int cqspi_suspend(struct device *dev) 1739 { 1740 struct cqspi_st *cqspi = dev_get_drvdata(dev); 1741 1742 cqspi_controller_enable(cqspi, 0); 1743 return 0; 1744 } 1745 1746 static int cqspi_resume(struct device *dev) 1747 { 1748 struct cqspi_st *cqspi = dev_get_drvdata(dev); 1749 1750 cqspi_controller_enable(cqspi, 1); 1751 return 0; 1752 } 1753 1754 static const struct dev_pm_ops cqspi__dev_pm_ops = { 1755 .suspend = cqspi_suspend, 1756 .resume = cqspi_resume, 1757 }; 1758 1759 #define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops) 1760 #else 1761 #define CQSPI_DEV_PM_OPS NULL 1762 #endif 1763 1764 static const struct cqspi_driver_platdata cdns_qspi = { 1765 .quirks = CQSPI_DISABLE_DAC_MODE, 1766 }; 1767 1768 static const struct cqspi_driver_platdata k2g_qspi = { 1769 .quirks = CQSPI_NEEDS_WR_DELAY, 1770 }; 1771 1772 static const struct cqspi_driver_platdata am654_ospi = { 1773 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL, 1774 .quirks = CQSPI_NEEDS_WR_DELAY, 1775 }; 1776 1777 static const struct cqspi_driver_platdata intel_lgm_qspi = { 1778 .quirks = CQSPI_DISABLE_DAC_MODE, 1779 }; 1780 1781 static const struct cqspi_driver_platdata socfpga_qspi = { 1782 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_NO_SUPPORT_WR_COMPLETION, 1783 }; 1784 1785 static const struct cqspi_driver_platdata versal_ospi = { 1786 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL, 1787 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA, 1788 .indirect_read_dma = cqspi_versal_indirect_read_dma, 1789 .get_dma_status = cqspi_get_versal_dma_status, 1790 }; 1791 1792 static const struct of_device_id cqspi_dt_ids[] = { 1793 { 1794 .compatible = "cdns,qspi-nor", 1795 .data = &cdns_qspi, 1796 }, 1797 { 1798 .compatible = "ti,k2g-qspi", 1799 .data = &k2g_qspi, 1800 }, 1801 { 1802 .compatible = "ti,am654-ospi", 1803 .data = &am654_ospi, 1804 }, 1805 { 1806 .compatible = "intel,lgm-qspi", 1807 .data = &intel_lgm_qspi, 1808 }, 1809 { 1810 .compatible = "xlnx,versal-ospi-1.0", 1811 .data = &versal_ospi, 1812 }, 1813 { 1814 .compatible = "intel,socfpga-qspi", 1815 .data = &socfpga_qspi, 1816 }, 1817 { /* end of table */ } 1818 }; 1819 1820 MODULE_DEVICE_TABLE(of, cqspi_dt_ids); 1821 1822 static struct platform_driver cqspi_platform_driver = { 1823 .probe = cqspi_probe, 1824 .remove = cqspi_remove, 1825 .driver = { 1826 .name = CQSPI_NAME, 1827 .pm = CQSPI_DEV_PM_OPS, 1828 .of_match_table = cqspi_dt_ids, 1829 }, 1830 }; 1831 1832 module_platform_driver(cqspi_platform_driver); 1833 1834 MODULE_DESCRIPTION("Cadence QSPI Controller Driver"); 1835 MODULE_LICENSE("GPL v2"); 1836 MODULE_ALIAS("platform:" CQSPI_NAME); 1837 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>"); 1838 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>"); 1839 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>"); 1840 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>"); 1841 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>"); 1842