xref: /openbmc/linux/drivers/spi/spi-cadence-quadspi.c (revision b755c25fbcd568821a3bb0e0d5c2daa5fcb00bba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of_device.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 #include <linux/sched.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/timer.h>
33 
34 #define CQSPI_NAME			"cadence-qspi"
35 #define CQSPI_MAX_CHIPSELECT		16
36 
37 /* Quirks */
38 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
39 #define CQSPI_DISABLE_DAC_MODE		BIT(1)
40 #define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
41 #define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
42 #define CQSPI_SLOW_SRAM		BIT(4)
43 #define CQSPI_NEEDS_APB_AHB_HAZARD_WAR	BIT(5)
44 
45 /* Capabilities */
46 #define CQSPI_SUPPORTS_OCTAL		BIT(0)
47 
48 #define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
49 
50 struct cqspi_st;
51 
52 struct cqspi_flash_pdata {
53 	struct cqspi_st	*cqspi;
54 	u32		clk_rate;
55 	u32		read_delay;
56 	u32		tshsl_ns;
57 	u32		tsd2d_ns;
58 	u32		tchsh_ns;
59 	u32		tslch_ns;
60 	u8		cs;
61 };
62 
63 struct cqspi_st {
64 	struct platform_device	*pdev;
65 	struct spi_master	*master;
66 	struct clk		*clk;
67 	unsigned int		sclk;
68 
69 	void __iomem		*iobase;
70 	void __iomem		*ahb_base;
71 	resource_size_t		ahb_size;
72 	struct completion	transfer_complete;
73 
74 	struct dma_chan		*rx_chan;
75 	struct completion	rx_dma_complete;
76 	dma_addr_t		mmap_phys_base;
77 
78 	int			current_cs;
79 	unsigned long		master_ref_clk_hz;
80 	bool			is_decoded_cs;
81 	u32			fifo_depth;
82 	u32			fifo_width;
83 	u32			num_chipselect;
84 	bool			rclk_en;
85 	u32			trigger_address;
86 	u32			wr_delay;
87 	bool			use_direct_mode;
88 	bool			use_direct_mode_wr;
89 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
90 	bool			use_dma_read;
91 	u32			pd_dev_id;
92 	bool			wr_completion;
93 	bool			slow_sram;
94 	bool			apb_ahb_hazard;
95 };
96 
97 struct cqspi_driver_platdata {
98 	u32 hwcaps_mask;
99 	u8 quirks;
100 	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
101 				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
102 	u32 (*get_dma_status)(struct cqspi_st *cqspi);
103 };
104 
105 /* Operation timeout value */
106 #define CQSPI_TIMEOUT_MS			500
107 #define CQSPI_READ_TIMEOUT_MS			10
108 
109 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
110 #define CQSPI_DUMMY_BYTES_MAX			4
111 #define CQSPI_DUMMY_CLKS_MAX			31
112 
113 #define CQSPI_STIG_DATA_LEN_MAX			8
114 
115 /* Register map */
116 #define CQSPI_REG_CONFIG			0x00
117 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
118 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
119 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
120 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
121 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
122 #define CQSPI_REG_CONFIG_BAUD_LSB		19
123 #define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
124 #define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
125 #define CQSPI_REG_CONFIG_IDLE_LSB		31
126 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
127 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
128 
129 #define CQSPI_REG_RD_INSTR			0x04
130 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
131 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
132 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
133 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
134 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
135 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
136 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
137 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
138 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
139 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
140 
141 #define CQSPI_REG_WR_INSTR			0x08
142 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
143 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
144 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
145 
146 #define CQSPI_REG_DELAY				0x0C
147 #define CQSPI_REG_DELAY_TSLCH_LSB		0
148 #define CQSPI_REG_DELAY_TCHSH_LSB		8
149 #define CQSPI_REG_DELAY_TSD2D_LSB		16
150 #define CQSPI_REG_DELAY_TSHSL_LSB		24
151 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
152 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
153 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
154 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
155 
156 #define CQSPI_REG_READCAPTURE			0x10
157 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
158 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
159 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
160 
161 #define CQSPI_REG_SIZE				0x14
162 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
163 #define CQSPI_REG_SIZE_PAGE_LSB			4
164 #define CQSPI_REG_SIZE_BLOCK_LSB		16
165 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
166 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
167 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
168 
169 #define CQSPI_REG_SRAMPARTITION			0x18
170 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
171 
172 #define CQSPI_REG_DMA				0x20
173 #define CQSPI_REG_DMA_SINGLE_LSB		0
174 #define CQSPI_REG_DMA_BURST_LSB			8
175 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
176 #define CQSPI_REG_DMA_BURST_MASK		0xFF
177 
178 #define CQSPI_REG_REMAP				0x24
179 #define CQSPI_REG_MODE_BIT			0x28
180 
181 #define CQSPI_REG_SDRAMLEVEL			0x2C
182 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
183 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
184 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
185 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
186 
187 #define CQSPI_REG_WR_COMPLETION_CTRL		0x38
188 #define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
189 
190 #define CQSPI_REG_IRQSTATUS			0x40
191 #define CQSPI_REG_IRQMASK			0x44
192 
193 #define CQSPI_REG_INDIRECTRD			0x60
194 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
195 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
196 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
197 
198 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
199 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
200 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
201 
202 #define CQSPI_REG_CMDCTRL			0x90
203 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
204 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
205 #define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
206 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
207 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
208 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
209 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
210 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
211 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
212 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
213 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
214 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
215 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
216 #define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
217 
218 #define CQSPI_REG_INDIRECTWR			0x70
219 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
220 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
221 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
222 
223 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
224 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
225 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
226 
227 #define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
228 
229 #define CQSPI_REG_CMDADDRESS			0x94
230 #define CQSPI_REG_CMDREADDATALOWER		0xA0
231 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
232 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
233 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
234 
235 #define CQSPI_REG_POLLING_STATUS		0xB0
236 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
237 
238 #define CQSPI_REG_OP_EXT_LOWER			0xE0
239 #define CQSPI_REG_OP_EXT_READ_LSB		24
240 #define CQSPI_REG_OP_EXT_WRITE_LSB		16
241 #define CQSPI_REG_OP_EXT_STIG_LSB		0
242 
243 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
244 
245 #define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
246 #define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
247 
248 #define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
249 
250 #define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
251 #define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
252 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
253 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
254 
255 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
256 
257 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
258 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
259 
260 /* Interrupt status bits */
261 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
262 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
263 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
264 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
265 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
266 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
267 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
268 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
269 
270 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
271 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
272 					 CQSPI_REG_IRQ_IND_COMP)
273 
274 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
275 					 CQSPI_REG_IRQ_WATERMARK	| \
276 					 CQSPI_REG_IRQ_UNDERFLOW)
277 
278 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
279 #define CQSPI_DMA_UNALIGN		0x3
280 
281 #define CQSPI_REG_VERSAL_DMA_VAL		0x602
282 
283 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
284 {
285 	u32 val;
286 
287 	return readl_relaxed_poll_timeout(reg, val,
288 					  (((clr ? ~val : val) & mask) == mask),
289 					  10, CQSPI_TIMEOUT_MS * 1000);
290 }
291 
292 static bool cqspi_is_idle(struct cqspi_st *cqspi)
293 {
294 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
295 
296 	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
297 }
298 
299 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
300 {
301 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
302 
303 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
304 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
305 }
306 
307 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
308 {
309 	u32 dma_status;
310 
311 	dma_status = readl(cqspi->iobase +
312 					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
313 	writel(dma_status, cqspi->iobase +
314 		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
315 
316 	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
317 }
318 
319 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
320 {
321 	struct cqspi_st *cqspi = dev;
322 	unsigned int irq_status;
323 	struct device *device = &cqspi->pdev->dev;
324 	const struct cqspi_driver_platdata *ddata;
325 
326 	ddata = of_device_get_match_data(device);
327 
328 	/* Read interrupt status */
329 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
330 
331 	/* Clear interrupt */
332 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
333 
334 	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
335 		if (ddata->get_dma_status(cqspi)) {
336 			complete(&cqspi->transfer_complete);
337 			return IRQ_HANDLED;
338 		}
339 	}
340 
341 	else if (!cqspi->slow_sram)
342 		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
343 	else
344 		irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
345 
346 	if (irq_status)
347 		complete(&cqspi->transfer_complete);
348 
349 	return IRQ_HANDLED;
350 }
351 
352 static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
353 {
354 	u32 rdreg = 0;
355 
356 	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
357 	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
358 	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
359 
360 	return rdreg;
361 }
362 
363 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
364 {
365 	unsigned int dummy_clk;
366 
367 	if (!op->dummy.nbytes)
368 		return 0;
369 
370 	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
371 	if (op->cmd.dtr)
372 		dummy_clk /= 2;
373 
374 	return dummy_clk;
375 }
376 
377 static int cqspi_wait_idle(struct cqspi_st *cqspi)
378 {
379 	const unsigned int poll_idle_retry = 3;
380 	unsigned int count = 0;
381 	unsigned long timeout;
382 
383 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
384 	while (1) {
385 		/*
386 		 * Read few times in succession to ensure the controller
387 		 * is indeed idle, that is, the bit does not transition
388 		 * low again.
389 		 */
390 		if (cqspi_is_idle(cqspi))
391 			count++;
392 		else
393 			count = 0;
394 
395 		if (count >= poll_idle_retry)
396 			return 0;
397 
398 		if (time_after(jiffies, timeout)) {
399 			/* Timeout, in busy mode. */
400 			dev_err(&cqspi->pdev->dev,
401 				"QSPI is still busy after %dms timeout.\n",
402 				CQSPI_TIMEOUT_MS);
403 			return -ETIMEDOUT;
404 		}
405 
406 		cpu_relax();
407 	}
408 }
409 
410 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
411 {
412 	void __iomem *reg_base = cqspi->iobase;
413 	int ret;
414 
415 	/* Write the CMDCTRL without start execution. */
416 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
417 	/* Start execute */
418 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
419 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
420 
421 	/* Polling for completion. */
422 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
423 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
424 	if (ret) {
425 		dev_err(&cqspi->pdev->dev,
426 			"Flash command execution timed out.\n");
427 		return ret;
428 	}
429 
430 	/* Polling QSPI idle status. */
431 	return cqspi_wait_idle(cqspi);
432 }
433 
434 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
435 				  const struct spi_mem_op *op,
436 				  unsigned int shift)
437 {
438 	struct cqspi_st *cqspi = f_pdata->cqspi;
439 	void __iomem *reg_base = cqspi->iobase;
440 	unsigned int reg;
441 	u8 ext;
442 
443 	if (op->cmd.nbytes != 2)
444 		return -EINVAL;
445 
446 	/* Opcode extension is the LSB. */
447 	ext = op->cmd.opcode & 0xff;
448 
449 	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
450 	reg &= ~(0xff << shift);
451 	reg |= ext << shift;
452 	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
453 
454 	return 0;
455 }
456 
457 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
458 			    const struct spi_mem_op *op, unsigned int shift)
459 {
460 	struct cqspi_st *cqspi = f_pdata->cqspi;
461 	void __iomem *reg_base = cqspi->iobase;
462 	unsigned int reg;
463 	int ret;
464 
465 	reg = readl(reg_base + CQSPI_REG_CONFIG);
466 
467 	/*
468 	 * We enable dual byte opcode here. The callers have to set up the
469 	 * extension opcode based on which type of operation it is.
470 	 */
471 	if (op->cmd.dtr) {
472 		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
473 		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
474 
475 		/* Set up command opcode extension. */
476 		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
477 		if (ret)
478 			return ret;
479 	} else {
480 		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
481 		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
482 	}
483 
484 	writel(reg, reg_base + CQSPI_REG_CONFIG);
485 
486 	return cqspi_wait_idle(cqspi);
487 }
488 
489 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
490 			      const struct spi_mem_op *op)
491 {
492 	struct cqspi_st *cqspi = f_pdata->cqspi;
493 	void __iomem *reg_base = cqspi->iobase;
494 	u8 *rxbuf = op->data.buf.in;
495 	u8 opcode;
496 	size_t n_rx = op->data.nbytes;
497 	unsigned int rdreg;
498 	unsigned int reg;
499 	unsigned int dummy_clk;
500 	size_t read_len;
501 	int status;
502 
503 	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
504 	if (status)
505 		return status;
506 
507 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
508 		dev_err(&cqspi->pdev->dev,
509 			"Invalid input argument, len %zu rxbuf 0x%p\n",
510 			n_rx, rxbuf);
511 		return -EINVAL;
512 	}
513 
514 	if (op->cmd.dtr)
515 		opcode = op->cmd.opcode >> 8;
516 	else
517 		opcode = op->cmd.opcode;
518 
519 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
520 
521 	rdreg = cqspi_calc_rdreg(op);
522 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
523 
524 	dummy_clk = cqspi_calc_dummy(op);
525 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
526 		return -EOPNOTSUPP;
527 
528 	if (dummy_clk)
529 		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
530 		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
531 
532 	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
533 
534 	/* 0 means 1 byte. */
535 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
536 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
537 
538 	/* setup ADDR BIT field */
539 	if (op->addr.nbytes) {
540 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
541 		reg |= ((op->addr.nbytes - 1) &
542 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
543 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
544 
545 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
546 	}
547 
548 	status = cqspi_exec_flash_cmd(cqspi, reg);
549 	if (status)
550 		return status;
551 
552 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
553 
554 	/* Put the read value into rx_buf */
555 	read_len = (n_rx > 4) ? 4 : n_rx;
556 	memcpy(rxbuf, &reg, read_len);
557 	rxbuf += read_len;
558 
559 	if (n_rx > 4) {
560 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
561 
562 		read_len = n_rx - read_len;
563 		memcpy(rxbuf, &reg, read_len);
564 	}
565 
566 	/* Reset CMD_CTRL Reg once command read completes */
567 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
568 
569 	return 0;
570 }
571 
572 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
573 			       const struct spi_mem_op *op)
574 {
575 	struct cqspi_st *cqspi = f_pdata->cqspi;
576 	void __iomem *reg_base = cqspi->iobase;
577 	u8 opcode;
578 	const u8 *txbuf = op->data.buf.out;
579 	size_t n_tx = op->data.nbytes;
580 	unsigned int reg;
581 	unsigned int data;
582 	size_t write_len;
583 	int ret;
584 
585 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
586 	if (ret)
587 		return ret;
588 
589 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
590 		dev_err(&cqspi->pdev->dev,
591 			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
592 			n_tx, txbuf);
593 		return -EINVAL;
594 	}
595 
596 	reg = cqspi_calc_rdreg(op);
597 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
598 
599 	if (op->cmd.dtr)
600 		opcode = op->cmd.opcode >> 8;
601 	else
602 		opcode = op->cmd.opcode;
603 
604 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
605 
606 	if (op->addr.nbytes) {
607 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
608 		reg |= ((op->addr.nbytes - 1) &
609 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
610 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
611 
612 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
613 	}
614 
615 	if (n_tx) {
616 		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
617 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
618 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
619 		data = 0;
620 		write_len = (n_tx > 4) ? 4 : n_tx;
621 		memcpy(&data, txbuf, write_len);
622 		txbuf += write_len;
623 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
624 
625 		if (n_tx > 4) {
626 			data = 0;
627 			write_len = n_tx - 4;
628 			memcpy(&data, txbuf, write_len);
629 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
630 		}
631 	}
632 
633 	ret = cqspi_exec_flash_cmd(cqspi, reg);
634 
635 	/* Reset CMD_CTRL Reg once command write completes */
636 	writel(0, reg_base + CQSPI_REG_CMDCTRL);
637 
638 	return ret;
639 }
640 
641 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
642 			    const struct spi_mem_op *op)
643 {
644 	struct cqspi_st *cqspi = f_pdata->cqspi;
645 	void __iomem *reg_base = cqspi->iobase;
646 	unsigned int dummy_clk = 0;
647 	unsigned int reg;
648 	int ret;
649 	u8 opcode;
650 
651 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
652 	if (ret)
653 		return ret;
654 
655 	if (op->cmd.dtr)
656 		opcode = op->cmd.opcode >> 8;
657 	else
658 		opcode = op->cmd.opcode;
659 
660 	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
661 	reg |= cqspi_calc_rdreg(op);
662 
663 	/* Setup dummy clock cycles */
664 	dummy_clk = cqspi_calc_dummy(op);
665 
666 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
667 		return -EOPNOTSUPP;
668 
669 	if (dummy_clk)
670 		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
671 		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
672 
673 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
674 
675 	/* Set address width */
676 	reg = readl(reg_base + CQSPI_REG_SIZE);
677 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
678 	reg |= (op->addr.nbytes - 1);
679 	writel(reg, reg_base + CQSPI_REG_SIZE);
680 	return 0;
681 }
682 
683 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
684 				       u8 *rxbuf, loff_t from_addr,
685 				       const size_t n_rx)
686 {
687 	struct cqspi_st *cqspi = f_pdata->cqspi;
688 	struct device *dev = &cqspi->pdev->dev;
689 	void __iomem *reg_base = cqspi->iobase;
690 	void __iomem *ahb_base = cqspi->ahb_base;
691 	unsigned int remaining = n_rx;
692 	unsigned int mod_bytes = n_rx % 4;
693 	unsigned int bytes_to_read = 0;
694 	u8 *rxbuf_end = rxbuf + n_rx;
695 	int ret = 0;
696 
697 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
698 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
699 
700 	/* Clear all interrupts. */
701 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
702 
703 	/*
704 	 * On SoCFPGA platform reading the SRAM is slow due to
705 	 * hardware limitation and causing read interrupt storm to CPU,
706 	 * so enabling only watermark interrupt to disable all read
707 	 * interrupts later as we want to run "bytes to read" loop with
708 	 * all the read interrupts disabled for max performance.
709 	 */
710 
711 	if (!cqspi->slow_sram)
712 		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
713 	else
714 		writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
715 
716 	reinit_completion(&cqspi->transfer_complete);
717 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
718 	       reg_base + CQSPI_REG_INDIRECTRD);
719 
720 	while (remaining > 0) {
721 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
722 						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
723 			ret = -ETIMEDOUT;
724 
725 		/*
726 		 * Disable all read interrupts until
727 		 * we are out of "bytes to read"
728 		 */
729 		if (cqspi->slow_sram)
730 			writel(0x0, reg_base + CQSPI_REG_IRQMASK);
731 
732 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
733 
734 		if (ret && bytes_to_read == 0) {
735 			dev_err(dev, "Indirect read timeout, no bytes\n");
736 			goto failrd;
737 		}
738 
739 		while (bytes_to_read != 0) {
740 			unsigned int word_remain = round_down(remaining, 4);
741 
742 			bytes_to_read *= cqspi->fifo_width;
743 			bytes_to_read = bytes_to_read > remaining ?
744 					remaining : bytes_to_read;
745 			bytes_to_read = round_down(bytes_to_read, 4);
746 			/* Read 4 byte word chunks then single bytes */
747 			if (bytes_to_read) {
748 				ioread32_rep(ahb_base, rxbuf,
749 					     (bytes_to_read / 4));
750 			} else if (!word_remain && mod_bytes) {
751 				unsigned int temp = ioread32(ahb_base);
752 
753 				bytes_to_read = mod_bytes;
754 				memcpy(rxbuf, &temp, min((unsigned int)
755 							 (rxbuf_end - rxbuf),
756 							 bytes_to_read));
757 			}
758 			rxbuf += bytes_to_read;
759 			remaining -= bytes_to_read;
760 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
761 		}
762 
763 		if (remaining > 0) {
764 			reinit_completion(&cqspi->transfer_complete);
765 			if (cqspi->slow_sram)
766 				writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
767 		}
768 	}
769 
770 	/* Check indirect done status */
771 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
772 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
773 	if (ret) {
774 		dev_err(dev, "Indirect read completion error (%i)\n", ret);
775 		goto failrd;
776 	}
777 
778 	/* Disable interrupt */
779 	writel(0, reg_base + CQSPI_REG_IRQMASK);
780 
781 	/* Clear indirect completion status */
782 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
783 
784 	return 0;
785 
786 failrd:
787 	/* Disable interrupt */
788 	writel(0, reg_base + CQSPI_REG_IRQMASK);
789 
790 	/* Cancel the indirect read */
791 	writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
792 	       reg_base + CQSPI_REG_INDIRECTRD);
793 	return ret;
794 }
795 
796 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
797 {
798 	void __iomem *reg_base = cqspi->iobase;
799 	unsigned int reg;
800 
801 	reg = readl(reg_base + CQSPI_REG_CONFIG);
802 
803 	if (enable)
804 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
805 	else
806 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
807 
808 	writel(reg, reg_base + CQSPI_REG_CONFIG);
809 }
810 
811 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
812 					  u_char *rxbuf, loff_t from_addr,
813 					  size_t n_rx)
814 {
815 	struct cqspi_st *cqspi = f_pdata->cqspi;
816 	struct device *dev = &cqspi->pdev->dev;
817 	void __iomem *reg_base = cqspi->iobase;
818 	u32 reg, bytes_to_dma;
819 	loff_t addr = from_addr;
820 	void *buf = rxbuf;
821 	dma_addr_t dma_addr;
822 	u8 bytes_rem;
823 	int ret = 0;
824 
825 	bytes_rem = n_rx % 4;
826 	bytes_to_dma = (n_rx - bytes_rem);
827 
828 	if (!bytes_to_dma)
829 		goto nondmard;
830 
831 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
832 	if (ret)
833 		return ret;
834 
835 	cqspi_controller_enable(cqspi, 0);
836 
837 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
838 	reg |= CQSPI_REG_CONFIG_DMA_MASK;
839 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
840 
841 	cqspi_controller_enable(cqspi, 1);
842 
843 	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
844 	if (dma_mapping_error(dev, dma_addr)) {
845 		dev_err(dev, "dma mapping failed\n");
846 		return -ENOMEM;
847 	}
848 
849 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
850 	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
851 	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
852 	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
853 
854 	/* Clear all interrupts. */
855 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
856 
857 	/* Enable DMA done interrupt */
858 	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
859 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
860 
861 	/* Default DMA periph configuration */
862 	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
863 
864 	/* Configure DMA Dst address */
865 	writel(lower_32_bits(dma_addr),
866 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
867 	writel(upper_32_bits(dma_addr),
868 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
869 
870 	/* Configure DMA Src address */
871 	writel(cqspi->trigger_address, reg_base +
872 	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
873 
874 	/* Set DMA destination size */
875 	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
876 
877 	/* Set DMA destination control */
878 	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
879 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
880 
881 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
882 	       reg_base + CQSPI_REG_INDIRECTRD);
883 
884 	reinit_completion(&cqspi->transfer_complete);
885 
886 	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
887 					 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
888 		ret = -ETIMEDOUT;
889 		goto failrd;
890 	}
891 
892 	/* Disable DMA interrupt */
893 	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
894 
895 	/* Clear indirect completion status */
896 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
897 	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
898 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
899 
900 	cqspi_controller_enable(cqspi, 0);
901 
902 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
903 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
904 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
905 
906 	cqspi_controller_enable(cqspi, 1);
907 
908 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
909 					PM_OSPI_MUX_SEL_LINEAR);
910 	if (ret)
911 		return ret;
912 
913 nondmard:
914 	if (bytes_rem) {
915 		addr += bytes_to_dma;
916 		buf += bytes_to_dma;
917 		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
918 						  bytes_rem);
919 		if (ret)
920 			return ret;
921 	}
922 
923 	return 0;
924 
925 failrd:
926 	/* Disable DMA interrupt */
927 	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
928 
929 	/* Cancel the indirect read */
930 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
931 	       reg_base + CQSPI_REG_INDIRECTRD);
932 
933 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
934 
935 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
936 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
937 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
938 
939 	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
940 
941 	return ret;
942 }
943 
944 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
945 			     const struct spi_mem_op *op)
946 {
947 	unsigned int reg;
948 	int ret;
949 	struct cqspi_st *cqspi = f_pdata->cqspi;
950 	void __iomem *reg_base = cqspi->iobase;
951 	u8 opcode;
952 
953 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
954 	if (ret)
955 		return ret;
956 
957 	if (op->cmd.dtr)
958 		opcode = op->cmd.opcode >> 8;
959 	else
960 		opcode = op->cmd.opcode;
961 
962 	/* Set opcode. */
963 	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
964 	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
965 	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
966 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
967 	reg = cqspi_calc_rdreg(op);
968 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
969 
970 	/*
971 	 * SPI NAND flashes require the address of the status register to be
972 	 * passed in the Read SR command. Also, some SPI NOR flashes like the
973 	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
974 	 * command in DTR mode.
975 	 *
976 	 * But this controller does not support address phase in the Read SR
977 	 * command when doing auto-HW polling. So, disable write completion
978 	 * polling on the controller's side. spinand and spi-nor will take
979 	 * care of polling the status register.
980 	 */
981 	if (cqspi->wr_completion) {
982 		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
983 		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
984 		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
985 		/*
986 		 * DAC mode require auto polling as flash needs to be polled
987 		 * for write completion in case of bubble in SPI transaction
988 		 * due to slow CPU/DMA master.
989 		 */
990 		cqspi->use_direct_mode_wr = false;
991 	}
992 
993 	reg = readl(reg_base + CQSPI_REG_SIZE);
994 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
995 	reg |= (op->addr.nbytes - 1);
996 	writel(reg, reg_base + CQSPI_REG_SIZE);
997 	return 0;
998 }
999 
1000 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1001 					loff_t to_addr, const u8 *txbuf,
1002 					const size_t n_tx)
1003 {
1004 	struct cqspi_st *cqspi = f_pdata->cqspi;
1005 	struct device *dev = &cqspi->pdev->dev;
1006 	void __iomem *reg_base = cqspi->iobase;
1007 	unsigned int remaining = n_tx;
1008 	unsigned int write_bytes;
1009 	int ret;
1010 
1011 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1012 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1013 
1014 	/* Clear all interrupts. */
1015 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1016 
1017 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1018 
1019 	reinit_completion(&cqspi->transfer_complete);
1020 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
1021 	       reg_base + CQSPI_REG_INDIRECTWR);
1022 	/*
1023 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1024 	 * Controller programming sequence, couple of cycles of
1025 	 * QSPI_REF_CLK delay is required for the above bit to
1026 	 * be internally synchronized by the QSPI module. Provide 5
1027 	 * cycles of delay.
1028 	 */
1029 	if (cqspi->wr_delay)
1030 		ndelay(cqspi->wr_delay);
1031 
1032 	/*
1033 	 * If a hazard exists between the APB and AHB interfaces, perform a
1034 	 * dummy readback from the controller to ensure synchronization.
1035 	 */
1036 	if (cqspi->apb_ahb_hazard)
1037 		readl(reg_base + CQSPI_REG_INDIRECTWR);
1038 
1039 	while (remaining > 0) {
1040 		size_t write_words, mod_bytes;
1041 
1042 		write_bytes = remaining;
1043 		write_words = write_bytes / 4;
1044 		mod_bytes = write_bytes % 4;
1045 		/* Write 4 bytes at a time then single bytes. */
1046 		if (write_words) {
1047 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1048 			txbuf += (write_words * 4);
1049 		}
1050 		if (mod_bytes) {
1051 			unsigned int temp = 0xFFFFFFFF;
1052 
1053 			memcpy(&temp, txbuf, mod_bytes);
1054 			iowrite32(temp, cqspi->ahb_base);
1055 			txbuf += mod_bytes;
1056 		}
1057 
1058 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1059 						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1060 			dev_err(dev, "Indirect write timeout\n");
1061 			ret = -ETIMEDOUT;
1062 			goto failwr;
1063 		}
1064 
1065 		remaining -= write_bytes;
1066 
1067 		if (remaining > 0)
1068 			reinit_completion(&cqspi->transfer_complete);
1069 	}
1070 
1071 	/* Check indirect done status */
1072 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1073 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1074 	if (ret) {
1075 		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1076 		goto failwr;
1077 	}
1078 
1079 	/* Disable interrupt. */
1080 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1081 
1082 	/* Clear indirect completion status */
1083 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1084 
1085 	cqspi_wait_idle(cqspi);
1086 
1087 	return 0;
1088 
1089 failwr:
1090 	/* Disable interrupt. */
1091 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1092 
1093 	/* Cancel the indirect write */
1094 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1095 	       reg_base + CQSPI_REG_INDIRECTWR);
1096 	return ret;
1097 }
1098 
1099 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1100 {
1101 	struct cqspi_st *cqspi = f_pdata->cqspi;
1102 	void __iomem *reg_base = cqspi->iobase;
1103 	unsigned int chip_select = f_pdata->cs;
1104 	unsigned int reg;
1105 
1106 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1107 	if (cqspi->is_decoded_cs) {
1108 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1109 	} else {
1110 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1111 
1112 		/* Convert CS if without decoder.
1113 		 * CS0 to 4b'1110
1114 		 * CS1 to 4b'1101
1115 		 * CS2 to 4b'1011
1116 		 * CS3 to 4b'0111
1117 		 */
1118 		chip_select = 0xF & ~(1 << chip_select);
1119 	}
1120 
1121 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1122 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1123 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1124 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1125 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1126 }
1127 
1128 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1129 					   const unsigned int ns_val)
1130 {
1131 	unsigned int ticks;
1132 
1133 	ticks = ref_clk_hz / 1000;	/* kHz */
1134 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1135 
1136 	return ticks;
1137 }
1138 
1139 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1140 {
1141 	struct cqspi_st *cqspi = f_pdata->cqspi;
1142 	void __iomem *iobase = cqspi->iobase;
1143 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1144 	unsigned int tshsl, tchsh, tslch, tsd2d;
1145 	unsigned int reg;
1146 	unsigned int tsclk;
1147 
1148 	/* calculate the number of ref ticks for one sclk tick */
1149 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1150 
1151 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1152 	/* this particular value must be at least one sclk */
1153 	if (tshsl < tsclk)
1154 		tshsl = tsclk;
1155 
1156 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1157 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1158 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1159 
1160 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1161 	       << CQSPI_REG_DELAY_TSHSL_LSB;
1162 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1163 		<< CQSPI_REG_DELAY_TCHSH_LSB;
1164 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1165 		<< CQSPI_REG_DELAY_TSLCH_LSB;
1166 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1167 		<< CQSPI_REG_DELAY_TSD2D_LSB;
1168 	writel(reg, iobase + CQSPI_REG_DELAY);
1169 }
1170 
1171 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1172 {
1173 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1174 	void __iomem *reg_base = cqspi->iobase;
1175 	u32 reg, div;
1176 
1177 	/* Recalculate the baudrate divisor based on QSPI specification. */
1178 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1179 
1180 	/* Maximum baud divisor */
1181 	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1182 		div = CQSPI_REG_CONFIG_BAUD_MASK;
1183 		dev_warn(&cqspi->pdev->dev,
1184 			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1185 			cqspi->sclk, ref_clk_hz/((div+1)*2));
1186 	}
1187 
1188 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1189 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1190 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1191 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1192 }
1193 
1194 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1195 				   const bool bypass,
1196 				   const unsigned int delay)
1197 {
1198 	void __iomem *reg_base = cqspi->iobase;
1199 	unsigned int reg;
1200 
1201 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1202 
1203 	if (bypass)
1204 		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1205 	else
1206 		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1207 
1208 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1209 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1210 
1211 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1212 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1213 
1214 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1215 }
1216 
1217 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1218 			    unsigned long sclk)
1219 {
1220 	struct cqspi_st *cqspi = f_pdata->cqspi;
1221 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1222 	int switch_ck = (cqspi->sclk != sclk);
1223 
1224 	if (switch_cs || switch_ck)
1225 		cqspi_controller_enable(cqspi, 0);
1226 
1227 	/* Switch chip select. */
1228 	if (switch_cs) {
1229 		cqspi->current_cs = f_pdata->cs;
1230 		cqspi_chipselect(f_pdata);
1231 	}
1232 
1233 	/* Setup baudrate divisor and delays */
1234 	if (switch_ck) {
1235 		cqspi->sclk = sclk;
1236 		cqspi_config_baudrate_div(cqspi);
1237 		cqspi_delay(f_pdata);
1238 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1239 				       f_pdata->read_delay);
1240 	}
1241 
1242 	if (switch_cs || switch_ck)
1243 		cqspi_controller_enable(cqspi, 1);
1244 }
1245 
1246 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1247 			   const struct spi_mem_op *op)
1248 {
1249 	struct cqspi_st *cqspi = f_pdata->cqspi;
1250 	loff_t to = op->addr.val;
1251 	size_t len = op->data.nbytes;
1252 	const u_char *buf = op->data.buf.out;
1253 	int ret;
1254 
1255 	ret = cqspi_write_setup(f_pdata, op);
1256 	if (ret)
1257 		return ret;
1258 
1259 	/*
1260 	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1261 	 * address (all 0s) with the read status register command in DTR mode.
1262 	 * But this controller does not support sending dummy address bytes to
1263 	 * the flash when it is polling the write completion register in DTR
1264 	 * mode. So, we can not use direct mode when in DTR mode for writing
1265 	 * data.
1266 	 */
1267 	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1268 	    cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1269 		memcpy_toio(cqspi->ahb_base + to, buf, len);
1270 		return cqspi_wait_idle(cqspi);
1271 	}
1272 
1273 	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1274 }
1275 
1276 static void cqspi_rx_dma_callback(void *param)
1277 {
1278 	struct cqspi_st *cqspi = param;
1279 
1280 	complete(&cqspi->rx_dma_complete);
1281 }
1282 
1283 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1284 				     u_char *buf, loff_t from, size_t len)
1285 {
1286 	struct cqspi_st *cqspi = f_pdata->cqspi;
1287 	struct device *dev = &cqspi->pdev->dev;
1288 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1289 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1290 	int ret = 0;
1291 	struct dma_async_tx_descriptor *tx;
1292 	dma_cookie_t cookie;
1293 	dma_addr_t dma_dst;
1294 	struct device *ddev;
1295 
1296 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1297 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1298 		return 0;
1299 	}
1300 
1301 	ddev = cqspi->rx_chan->device->dev;
1302 	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1303 	if (dma_mapping_error(ddev, dma_dst)) {
1304 		dev_err(dev, "dma mapping failed\n");
1305 		return -ENOMEM;
1306 	}
1307 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1308 				       len, flags);
1309 	if (!tx) {
1310 		dev_err(dev, "device_prep_dma_memcpy error\n");
1311 		ret = -EIO;
1312 		goto err_unmap;
1313 	}
1314 
1315 	tx->callback = cqspi_rx_dma_callback;
1316 	tx->callback_param = cqspi;
1317 	cookie = tx->tx_submit(tx);
1318 	reinit_completion(&cqspi->rx_dma_complete);
1319 
1320 	ret = dma_submit_error(cookie);
1321 	if (ret) {
1322 		dev_err(dev, "dma_submit_error %d\n", cookie);
1323 		ret = -EIO;
1324 		goto err_unmap;
1325 	}
1326 
1327 	dma_async_issue_pending(cqspi->rx_chan);
1328 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1329 					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1330 		dmaengine_terminate_sync(cqspi->rx_chan);
1331 		dev_err(dev, "DMA wait_for_completion_timeout\n");
1332 		ret = -ETIMEDOUT;
1333 		goto err_unmap;
1334 	}
1335 
1336 err_unmap:
1337 	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1338 
1339 	return ret;
1340 }
1341 
1342 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1343 			  const struct spi_mem_op *op)
1344 {
1345 	struct cqspi_st *cqspi = f_pdata->cqspi;
1346 	struct device *dev = &cqspi->pdev->dev;
1347 	const struct cqspi_driver_platdata *ddata;
1348 	loff_t from = op->addr.val;
1349 	size_t len = op->data.nbytes;
1350 	u_char *buf = op->data.buf.in;
1351 	u64 dma_align = (u64)(uintptr_t)buf;
1352 	int ret;
1353 
1354 	ddata = of_device_get_match_data(dev);
1355 
1356 	ret = cqspi_read_setup(f_pdata, op);
1357 	if (ret)
1358 		return ret;
1359 
1360 	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1361 		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1362 
1363 	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1364 	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1365 		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1366 
1367 	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1368 }
1369 
1370 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1371 {
1372 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1373 	struct cqspi_flash_pdata *f_pdata;
1374 
1375 	f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1376 	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1377 
1378 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1379 	/*
1380 	 * Performing reads in DAC mode forces to read minimum 4 bytes
1381 	 * which is unsupported on some flash devices during register
1382 	 * reads, prefer STIG mode for such small reads.
1383 	 */
1384 		if (!op->addr.nbytes ||
1385 		    op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1386 			return cqspi_command_read(f_pdata, op);
1387 
1388 		return cqspi_read(f_pdata, op);
1389 	}
1390 
1391 	if (!op->addr.nbytes || !op->data.buf.out)
1392 		return cqspi_command_write(f_pdata, op);
1393 
1394 	return cqspi_write(f_pdata, op);
1395 }
1396 
1397 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1398 {
1399 	int ret;
1400 
1401 	ret = cqspi_mem_process(mem, op);
1402 	if (ret)
1403 		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1404 
1405 	return ret;
1406 }
1407 
1408 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1409 				  const struct spi_mem_op *op)
1410 {
1411 	bool all_true, all_false;
1412 
1413 	/*
1414 	 * op->dummy.dtr is required for converting nbytes into ncycles.
1415 	 * Also, don't check the dtr field of the op phase having zero nbytes.
1416 	 */
1417 	all_true = op->cmd.dtr &&
1418 		   (!op->addr.nbytes || op->addr.dtr) &&
1419 		   (!op->dummy.nbytes || op->dummy.dtr) &&
1420 		   (!op->data.nbytes || op->data.dtr);
1421 
1422 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1423 		    !op->data.dtr;
1424 
1425 	if (all_true) {
1426 		/* Right now we only support 8-8-8 DTR mode. */
1427 		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1428 			return false;
1429 		if (op->addr.nbytes && op->addr.buswidth != 8)
1430 			return false;
1431 		if (op->data.nbytes && op->data.buswidth != 8)
1432 			return false;
1433 	} else if (!all_false) {
1434 		/* Mixed DTR modes are not supported. */
1435 		return false;
1436 	}
1437 
1438 	return spi_mem_default_supports_op(mem, op);
1439 }
1440 
1441 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1442 				    struct cqspi_flash_pdata *f_pdata,
1443 				    struct device_node *np)
1444 {
1445 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1446 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1447 		return -ENXIO;
1448 	}
1449 
1450 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1451 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1452 		return -ENXIO;
1453 	}
1454 
1455 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1456 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1457 		return -ENXIO;
1458 	}
1459 
1460 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1461 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1462 		return -ENXIO;
1463 	}
1464 
1465 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1466 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1467 		return -ENXIO;
1468 	}
1469 
1470 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1471 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1472 		return -ENXIO;
1473 	}
1474 
1475 	return 0;
1476 }
1477 
1478 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1479 {
1480 	struct device *dev = &cqspi->pdev->dev;
1481 	struct device_node *np = dev->of_node;
1482 	u32 id[2];
1483 
1484 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1485 
1486 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1487 		dev_err(dev, "couldn't determine fifo-depth\n");
1488 		return -ENXIO;
1489 	}
1490 
1491 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1492 		dev_err(dev, "couldn't determine fifo-width\n");
1493 		return -ENXIO;
1494 	}
1495 
1496 	if (of_property_read_u32(np, "cdns,trigger-address",
1497 				 &cqspi->trigger_address)) {
1498 		dev_err(dev, "couldn't determine trigger-address\n");
1499 		return -ENXIO;
1500 	}
1501 
1502 	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1503 		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1504 
1505 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1506 
1507 	if (!of_property_read_u32_array(np, "power-domains", id,
1508 					ARRAY_SIZE(id)))
1509 		cqspi->pd_dev_id = id[1];
1510 
1511 	return 0;
1512 }
1513 
1514 static void cqspi_controller_init(struct cqspi_st *cqspi)
1515 {
1516 	u32 reg;
1517 
1518 	cqspi_controller_enable(cqspi, 0);
1519 
1520 	/* Configure the remap address register, no remap */
1521 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1522 
1523 	/* Disable all interrupts. */
1524 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1525 
1526 	/* Configure the SRAM split to 1:1 . */
1527 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1528 
1529 	/* Load indirect trigger address. */
1530 	writel(cqspi->trigger_address,
1531 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1532 
1533 	/* Program read watermark -- 1/2 of the FIFO. */
1534 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1535 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1536 	/* Program write watermark -- 1/8 of the FIFO. */
1537 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1538 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1539 
1540 	/* Disable direct access controller */
1541 	if (!cqspi->use_direct_mode) {
1542 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1543 		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1544 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1545 	}
1546 
1547 	/* Enable DMA interface */
1548 	if (cqspi->use_dma_read) {
1549 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1550 		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1551 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1552 	}
1553 
1554 	cqspi_controller_enable(cqspi, 1);
1555 }
1556 
1557 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1558 {
1559 	dma_cap_mask_t mask;
1560 
1561 	dma_cap_zero(mask);
1562 	dma_cap_set(DMA_MEMCPY, mask);
1563 
1564 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1565 	if (IS_ERR(cqspi->rx_chan)) {
1566 		int ret = PTR_ERR(cqspi->rx_chan);
1567 
1568 		cqspi->rx_chan = NULL;
1569 		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1570 	}
1571 	init_completion(&cqspi->rx_dma_complete);
1572 
1573 	return 0;
1574 }
1575 
1576 static const char *cqspi_get_name(struct spi_mem *mem)
1577 {
1578 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1579 	struct device *dev = &cqspi->pdev->dev;
1580 
1581 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1582 			      spi_get_chipselect(mem->spi, 0));
1583 }
1584 
1585 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1586 	.exec_op = cqspi_exec_mem_op,
1587 	.get_name = cqspi_get_name,
1588 	.supports_op = cqspi_supports_mem_op,
1589 };
1590 
1591 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1592 	.dtr = true,
1593 };
1594 
1595 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1596 {
1597 	struct platform_device *pdev = cqspi->pdev;
1598 	struct device *dev = &pdev->dev;
1599 	struct device_node *np = dev->of_node;
1600 	struct cqspi_flash_pdata *f_pdata;
1601 	unsigned int cs;
1602 	int ret;
1603 
1604 	/* Get flash device data */
1605 	for_each_available_child_of_node(dev->of_node, np) {
1606 		ret = of_property_read_u32(np, "reg", &cs);
1607 		if (ret) {
1608 			dev_err(dev, "Couldn't determine chip select.\n");
1609 			of_node_put(np);
1610 			return ret;
1611 		}
1612 
1613 		if (cs >= CQSPI_MAX_CHIPSELECT) {
1614 			dev_err(dev, "Chip select %d out of range.\n", cs);
1615 			of_node_put(np);
1616 			return -EINVAL;
1617 		}
1618 
1619 		f_pdata = &cqspi->f_pdata[cs];
1620 		f_pdata->cqspi = cqspi;
1621 		f_pdata->cs = cs;
1622 
1623 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1624 		if (ret) {
1625 			of_node_put(np);
1626 			return ret;
1627 		}
1628 	}
1629 
1630 	return 0;
1631 }
1632 
1633 static int cqspi_probe(struct platform_device *pdev)
1634 {
1635 	const struct cqspi_driver_platdata *ddata;
1636 	struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1637 	struct device *dev = &pdev->dev;
1638 	struct spi_master *master;
1639 	struct resource *res_ahb;
1640 	struct cqspi_st *cqspi;
1641 	int ret;
1642 	int irq;
1643 
1644 	master = devm_spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1645 	if (!master) {
1646 		dev_err(&pdev->dev, "spi_alloc_master failed\n");
1647 		return -ENOMEM;
1648 	}
1649 	master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1650 	master->mem_ops = &cqspi_mem_ops;
1651 	master->mem_caps = &cqspi_mem_caps;
1652 	master->dev.of_node = pdev->dev.of_node;
1653 
1654 	cqspi = spi_master_get_devdata(master);
1655 
1656 	cqspi->pdev = pdev;
1657 	cqspi->master = master;
1658 	platform_set_drvdata(pdev, cqspi);
1659 
1660 	/* Obtain configuration from OF. */
1661 	ret = cqspi_of_get_pdata(cqspi);
1662 	if (ret) {
1663 		dev_err(dev, "Cannot get mandatory OF data.\n");
1664 		return -ENODEV;
1665 	}
1666 
1667 	/* Obtain QSPI clock. */
1668 	cqspi->clk = devm_clk_get(dev, NULL);
1669 	if (IS_ERR(cqspi->clk)) {
1670 		dev_err(dev, "Cannot claim QSPI clock.\n");
1671 		ret = PTR_ERR(cqspi->clk);
1672 		return ret;
1673 	}
1674 
1675 	/* Obtain and remap controller address. */
1676 	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1677 	if (IS_ERR(cqspi->iobase)) {
1678 		dev_err(dev, "Cannot remap controller address.\n");
1679 		ret = PTR_ERR(cqspi->iobase);
1680 		return ret;
1681 	}
1682 
1683 	/* Obtain and remap AHB address. */
1684 	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1685 	if (IS_ERR(cqspi->ahb_base)) {
1686 		dev_err(dev, "Cannot remap AHB address.\n");
1687 		ret = PTR_ERR(cqspi->ahb_base);
1688 		return ret;
1689 	}
1690 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1691 	cqspi->ahb_size = resource_size(res_ahb);
1692 
1693 	init_completion(&cqspi->transfer_complete);
1694 
1695 	/* Obtain IRQ line. */
1696 	irq = platform_get_irq(pdev, 0);
1697 	if (irq < 0)
1698 		return -ENXIO;
1699 
1700 	pm_runtime_enable(dev);
1701 	ret = pm_runtime_resume_and_get(dev);
1702 	if (ret < 0)
1703 		goto probe_pm_failed;
1704 
1705 	ret = clk_prepare_enable(cqspi->clk);
1706 	if (ret) {
1707 		dev_err(dev, "Cannot enable QSPI clock.\n");
1708 		goto probe_clk_failed;
1709 	}
1710 
1711 	/* Obtain QSPI reset control */
1712 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1713 	if (IS_ERR(rstc)) {
1714 		ret = PTR_ERR(rstc);
1715 		dev_err(dev, "Cannot get QSPI reset.\n");
1716 		goto probe_reset_failed;
1717 	}
1718 
1719 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1720 	if (IS_ERR(rstc_ocp)) {
1721 		ret = PTR_ERR(rstc_ocp);
1722 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1723 		goto probe_reset_failed;
1724 	}
1725 
1726 	if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1727 		rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1728 		if (IS_ERR(rstc_ref)) {
1729 			ret = PTR_ERR(rstc_ref);
1730 			dev_err(dev, "Cannot get QSPI REF reset.\n");
1731 			goto probe_reset_failed;
1732 		}
1733 		reset_control_assert(rstc_ref);
1734 		reset_control_deassert(rstc_ref);
1735 	}
1736 
1737 	reset_control_assert(rstc);
1738 	reset_control_deassert(rstc);
1739 
1740 	reset_control_assert(rstc_ocp);
1741 	reset_control_deassert(rstc_ocp);
1742 
1743 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1744 	master->max_speed_hz = cqspi->master_ref_clk_hz;
1745 
1746 	/* write completion is supported by default */
1747 	cqspi->wr_completion = true;
1748 
1749 	ddata  = of_device_get_match_data(dev);
1750 	if (ddata) {
1751 		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1752 			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1753 						cqspi->master_ref_clk_hz);
1754 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1755 			master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1756 		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1757 			cqspi->use_direct_mode = true;
1758 			cqspi->use_direct_mode_wr = true;
1759 		}
1760 		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1761 			cqspi->use_dma_read = true;
1762 		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1763 			cqspi->wr_completion = false;
1764 		if (ddata->quirks & CQSPI_SLOW_SRAM)
1765 			cqspi->slow_sram = true;
1766 		if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1767 			cqspi->apb_ahb_hazard = true;
1768 
1769 		if (of_device_is_compatible(pdev->dev.of_node,
1770 					    "xlnx,versal-ospi-1.0")) {
1771 			ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1772 			if (ret)
1773 				goto probe_reset_failed;
1774 		}
1775 	}
1776 
1777 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1778 			       pdev->name, cqspi);
1779 	if (ret) {
1780 		dev_err(dev, "Cannot request IRQ.\n");
1781 		goto probe_reset_failed;
1782 	}
1783 
1784 	cqspi_wait_idle(cqspi);
1785 	cqspi_controller_init(cqspi);
1786 	cqspi->current_cs = -1;
1787 	cqspi->sclk = 0;
1788 
1789 	master->num_chipselect = cqspi->num_chipselect;
1790 
1791 	ret = cqspi_setup_flash(cqspi);
1792 	if (ret) {
1793 		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1794 		goto probe_setup_failed;
1795 	}
1796 
1797 	if (cqspi->use_direct_mode) {
1798 		ret = cqspi_request_mmap_dma(cqspi);
1799 		if (ret == -EPROBE_DEFER)
1800 			goto probe_setup_failed;
1801 	}
1802 
1803 	ret = spi_register_master(master);
1804 	if (ret) {
1805 		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1806 		goto probe_setup_failed;
1807 	}
1808 
1809 	return 0;
1810 probe_setup_failed:
1811 	cqspi_controller_enable(cqspi, 0);
1812 probe_reset_failed:
1813 	clk_disable_unprepare(cqspi->clk);
1814 probe_clk_failed:
1815 	pm_runtime_put_sync(dev);
1816 probe_pm_failed:
1817 	pm_runtime_disable(dev);
1818 	return ret;
1819 }
1820 
1821 static void cqspi_remove(struct platform_device *pdev)
1822 {
1823 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1824 
1825 	spi_unregister_master(cqspi->master);
1826 	cqspi_controller_enable(cqspi, 0);
1827 
1828 	if (cqspi->rx_chan)
1829 		dma_release_channel(cqspi->rx_chan);
1830 
1831 	clk_disable_unprepare(cqspi->clk);
1832 
1833 	pm_runtime_put_sync(&pdev->dev);
1834 	pm_runtime_disable(&pdev->dev);
1835 }
1836 
1837 static int cqspi_suspend(struct device *dev)
1838 {
1839 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1840 	struct spi_master *master = dev_get_drvdata(dev);
1841 	int ret;
1842 
1843 	ret = spi_master_suspend(master);
1844 	cqspi_controller_enable(cqspi, 0);
1845 
1846 	clk_disable_unprepare(cqspi->clk);
1847 
1848 	return ret;
1849 }
1850 
1851 static int cqspi_resume(struct device *dev)
1852 {
1853 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1854 	struct spi_master *master = dev_get_drvdata(dev);
1855 
1856 	clk_prepare_enable(cqspi->clk);
1857 	cqspi_wait_idle(cqspi);
1858 	cqspi_controller_init(cqspi);
1859 
1860 	cqspi->current_cs = -1;
1861 	cqspi->sclk = 0;
1862 
1863 	return spi_master_resume(master);
1864 }
1865 
1866 static DEFINE_SIMPLE_DEV_PM_OPS(cqspi_dev_pm_ops, cqspi_suspend, cqspi_resume);
1867 
1868 static const struct cqspi_driver_platdata cdns_qspi = {
1869 	.quirks = CQSPI_DISABLE_DAC_MODE,
1870 };
1871 
1872 static const struct cqspi_driver_platdata k2g_qspi = {
1873 	.quirks = CQSPI_NEEDS_WR_DELAY,
1874 };
1875 
1876 static const struct cqspi_driver_platdata am654_ospi = {
1877 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1878 	.quirks = CQSPI_NEEDS_WR_DELAY,
1879 };
1880 
1881 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1882 	.quirks = CQSPI_DISABLE_DAC_MODE,
1883 };
1884 
1885 static const struct cqspi_driver_platdata socfpga_qspi = {
1886 	.quirks = CQSPI_DISABLE_DAC_MODE
1887 			| CQSPI_NO_SUPPORT_WR_COMPLETION
1888 			| CQSPI_SLOW_SRAM,
1889 };
1890 
1891 static const struct cqspi_driver_platdata versal_ospi = {
1892 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1893 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1894 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
1895 	.get_dma_status = cqspi_get_versal_dma_status,
1896 };
1897 
1898 static const struct cqspi_driver_platdata jh7110_qspi = {
1899 	.quirks = CQSPI_DISABLE_DAC_MODE,
1900 };
1901 
1902 static const struct cqspi_driver_platdata pensando_cdns_qspi = {
1903 	.quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
1904 };
1905 
1906 static const struct of_device_id cqspi_dt_ids[] = {
1907 	{
1908 		.compatible = "cdns,qspi-nor",
1909 		.data = &cdns_qspi,
1910 	},
1911 	{
1912 		.compatible = "ti,k2g-qspi",
1913 		.data = &k2g_qspi,
1914 	},
1915 	{
1916 		.compatible = "ti,am654-ospi",
1917 		.data = &am654_ospi,
1918 	},
1919 	{
1920 		.compatible = "intel,lgm-qspi",
1921 		.data = &intel_lgm_qspi,
1922 	},
1923 	{
1924 		.compatible = "xlnx,versal-ospi-1.0",
1925 		.data = &versal_ospi,
1926 	},
1927 	{
1928 		.compatible = "intel,socfpga-qspi",
1929 		.data = &socfpga_qspi,
1930 	},
1931 	{
1932 		.compatible = "starfive,jh7110-qspi",
1933 		.data = &jh7110_qspi,
1934 	},
1935 	{
1936 		.compatible = "amd,pensando-elba-qspi",
1937 		.data = &pensando_cdns_qspi,
1938 	},
1939 	{ /* end of table */ }
1940 };
1941 
1942 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1943 
1944 static struct platform_driver cqspi_platform_driver = {
1945 	.probe = cqspi_probe,
1946 	.remove_new = cqspi_remove,
1947 	.driver = {
1948 		.name = CQSPI_NAME,
1949 		.pm = &cqspi_dev_pm_ops,
1950 		.of_match_table = cqspi_dt_ids,
1951 	},
1952 };
1953 
1954 module_platform_driver(cqspi_platform_driver);
1955 
1956 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1957 MODULE_LICENSE("GPL v2");
1958 MODULE_ALIAS("platform:" CQSPI_NAME);
1959 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1960 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1961 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1962 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1963 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
1964