1 // SPDX-License-Identifier: GPL-2.0-only 2 // 3 // Driver for Cadence QSPI Controller 4 // 5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved. 6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved. 7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com 8 9 #include <linux/clk.h> 10 #include <linux/completion.h> 11 #include <linux/delay.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmaengine.h> 14 #include <linux/err.h> 15 #include <linux/errno.h> 16 #include <linux/firmware/xlnx-zynqmp.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/iopoll.h> 20 #include <linux/jiffies.h> 21 #include <linux/kernel.h> 22 #include <linux/module.h> 23 #include <linux/of_device.h> 24 #include <linux/of.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/reset.h> 28 #include <linux/sched.h> 29 #include <linux/spi/spi.h> 30 #include <linux/spi/spi-mem.h> 31 #include <linux/timer.h> 32 33 #define CQSPI_NAME "cadence-qspi" 34 #define CQSPI_MAX_CHIPSELECT 16 35 36 /* Quirks */ 37 #define CQSPI_NEEDS_WR_DELAY BIT(0) 38 #define CQSPI_DISABLE_DAC_MODE BIT(1) 39 #define CQSPI_SUPPORT_EXTERNAL_DMA BIT(2) 40 #define CQSPI_NO_SUPPORT_WR_COMPLETION BIT(3) 41 42 /* Capabilities */ 43 #define CQSPI_SUPPORTS_OCTAL BIT(0) 44 45 struct cqspi_st; 46 47 struct cqspi_flash_pdata { 48 struct cqspi_st *cqspi; 49 u32 clk_rate; 50 u32 read_delay; 51 u32 tshsl_ns; 52 u32 tsd2d_ns; 53 u32 tchsh_ns; 54 u32 tslch_ns; 55 u8 inst_width; 56 u8 addr_width; 57 u8 data_width; 58 bool dtr; 59 u8 cs; 60 }; 61 62 struct cqspi_st { 63 struct platform_device *pdev; 64 65 struct clk *clk; 66 unsigned int sclk; 67 68 void __iomem *iobase; 69 void __iomem *ahb_base; 70 resource_size_t ahb_size; 71 struct completion transfer_complete; 72 73 struct dma_chan *rx_chan; 74 struct completion rx_dma_complete; 75 dma_addr_t mmap_phys_base; 76 77 int current_cs; 78 unsigned long master_ref_clk_hz; 79 bool is_decoded_cs; 80 u32 fifo_depth; 81 u32 fifo_width; 82 u32 num_chipselect; 83 bool rclk_en; 84 u32 trigger_address; 85 u32 wr_delay; 86 bool use_direct_mode; 87 struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT]; 88 bool use_dma_read; 89 u32 pd_dev_id; 90 bool wr_completion; 91 }; 92 93 struct cqspi_driver_platdata { 94 u32 hwcaps_mask; 95 u8 quirks; 96 int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata, 97 u_char *rxbuf, loff_t from_addr, size_t n_rx); 98 u32 (*get_dma_status)(struct cqspi_st *cqspi); 99 }; 100 101 /* Operation timeout value */ 102 #define CQSPI_TIMEOUT_MS 500 103 #define CQSPI_READ_TIMEOUT_MS 10 104 105 /* Instruction type */ 106 #define CQSPI_INST_TYPE_SINGLE 0 107 #define CQSPI_INST_TYPE_DUAL 1 108 #define CQSPI_INST_TYPE_QUAD 2 109 #define CQSPI_INST_TYPE_OCTAL 3 110 111 #define CQSPI_DUMMY_CLKS_PER_BYTE 8 112 #define CQSPI_DUMMY_BYTES_MAX 4 113 #define CQSPI_DUMMY_CLKS_MAX 31 114 115 #define CQSPI_STIG_DATA_LEN_MAX 8 116 117 /* Register map */ 118 #define CQSPI_REG_CONFIG 0x00 119 #define CQSPI_REG_CONFIG_ENABLE_MASK BIT(0) 120 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL BIT(7) 121 #define CQSPI_REG_CONFIG_DECODE_MASK BIT(9) 122 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10 123 #define CQSPI_REG_CONFIG_DMA_MASK BIT(15) 124 #define CQSPI_REG_CONFIG_BAUD_LSB 19 125 #define CQSPI_REG_CONFIG_DTR_PROTO BIT(24) 126 #define CQSPI_REG_CONFIG_DUAL_OPCODE BIT(30) 127 #define CQSPI_REG_CONFIG_IDLE_LSB 31 128 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF 129 #define CQSPI_REG_CONFIG_BAUD_MASK 0xF 130 131 #define CQSPI_REG_RD_INSTR 0x04 132 #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0 133 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8 134 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12 135 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16 136 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20 137 #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24 138 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3 139 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3 140 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3 141 #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F 142 143 #define CQSPI_REG_WR_INSTR 0x08 144 #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0 145 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB 12 146 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16 147 148 #define CQSPI_REG_DELAY 0x0C 149 #define CQSPI_REG_DELAY_TSLCH_LSB 0 150 #define CQSPI_REG_DELAY_TCHSH_LSB 8 151 #define CQSPI_REG_DELAY_TSD2D_LSB 16 152 #define CQSPI_REG_DELAY_TSHSL_LSB 24 153 #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF 154 #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF 155 #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF 156 #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF 157 158 #define CQSPI_REG_READCAPTURE 0x10 159 #define CQSPI_REG_READCAPTURE_BYPASS_LSB 0 160 #define CQSPI_REG_READCAPTURE_DELAY_LSB 1 161 #define CQSPI_REG_READCAPTURE_DELAY_MASK 0xF 162 163 #define CQSPI_REG_SIZE 0x14 164 #define CQSPI_REG_SIZE_ADDRESS_LSB 0 165 #define CQSPI_REG_SIZE_PAGE_LSB 4 166 #define CQSPI_REG_SIZE_BLOCK_LSB 16 167 #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF 168 #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF 169 #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F 170 171 #define CQSPI_REG_SRAMPARTITION 0x18 172 #define CQSPI_REG_INDIRECTTRIGGER 0x1C 173 174 #define CQSPI_REG_DMA 0x20 175 #define CQSPI_REG_DMA_SINGLE_LSB 0 176 #define CQSPI_REG_DMA_BURST_LSB 8 177 #define CQSPI_REG_DMA_SINGLE_MASK 0xFF 178 #define CQSPI_REG_DMA_BURST_MASK 0xFF 179 180 #define CQSPI_REG_REMAP 0x24 181 #define CQSPI_REG_MODE_BIT 0x28 182 183 #define CQSPI_REG_SDRAMLEVEL 0x2C 184 #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0 185 #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16 186 #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF 187 #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF 188 189 #define CQSPI_REG_WR_COMPLETION_CTRL 0x38 190 #define CQSPI_REG_WR_DISABLE_AUTO_POLL BIT(14) 191 192 #define CQSPI_REG_IRQSTATUS 0x40 193 #define CQSPI_REG_IRQMASK 0x44 194 195 #define CQSPI_REG_INDIRECTRD 0x60 196 #define CQSPI_REG_INDIRECTRD_START_MASK BIT(0) 197 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK BIT(1) 198 #define CQSPI_REG_INDIRECTRD_DONE_MASK BIT(5) 199 200 #define CQSPI_REG_INDIRECTRDWATERMARK 0x64 201 #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68 202 #define CQSPI_REG_INDIRECTRDBYTES 0x6C 203 204 #define CQSPI_REG_CMDCTRL 0x90 205 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK BIT(0) 206 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK BIT(1) 207 #define CQSPI_REG_CMDCTRL_DUMMY_LSB 7 208 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12 209 #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15 210 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16 211 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19 212 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20 213 #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23 214 #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24 215 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7 216 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3 217 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7 218 #define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F 219 220 #define CQSPI_REG_INDIRECTWR 0x70 221 #define CQSPI_REG_INDIRECTWR_START_MASK BIT(0) 222 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK BIT(1) 223 #define CQSPI_REG_INDIRECTWR_DONE_MASK BIT(5) 224 225 #define CQSPI_REG_INDIRECTWRWATERMARK 0x74 226 #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78 227 #define CQSPI_REG_INDIRECTWRBYTES 0x7C 228 229 #define CQSPI_REG_INDTRIG_ADDRRANGE 0x80 230 231 #define CQSPI_REG_CMDADDRESS 0x94 232 #define CQSPI_REG_CMDREADDATALOWER 0xA0 233 #define CQSPI_REG_CMDREADDATAUPPER 0xA4 234 #define CQSPI_REG_CMDWRITEDATALOWER 0xA8 235 #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC 236 237 #define CQSPI_REG_POLLING_STATUS 0xB0 238 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB 16 239 240 #define CQSPI_REG_OP_EXT_LOWER 0xE0 241 #define CQSPI_REG_OP_EXT_READ_LSB 24 242 #define CQSPI_REG_OP_EXT_WRITE_LSB 16 243 #define CQSPI_REG_OP_EXT_STIG_LSB 0 244 245 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR 0x1000 246 247 #define CQSPI_REG_VERSAL_DMA_DST_ADDR 0x1800 248 #define CQSPI_REG_VERSAL_DMA_DST_SIZE 0x1804 249 250 #define CQSPI_REG_VERSAL_DMA_DST_CTRL 0x180C 251 252 #define CQSPI_REG_VERSAL_DMA_DST_I_STS 0x1814 253 #define CQSPI_REG_VERSAL_DMA_DST_I_EN 0x1818 254 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS 0x181C 255 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK BIT(1) 256 257 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB 0x1828 258 259 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL 0xF43FFA00 260 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL 0x6 261 262 /* Interrupt status bits */ 263 #define CQSPI_REG_IRQ_MODE_ERR BIT(0) 264 #define CQSPI_REG_IRQ_UNDERFLOW BIT(1) 265 #define CQSPI_REG_IRQ_IND_COMP BIT(2) 266 #define CQSPI_REG_IRQ_IND_RD_REJECT BIT(3) 267 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR BIT(4) 268 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR BIT(5) 269 #define CQSPI_REG_IRQ_WATERMARK BIT(6) 270 #define CQSPI_REG_IRQ_IND_SRAM_FULL BIT(12) 271 272 #define CQSPI_IRQ_MASK_RD (CQSPI_REG_IRQ_WATERMARK | \ 273 CQSPI_REG_IRQ_IND_SRAM_FULL | \ 274 CQSPI_REG_IRQ_IND_COMP) 275 276 #define CQSPI_IRQ_MASK_WR (CQSPI_REG_IRQ_IND_COMP | \ 277 CQSPI_REG_IRQ_WATERMARK | \ 278 CQSPI_REG_IRQ_UNDERFLOW) 279 280 #define CQSPI_IRQ_STATUS_MASK 0x1FFFF 281 #define CQSPI_DMA_UNALIGN 0x3 282 283 #define CQSPI_REG_VERSAL_DMA_VAL 0x602 284 285 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr) 286 { 287 u32 val; 288 289 return readl_relaxed_poll_timeout(reg, val, 290 (((clr ? ~val : val) & mask) == mask), 291 10, CQSPI_TIMEOUT_MS * 1000); 292 } 293 294 static bool cqspi_is_idle(struct cqspi_st *cqspi) 295 { 296 u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); 297 298 return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB); 299 } 300 301 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi) 302 { 303 u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL); 304 305 reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB; 306 return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK; 307 } 308 309 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi) 310 { 311 u32 dma_status; 312 313 dma_status = readl(cqspi->iobase + 314 CQSPI_REG_VERSAL_DMA_DST_I_STS); 315 writel(dma_status, cqspi->iobase + 316 CQSPI_REG_VERSAL_DMA_DST_I_STS); 317 318 return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK; 319 } 320 321 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev) 322 { 323 struct cqspi_st *cqspi = dev; 324 unsigned int irq_status; 325 struct device *device = &cqspi->pdev->dev; 326 const struct cqspi_driver_platdata *ddata; 327 328 ddata = of_device_get_match_data(device); 329 330 /* Read interrupt status */ 331 irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS); 332 333 /* Clear interrupt */ 334 writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS); 335 336 if (cqspi->use_dma_read && ddata && ddata->get_dma_status) { 337 if (ddata->get_dma_status(cqspi)) { 338 complete(&cqspi->transfer_complete); 339 return IRQ_HANDLED; 340 } 341 } 342 343 irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR; 344 345 if (irq_status) 346 complete(&cqspi->transfer_complete); 347 348 return IRQ_HANDLED; 349 } 350 351 static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata) 352 { 353 u32 rdreg = 0; 354 355 rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB; 356 rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB; 357 rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB; 358 359 return rdreg; 360 } 361 362 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op, bool dtr) 363 { 364 unsigned int dummy_clk; 365 366 if (!op->dummy.nbytes) 367 return 0; 368 369 dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth); 370 if (dtr) 371 dummy_clk /= 2; 372 373 return dummy_clk; 374 } 375 376 static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata, 377 const struct spi_mem_op *op) 378 { 379 f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE; 380 f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE; 381 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE; 382 383 /* 384 * For an op to be DTR, cmd phase along with every other non-empty 385 * phase should have dtr field set to 1. If an op phase has zero 386 * nbytes, ignore its dtr field; otherwise, check its dtr field. 387 */ 388 f_pdata->dtr = op->cmd.dtr && 389 (!op->addr.nbytes || op->addr.dtr) && 390 (!op->data.nbytes || op->data.dtr); 391 392 switch (op->data.buswidth) { 393 case 0: 394 break; 395 case 1: 396 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE; 397 break; 398 case 2: 399 f_pdata->data_width = CQSPI_INST_TYPE_DUAL; 400 break; 401 case 4: 402 f_pdata->data_width = CQSPI_INST_TYPE_QUAD; 403 break; 404 case 8: 405 f_pdata->data_width = CQSPI_INST_TYPE_OCTAL; 406 break; 407 default: 408 return -EINVAL; 409 } 410 411 /* Right now we only support 8-8-8 DTR mode. */ 412 if (f_pdata->dtr) { 413 switch (op->cmd.buswidth) { 414 case 0: 415 break; 416 case 8: 417 f_pdata->inst_width = CQSPI_INST_TYPE_OCTAL; 418 break; 419 default: 420 return -EINVAL; 421 } 422 423 switch (op->addr.buswidth) { 424 case 0: 425 break; 426 case 8: 427 f_pdata->addr_width = CQSPI_INST_TYPE_OCTAL; 428 break; 429 default: 430 return -EINVAL; 431 } 432 433 switch (op->data.buswidth) { 434 case 0: 435 break; 436 case 8: 437 f_pdata->data_width = CQSPI_INST_TYPE_OCTAL; 438 break; 439 default: 440 return -EINVAL; 441 } 442 } 443 444 return 0; 445 } 446 447 static int cqspi_wait_idle(struct cqspi_st *cqspi) 448 { 449 const unsigned int poll_idle_retry = 3; 450 unsigned int count = 0; 451 unsigned long timeout; 452 453 timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS); 454 while (1) { 455 /* 456 * Read few times in succession to ensure the controller 457 * is indeed idle, that is, the bit does not transition 458 * low again. 459 */ 460 if (cqspi_is_idle(cqspi)) 461 count++; 462 else 463 count = 0; 464 465 if (count >= poll_idle_retry) 466 return 0; 467 468 if (time_after(jiffies, timeout)) { 469 /* Timeout, in busy mode. */ 470 dev_err(&cqspi->pdev->dev, 471 "QSPI is still busy after %dms timeout.\n", 472 CQSPI_TIMEOUT_MS); 473 return -ETIMEDOUT; 474 } 475 476 cpu_relax(); 477 } 478 } 479 480 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg) 481 { 482 void __iomem *reg_base = cqspi->iobase; 483 int ret; 484 485 /* Write the CMDCTRL without start execution. */ 486 writel(reg, reg_base + CQSPI_REG_CMDCTRL); 487 /* Start execute */ 488 reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK; 489 writel(reg, reg_base + CQSPI_REG_CMDCTRL); 490 491 /* Polling for completion. */ 492 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL, 493 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1); 494 if (ret) { 495 dev_err(&cqspi->pdev->dev, 496 "Flash command execution timed out.\n"); 497 return ret; 498 } 499 500 /* Polling QSPI idle status. */ 501 return cqspi_wait_idle(cqspi); 502 } 503 504 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata, 505 const struct spi_mem_op *op, 506 unsigned int shift) 507 { 508 struct cqspi_st *cqspi = f_pdata->cqspi; 509 void __iomem *reg_base = cqspi->iobase; 510 unsigned int reg; 511 u8 ext; 512 513 if (op->cmd.nbytes != 2) 514 return -EINVAL; 515 516 /* Opcode extension is the LSB. */ 517 ext = op->cmd.opcode & 0xff; 518 519 reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER); 520 reg &= ~(0xff << shift); 521 reg |= ext << shift; 522 writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER); 523 524 return 0; 525 } 526 527 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata, 528 const struct spi_mem_op *op, unsigned int shift, 529 bool enable) 530 { 531 struct cqspi_st *cqspi = f_pdata->cqspi; 532 void __iomem *reg_base = cqspi->iobase; 533 unsigned int reg; 534 int ret; 535 536 reg = readl(reg_base + CQSPI_REG_CONFIG); 537 538 /* 539 * We enable dual byte opcode here. The callers have to set up the 540 * extension opcode based on which type of operation it is. 541 */ 542 if (enable) { 543 reg |= CQSPI_REG_CONFIG_DTR_PROTO; 544 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE; 545 546 /* Set up command opcode extension. */ 547 ret = cqspi_setup_opcode_ext(f_pdata, op, shift); 548 if (ret) 549 return ret; 550 } else { 551 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO; 552 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE; 553 } 554 555 writel(reg, reg_base + CQSPI_REG_CONFIG); 556 557 return cqspi_wait_idle(cqspi); 558 } 559 560 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata, 561 const struct spi_mem_op *op) 562 { 563 struct cqspi_st *cqspi = f_pdata->cqspi; 564 void __iomem *reg_base = cqspi->iobase; 565 u8 *rxbuf = op->data.buf.in; 566 u8 opcode; 567 size_t n_rx = op->data.nbytes; 568 unsigned int rdreg; 569 unsigned int reg; 570 unsigned int dummy_clk; 571 size_t read_len; 572 int status; 573 574 status = cqspi_set_protocol(f_pdata, op); 575 if (status) 576 return status; 577 578 status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB, 579 f_pdata->dtr); 580 if (status) 581 return status; 582 583 if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) { 584 dev_err(&cqspi->pdev->dev, 585 "Invalid input argument, len %zu rxbuf 0x%p\n", 586 n_rx, rxbuf); 587 return -EINVAL; 588 } 589 590 if (f_pdata->dtr) 591 opcode = op->cmd.opcode >> 8; 592 else 593 opcode = op->cmd.opcode; 594 595 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB; 596 597 rdreg = cqspi_calc_rdreg(f_pdata); 598 writel(rdreg, reg_base + CQSPI_REG_RD_INSTR); 599 600 dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr); 601 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX) 602 return -EOPNOTSUPP; 603 604 if (dummy_clk) 605 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK) 606 << CQSPI_REG_CMDCTRL_DUMMY_LSB; 607 608 reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB); 609 610 /* 0 means 1 byte. */ 611 reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK) 612 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB); 613 status = cqspi_exec_flash_cmd(cqspi, reg); 614 if (status) 615 return status; 616 617 reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER); 618 619 /* Put the read value into rx_buf */ 620 read_len = (n_rx > 4) ? 4 : n_rx; 621 memcpy(rxbuf, ®, read_len); 622 rxbuf += read_len; 623 624 if (n_rx > 4) { 625 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER); 626 627 read_len = n_rx - read_len; 628 memcpy(rxbuf, ®, read_len); 629 } 630 631 return 0; 632 } 633 634 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata, 635 const struct spi_mem_op *op) 636 { 637 struct cqspi_st *cqspi = f_pdata->cqspi; 638 void __iomem *reg_base = cqspi->iobase; 639 u8 opcode; 640 const u8 *txbuf = op->data.buf.out; 641 size_t n_tx = op->data.nbytes; 642 unsigned int reg; 643 unsigned int data; 644 size_t write_len; 645 int ret; 646 647 ret = cqspi_set_protocol(f_pdata, op); 648 if (ret) 649 return ret; 650 651 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB, 652 f_pdata->dtr); 653 if (ret) 654 return ret; 655 656 if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) { 657 dev_err(&cqspi->pdev->dev, 658 "Invalid input argument, cmdlen %zu txbuf 0x%p\n", 659 n_tx, txbuf); 660 return -EINVAL; 661 } 662 663 reg = cqspi_calc_rdreg(f_pdata); 664 writel(reg, reg_base + CQSPI_REG_RD_INSTR); 665 666 if (f_pdata->dtr) 667 opcode = op->cmd.opcode >> 8; 668 else 669 opcode = op->cmd.opcode; 670 671 reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB; 672 673 if (op->addr.nbytes) { 674 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB); 675 reg |= ((op->addr.nbytes - 1) & 676 CQSPI_REG_CMDCTRL_ADD_BYTES_MASK) 677 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB; 678 679 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS); 680 } 681 682 if (n_tx) { 683 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB); 684 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK) 685 << CQSPI_REG_CMDCTRL_WR_BYTES_LSB; 686 data = 0; 687 write_len = (n_tx > 4) ? 4 : n_tx; 688 memcpy(&data, txbuf, write_len); 689 txbuf += write_len; 690 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER); 691 692 if (n_tx > 4) { 693 data = 0; 694 write_len = n_tx - 4; 695 memcpy(&data, txbuf, write_len); 696 writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER); 697 } 698 } 699 700 return cqspi_exec_flash_cmd(cqspi, reg); 701 } 702 703 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata, 704 const struct spi_mem_op *op) 705 { 706 struct cqspi_st *cqspi = f_pdata->cqspi; 707 void __iomem *reg_base = cqspi->iobase; 708 unsigned int dummy_clk = 0; 709 unsigned int reg; 710 int ret; 711 u8 opcode; 712 713 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB, 714 f_pdata->dtr); 715 if (ret) 716 return ret; 717 718 if (f_pdata->dtr) 719 opcode = op->cmd.opcode >> 8; 720 else 721 opcode = op->cmd.opcode; 722 723 reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB; 724 reg |= cqspi_calc_rdreg(f_pdata); 725 726 /* Setup dummy clock cycles */ 727 dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr); 728 729 if (dummy_clk > CQSPI_DUMMY_CLKS_MAX) 730 return -EOPNOTSUPP; 731 732 if (dummy_clk) 733 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK) 734 << CQSPI_REG_RD_INSTR_DUMMY_LSB; 735 736 writel(reg, reg_base + CQSPI_REG_RD_INSTR); 737 738 /* Set address width */ 739 reg = readl(reg_base + CQSPI_REG_SIZE); 740 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK; 741 reg |= (op->addr.nbytes - 1); 742 writel(reg, reg_base + CQSPI_REG_SIZE); 743 return 0; 744 } 745 746 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata, 747 u8 *rxbuf, loff_t from_addr, 748 const size_t n_rx) 749 { 750 struct cqspi_st *cqspi = f_pdata->cqspi; 751 struct device *dev = &cqspi->pdev->dev; 752 void __iomem *reg_base = cqspi->iobase; 753 void __iomem *ahb_base = cqspi->ahb_base; 754 unsigned int remaining = n_rx; 755 unsigned int mod_bytes = n_rx % 4; 756 unsigned int bytes_to_read = 0; 757 u8 *rxbuf_end = rxbuf + n_rx; 758 int ret = 0; 759 760 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR); 761 writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES); 762 763 /* Clear all interrupts. */ 764 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS); 765 766 writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK); 767 768 reinit_completion(&cqspi->transfer_complete); 769 writel(CQSPI_REG_INDIRECTRD_START_MASK, 770 reg_base + CQSPI_REG_INDIRECTRD); 771 772 while (remaining > 0) { 773 if (!wait_for_completion_timeout(&cqspi->transfer_complete, 774 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) 775 ret = -ETIMEDOUT; 776 777 bytes_to_read = cqspi_get_rd_sram_level(cqspi); 778 779 if (ret && bytes_to_read == 0) { 780 dev_err(dev, "Indirect read timeout, no bytes\n"); 781 goto failrd; 782 } 783 784 while (bytes_to_read != 0) { 785 unsigned int word_remain = round_down(remaining, 4); 786 787 bytes_to_read *= cqspi->fifo_width; 788 bytes_to_read = bytes_to_read > remaining ? 789 remaining : bytes_to_read; 790 bytes_to_read = round_down(bytes_to_read, 4); 791 /* Read 4 byte word chunks then single bytes */ 792 if (bytes_to_read) { 793 ioread32_rep(ahb_base, rxbuf, 794 (bytes_to_read / 4)); 795 } else if (!word_remain && mod_bytes) { 796 unsigned int temp = ioread32(ahb_base); 797 798 bytes_to_read = mod_bytes; 799 memcpy(rxbuf, &temp, min((unsigned int) 800 (rxbuf_end - rxbuf), 801 bytes_to_read)); 802 } 803 rxbuf += bytes_to_read; 804 remaining -= bytes_to_read; 805 bytes_to_read = cqspi_get_rd_sram_level(cqspi); 806 } 807 808 if (remaining > 0) 809 reinit_completion(&cqspi->transfer_complete); 810 } 811 812 /* Check indirect done status */ 813 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD, 814 CQSPI_REG_INDIRECTRD_DONE_MASK, 0); 815 if (ret) { 816 dev_err(dev, "Indirect read completion error (%i)\n", ret); 817 goto failrd; 818 } 819 820 /* Disable interrupt */ 821 writel(0, reg_base + CQSPI_REG_IRQMASK); 822 823 /* Clear indirect completion status */ 824 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD); 825 826 return 0; 827 828 failrd: 829 /* Disable interrupt */ 830 writel(0, reg_base + CQSPI_REG_IRQMASK); 831 832 /* Cancel the indirect read */ 833 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK, 834 reg_base + CQSPI_REG_INDIRECTRD); 835 return ret; 836 } 837 838 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata, 839 u_char *rxbuf, loff_t from_addr, 840 size_t n_rx) 841 { 842 struct cqspi_st *cqspi = f_pdata->cqspi; 843 struct device *dev = &cqspi->pdev->dev; 844 void __iomem *reg_base = cqspi->iobase; 845 u32 reg, bytes_to_dma; 846 loff_t addr = from_addr; 847 void *buf = rxbuf; 848 dma_addr_t dma_addr; 849 u8 bytes_rem; 850 int ret = 0; 851 852 bytes_rem = n_rx % 4; 853 bytes_to_dma = (n_rx - bytes_rem); 854 855 if (!bytes_to_dma) 856 goto nondmard; 857 858 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA); 859 if (ret) 860 return ret; 861 862 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); 863 reg |= CQSPI_REG_CONFIG_DMA_MASK; 864 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); 865 866 dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE); 867 if (dma_mapping_error(dev, dma_addr)) { 868 dev_err(dev, "dma mapping failed\n"); 869 return -ENOMEM; 870 } 871 872 writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR); 873 writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES); 874 writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL, 875 reg_base + CQSPI_REG_INDTRIG_ADDRRANGE); 876 877 /* Clear all interrupts. */ 878 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS); 879 880 /* Enable DMA done interrupt */ 881 writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK, 882 reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN); 883 884 /* Default DMA periph configuration */ 885 writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA); 886 887 /* Configure DMA Dst address */ 888 writel(lower_32_bits(dma_addr), 889 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR); 890 writel(upper_32_bits(dma_addr), 891 reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB); 892 893 /* Configure DMA Src address */ 894 writel(cqspi->trigger_address, reg_base + 895 CQSPI_REG_VERSAL_DMA_SRC_ADDR); 896 897 /* Set DMA destination size */ 898 writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE); 899 900 /* Set DMA destination control */ 901 writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL, 902 reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL); 903 904 writel(CQSPI_REG_INDIRECTRD_START_MASK, 905 reg_base + CQSPI_REG_INDIRECTRD); 906 907 reinit_completion(&cqspi->transfer_complete); 908 909 if (!wait_for_completion_timeout(&cqspi->transfer_complete, 910 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) { 911 ret = -ETIMEDOUT; 912 goto failrd; 913 } 914 915 /* Disable DMA interrupt */ 916 writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS); 917 918 /* Clear indirect completion status */ 919 writel(CQSPI_REG_INDIRECTRD_DONE_MASK, 920 cqspi->iobase + CQSPI_REG_INDIRECTRD); 921 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE); 922 923 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); 924 reg &= ~CQSPI_REG_CONFIG_DMA_MASK; 925 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); 926 927 ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, 928 PM_OSPI_MUX_SEL_LINEAR); 929 if (ret) 930 return ret; 931 932 nondmard: 933 if (bytes_rem) { 934 addr += bytes_to_dma; 935 buf += bytes_to_dma; 936 ret = cqspi_indirect_read_execute(f_pdata, buf, addr, 937 bytes_rem); 938 if (ret) 939 return ret; 940 } 941 942 return 0; 943 944 failrd: 945 /* Disable DMA interrupt */ 946 writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS); 947 948 /* Cancel the indirect read */ 949 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK, 950 reg_base + CQSPI_REG_INDIRECTRD); 951 952 dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE); 953 954 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); 955 reg &= ~CQSPI_REG_CONFIG_DMA_MASK; 956 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); 957 958 zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR); 959 960 return ret; 961 } 962 963 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata, 964 const struct spi_mem_op *op) 965 { 966 unsigned int reg; 967 int ret; 968 struct cqspi_st *cqspi = f_pdata->cqspi; 969 void __iomem *reg_base = cqspi->iobase; 970 u8 opcode; 971 972 ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB, 973 f_pdata->dtr); 974 if (ret) 975 return ret; 976 977 if (f_pdata->dtr) 978 opcode = op->cmd.opcode >> 8; 979 else 980 opcode = op->cmd.opcode; 981 982 /* Set opcode. */ 983 reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB; 984 reg |= f_pdata->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB; 985 reg |= f_pdata->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB; 986 writel(reg, reg_base + CQSPI_REG_WR_INSTR); 987 reg = cqspi_calc_rdreg(f_pdata); 988 writel(reg, reg_base + CQSPI_REG_RD_INSTR); 989 990 /* 991 * SPI NAND flashes require the address of the status register to be 992 * passed in the Read SR command. Also, some SPI NOR flashes like the 993 * cypress Semper flash expect a 4-byte dummy address in the Read SR 994 * command in DTR mode. 995 * 996 * But this controller does not support address phase in the Read SR 997 * command when doing auto-HW polling. So, disable write completion 998 * polling on the controller's side. spinand and spi-nor will take 999 * care of polling the status register. 1000 */ 1001 if (cqspi->wr_completion) { 1002 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL); 1003 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL; 1004 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL); 1005 } 1006 1007 reg = readl(reg_base + CQSPI_REG_SIZE); 1008 reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK; 1009 reg |= (op->addr.nbytes - 1); 1010 writel(reg, reg_base + CQSPI_REG_SIZE); 1011 return 0; 1012 } 1013 1014 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata, 1015 loff_t to_addr, const u8 *txbuf, 1016 const size_t n_tx) 1017 { 1018 struct cqspi_st *cqspi = f_pdata->cqspi; 1019 struct device *dev = &cqspi->pdev->dev; 1020 void __iomem *reg_base = cqspi->iobase; 1021 unsigned int remaining = n_tx; 1022 unsigned int write_bytes; 1023 int ret; 1024 1025 writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR); 1026 writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES); 1027 1028 /* Clear all interrupts. */ 1029 writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS); 1030 1031 writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK); 1032 1033 reinit_completion(&cqspi->transfer_complete); 1034 writel(CQSPI_REG_INDIRECTWR_START_MASK, 1035 reg_base + CQSPI_REG_INDIRECTWR); 1036 /* 1037 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access 1038 * Controller programming sequence, couple of cycles of 1039 * QSPI_REF_CLK delay is required for the above bit to 1040 * be internally synchronized by the QSPI module. Provide 5 1041 * cycles of delay. 1042 */ 1043 if (cqspi->wr_delay) 1044 ndelay(cqspi->wr_delay); 1045 1046 while (remaining > 0) { 1047 size_t write_words, mod_bytes; 1048 1049 write_bytes = remaining; 1050 write_words = write_bytes / 4; 1051 mod_bytes = write_bytes % 4; 1052 /* Write 4 bytes at a time then single bytes. */ 1053 if (write_words) { 1054 iowrite32_rep(cqspi->ahb_base, txbuf, write_words); 1055 txbuf += (write_words * 4); 1056 } 1057 if (mod_bytes) { 1058 unsigned int temp = 0xFFFFFFFF; 1059 1060 memcpy(&temp, txbuf, mod_bytes); 1061 iowrite32(temp, cqspi->ahb_base); 1062 txbuf += mod_bytes; 1063 } 1064 1065 if (!wait_for_completion_timeout(&cqspi->transfer_complete, 1066 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) { 1067 dev_err(dev, "Indirect write timeout\n"); 1068 ret = -ETIMEDOUT; 1069 goto failwr; 1070 } 1071 1072 remaining -= write_bytes; 1073 1074 if (remaining > 0) 1075 reinit_completion(&cqspi->transfer_complete); 1076 } 1077 1078 /* Check indirect done status */ 1079 ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR, 1080 CQSPI_REG_INDIRECTWR_DONE_MASK, 0); 1081 if (ret) { 1082 dev_err(dev, "Indirect write completion error (%i)\n", ret); 1083 goto failwr; 1084 } 1085 1086 /* Disable interrupt. */ 1087 writel(0, reg_base + CQSPI_REG_IRQMASK); 1088 1089 /* Clear indirect completion status */ 1090 writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR); 1091 1092 cqspi_wait_idle(cqspi); 1093 1094 return 0; 1095 1096 failwr: 1097 /* Disable interrupt. */ 1098 writel(0, reg_base + CQSPI_REG_IRQMASK); 1099 1100 /* Cancel the indirect write */ 1101 writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK, 1102 reg_base + CQSPI_REG_INDIRECTWR); 1103 return ret; 1104 } 1105 1106 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata) 1107 { 1108 struct cqspi_st *cqspi = f_pdata->cqspi; 1109 void __iomem *reg_base = cqspi->iobase; 1110 unsigned int chip_select = f_pdata->cs; 1111 unsigned int reg; 1112 1113 reg = readl(reg_base + CQSPI_REG_CONFIG); 1114 if (cqspi->is_decoded_cs) { 1115 reg |= CQSPI_REG_CONFIG_DECODE_MASK; 1116 } else { 1117 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK; 1118 1119 /* Convert CS if without decoder. 1120 * CS0 to 4b'1110 1121 * CS1 to 4b'1101 1122 * CS2 to 4b'1011 1123 * CS3 to 4b'0111 1124 */ 1125 chip_select = 0xF & ~(1 << chip_select); 1126 } 1127 1128 reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK 1129 << CQSPI_REG_CONFIG_CHIPSELECT_LSB); 1130 reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK) 1131 << CQSPI_REG_CONFIG_CHIPSELECT_LSB; 1132 writel(reg, reg_base + CQSPI_REG_CONFIG); 1133 } 1134 1135 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz, 1136 const unsigned int ns_val) 1137 { 1138 unsigned int ticks; 1139 1140 ticks = ref_clk_hz / 1000; /* kHz */ 1141 ticks = DIV_ROUND_UP(ticks * ns_val, 1000000); 1142 1143 return ticks; 1144 } 1145 1146 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata) 1147 { 1148 struct cqspi_st *cqspi = f_pdata->cqspi; 1149 void __iomem *iobase = cqspi->iobase; 1150 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz; 1151 unsigned int tshsl, tchsh, tslch, tsd2d; 1152 unsigned int reg; 1153 unsigned int tsclk; 1154 1155 /* calculate the number of ref ticks for one sclk tick */ 1156 tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk); 1157 1158 tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns); 1159 /* this particular value must be at least one sclk */ 1160 if (tshsl < tsclk) 1161 tshsl = tsclk; 1162 1163 tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns); 1164 tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns); 1165 tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns); 1166 1167 reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK) 1168 << CQSPI_REG_DELAY_TSHSL_LSB; 1169 reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK) 1170 << CQSPI_REG_DELAY_TCHSH_LSB; 1171 reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK) 1172 << CQSPI_REG_DELAY_TSLCH_LSB; 1173 reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK) 1174 << CQSPI_REG_DELAY_TSD2D_LSB; 1175 writel(reg, iobase + CQSPI_REG_DELAY); 1176 } 1177 1178 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi) 1179 { 1180 const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz; 1181 void __iomem *reg_base = cqspi->iobase; 1182 u32 reg, div; 1183 1184 /* Recalculate the baudrate divisor based on QSPI specification. */ 1185 div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1; 1186 1187 reg = readl(reg_base + CQSPI_REG_CONFIG); 1188 reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB); 1189 reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB; 1190 writel(reg, reg_base + CQSPI_REG_CONFIG); 1191 } 1192 1193 static void cqspi_readdata_capture(struct cqspi_st *cqspi, 1194 const bool bypass, 1195 const unsigned int delay) 1196 { 1197 void __iomem *reg_base = cqspi->iobase; 1198 unsigned int reg; 1199 1200 reg = readl(reg_base + CQSPI_REG_READCAPTURE); 1201 1202 if (bypass) 1203 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB); 1204 else 1205 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB); 1206 1207 reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK 1208 << CQSPI_REG_READCAPTURE_DELAY_LSB); 1209 1210 reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK) 1211 << CQSPI_REG_READCAPTURE_DELAY_LSB; 1212 1213 writel(reg, reg_base + CQSPI_REG_READCAPTURE); 1214 } 1215 1216 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable) 1217 { 1218 void __iomem *reg_base = cqspi->iobase; 1219 unsigned int reg; 1220 1221 reg = readl(reg_base + CQSPI_REG_CONFIG); 1222 1223 if (enable) 1224 reg |= CQSPI_REG_CONFIG_ENABLE_MASK; 1225 else 1226 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK; 1227 1228 writel(reg, reg_base + CQSPI_REG_CONFIG); 1229 } 1230 1231 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata, 1232 unsigned long sclk) 1233 { 1234 struct cqspi_st *cqspi = f_pdata->cqspi; 1235 int switch_cs = (cqspi->current_cs != f_pdata->cs); 1236 int switch_ck = (cqspi->sclk != sclk); 1237 1238 if (switch_cs || switch_ck) 1239 cqspi_controller_enable(cqspi, 0); 1240 1241 /* Switch chip select. */ 1242 if (switch_cs) { 1243 cqspi->current_cs = f_pdata->cs; 1244 cqspi_chipselect(f_pdata); 1245 } 1246 1247 /* Setup baudrate divisor and delays */ 1248 if (switch_ck) { 1249 cqspi->sclk = sclk; 1250 cqspi_config_baudrate_div(cqspi); 1251 cqspi_delay(f_pdata); 1252 cqspi_readdata_capture(cqspi, !cqspi->rclk_en, 1253 f_pdata->read_delay); 1254 } 1255 1256 if (switch_cs || switch_ck) 1257 cqspi_controller_enable(cqspi, 1); 1258 } 1259 1260 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata, 1261 const struct spi_mem_op *op) 1262 { 1263 struct cqspi_st *cqspi = f_pdata->cqspi; 1264 loff_t to = op->addr.val; 1265 size_t len = op->data.nbytes; 1266 const u_char *buf = op->data.buf.out; 1267 int ret; 1268 1269 ret = cqspi_set_protocol(f_pdata, op); 1270 if (ret) 1271 return ret; 1272 1273 ret = cqspi_write_setup(f_pdata, op); 1274 if (ret) 1275 return ret; 1276 1277 /* 1278 * Some flashes like the Cypress Semper flash expect a dummy 4-byte 1279 * address (all 0s) with the read status register command in DTR mode. 1280 * But this controller does not support sending dummy address bytes to 1281 * the flash when it is polling the write completion register in DTR 1282 * mode. So, we can not use direct mode when in DTR mode for writing 1283 * data. 1284 */ 1285 if (!f_pdata->dtr && cqspi->use_direct_mode && 1286 ((to + len) <= cqspi->ahb_size)) { 1287 memcpy_toio(cqspi->ahb_base + to, buf, len); 1288 return cqspi_wait_idle(cqspi); 1289 } 1290 1291 return cqspi_indirect_write_execute(f_pdata, to, buf, len); 1292 } 1293 1294 static void cqspi_rx_dma_callback(void *param) 1295 { 1296 struct cqspi_st *cqspi = param; 1297 1298 complete(&cqspi->rx_dma_complete); 1299 } 1300 1301 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata, 1302 u_char *buf, loff_t from, size_t len) 1303 { 1304 struct cqspi_st *cqspi = f_pdata->cqspi; 1305 struct device *dev = &cqspi->pdev->dev; 1306 enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; 1307 dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from; 1308 int ret = 0; 1309 struct dma_async_tx_descriptor *tx; 1310 dma_cookie_t cookie; 1311 dma_addr_t dma_dst; 1312 struct device *ddev; 1313 1314 if (!cqspi->rx_chan || !virt_addr_valid(buf)) { 1315 memcpy_fromio(buf, cqspi->ahb_base + from, len); 1316 return 0; 1317 } 1318 1319 ddev = cqspi->rx_chan->device->dev; 1320 dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE); 1321 if (dma_mapping_error(ddev, dma_dst)) { 1322 dev_err(dev, "dma mapping failed\n"); 1323 return -ENOMEM; 1324 } 1325 tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src, 1326 len, flags); 1327 if (!tx) { 1328 dev_err(dev, "device_prep_dma_memcpy error\n"); 1329 ret = -EIO; 1330 goto err_unmap; 1331 } 1332 1333 tx->callback = cqspi_rx_dma_callback; 1334 tx->callback_param = cqspi; 1335 cookie = tx->tx_submit(tx); 1336 reinit_completion(&cqspi->rx_dma_complete); 1337 1338 ret = dma_submit_error(cookie); 1339 if (ret) { 1340 dev_err(dev, "dma_submit_error %d\n", cookie); 1341 ret = -EIO; 1342 goto err_unmap; 1343 } 1344 1345 dma_async_issue_pending(cqspi->rx_chan); 1346 if (!wait_for_completion_timeout(&cqspi->rx_dma_complete, 1347 msecs_to_jiffies(max_t(size_t, len, 500)))) { 1348 dmaengine_terminate_sync(cqspi->rx_chan); 1349 dev_err(dev, "DMA wait_for_completion_timeout\n"); 1350 ret = -ETIMEDOUT; 1351 goto err_unmap; 1352 } 1353 1354 err_unmap: 1355 dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE); 1356 1357 return ret; 1358 } 1359 1360 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata, 1361 const struct spi_mem_op *op) 1362 { 1363 struct cqspi_st *cqspi = f_pdata->cqspi; 1364 struct device *dev = &cqspi->pdev->dev; 1365 const struct cqspi_driver_platdata *ddata; 1366 loff_t from = op->addr.val; 1367 size_t len = op->data.nbytes; 1368 u_char *buf = op->data.buf.in; 1369 u64 dma_align = (u64)(uintptr_t)buf; 1370 int ret; 1371 1372 ddata = of_device_get_match_data(dev); 1373 ret = cqspi_set_protocol(f_pdata, op); 1374 if (ret) 1375 return ret; 1376 1377 ret = cqspi_read_setup(f_pdata, op); 1378 if (ret) 1379 return ret; 1380 1381 if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size)) 1382 return cqspi_direct_read_execute(f_pdata, buf, from, len); 1383 1384 if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma && 1385 virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0)) 1386 return ddata->indirect_read_dma(f_pdata, buf, from, len); 1387 1388 return cqspi_indirect_read_execute(f_pdata, buf, from, len); 1389 } 1390 1391 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op) 1392 { 1393 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master); 1394 struct cqspi_flash_pdata *f_pdata; 1395 1396 f_pdata = &cqspi->f_pdata[mem->spi->chip_select]; 1397 cqspi_configure(f_pdata, mem->spi->max_speed_hz); 1398 1399 if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) { 1400 if (!op->addr.nbytes) 1401 return cqspi_command_read(f_pdata, op); 1402 1403 return cqspi_read(f_pdata, op); 1404 } 1405 1406 if (!op->addr.nbytes || !op->data.buf.out) 1407 return cqspi_command_write(f_pdata, op); 1408 1409 return cqspi_write(f_pdata, op); 1410 } 1411 1412 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) 1413 { 1414 int ret; 1415 1416 ret = cqspi_mem_process(mem, op); 1417 if (ret) 1418 dev_err(&mem->spi->dev, "operation failed with %d\n", ret); 1419 1420 return ret; 1421 } 1422 1423 static bool cqspi_supports_mem_op(struct spi_mem *mem, 1424 const struct spi_mem_op *op) 1425 { 1426 bool all_true, all_false; 1427 1428 /* 1429 * op->dummy.dtr is required for converting nbytes into ncycles. 1430 * Also, don't check the dtr field of the op phase having zero nbytes. 1431 */ 1432 all_true = op->cmd.dtr && 1433 (!op->addr.nbytes || op->addr.dtr) && 1434 (!op->dummy.nbytes || op->dummy.dtr) && 1435 (!op->data.nbytes || op->data.dtr); 1436 1437 all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr && 1438 !op->data.dtr; 1439 1440 /* Mixed DTR modes not supported. */ 1441 if (!(all_true || all_false)) 1442 return false; 1443 1444 if (all_true) 1445 return spi_mem_dtr_supports_op(mem, op); 1446 else 1447 return spi_mem_default_supports_op(mem, op); 1448 } 1449 1450 static int cqspi_of_get_flash_pdata(struct platform_device *pdev, 1451 struct cqspi_flash_pdata *f_pdata, 1452 struct device_node *np) 1453 { 1454 if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) { 1455 dev_err(&pdev->dev, "couldn't determine read-delay\n"); 1456 return -ENXIO; 1457 } 1458 1459 if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) { 1460 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n"); 1461 return -ENXIO; 1462 } 1463 1464 if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) { 1465 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n"); 1466 return -ENXIO; 1467 } 1468 1469 if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) { 1470 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n"); 1471 return -ENXIO; 1472 } 1473 1474 if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) { 1475 dev_err(&pdev->dev, "couldn't determine tslch-ns\n"); 1476 return -ENXIO; 1477 } 1478 1479 if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) { 1480 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n"); 1481 return -ENXIO; 1482 } 1483 1484 return 0; 1485 } 1486 1487 static int cqspi_of_get_pdata(struct cqspi_st *cqspi) 1488 { 1489 struct device *dev = &cqspi->pdev->dev; 1490 struct device_node *np = dev->of_node; 1491 u32 id[2]; 1492 1493 cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs"); 1494 1495 if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) { 1496 dev_err(dev, "couldn't determine fifo-depth\n"); 1497 return -ENXIO; 1498 } 1499 1500 if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) { 1501 dev_err(dev, "couldn't determine fifo-width\n"); 1502 return -ENXIO; 1503 } 1504 1505 if (of_property_read_u32(np, "cdns,trigger-address", 1506 &cqspi->trigger_address)) { 1507 dev_err(dev, "couldn't determine trigger-address\n"); 1508 return -ENXIO; 1509 } 1510 1511 if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect)) 1512 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT; 1513 1514 cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en"); 1515 1516 if (!of_property_read_u32_array(np, "power-domains", id, 1517 ARRAY_SIZE(id))) 1518 cqspi->pd_dev_id = id[1]; 1519 1520 return 0; 1521 } 1522 1523 static void cqspi_controller_init(struct cqspi_st *cqspi) 1524 { 1525 u32 reg; 1526 1527 cqspi_controller_enable(cqspi, 0); 1528 1529 /* Configure the remap address register, no remap */ 1530 writel(0, cqspi->iobase + CQSPI_REG_REMAP); 1531 1532 /* Disable all interrupts. */ 1533 writel(0, cqspi->iobase + CQSPI_REG_IRQMASK); 1534 1535 /* Configure the SRAM split to 1:1 . */ 1536 writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION); 1537 1538 /* Load indirect trigger address. */ 1539 writel(cqspi->trigger_address, 1540 cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER); 1541 1542 /* Program read watermark -- 1/2 of the FIFO. */ 1543 writel(cqspi->fifo_depth * cqspi->fifo_width / 2, 1544 cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK); 1545 /* Program write watermark -- 1/8 of the FIFO. */ 1546 writel(cqspi->fifo_depth * cqspi->fifo_width / 8, 1547 cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK); 1548 1549 /* Disable direct access controller */ 1550 if (!cqspi->use_direct_mode) { 1551 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); 1552 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL; 1553 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); 1554 } 1555 1556 /* Enable DMA interface */ 1557 if (cqspi->use_dma_read) { 1558 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG); 1559 reg |= CQSPI_REG_CONFIG_DMA_MASK; 1560 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG); 1561 } 1562 1563 cqspi_controller_enable(cqspi, 1); 1564 } 1565 1566 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi) 1567 { 1568 dma_cap_mask_t mask; 1569 1570 dma_cap_zero(mask); 1571 dma_cap_set(DMA_MEMCPY, mask); 1572 1573 cqspi->rx_chan = dma_request_chan_by_mask(&mask); 1574 if (IS_ERR(cqspi->rx_chan)) { 1575 int ret = PTR_ERR(cqspi->rx_chan); 1576 cqspi->rx_chan = NULL; 1577 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n"); 1578 } 1579 init_completion(&cqspi->rx_dma_complete); 1580 1581 return 0; 1582 } 1583 1584 static const char *cqspi_get_name(struct spi_mem *mem) 1585 { 1586 struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master); 1587 struct device *dev = &cqspi->pdev->dev; 1588 1589 return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select); 1590 } 1591 1592 static const struct spi_controller_mem_ops cqspi_mem_ops = { 1593 .exec_op = cqspi_exec_mem_op, 1594 .get_name = cqspi_get_name, 1595 .supports_op = cqspi_supports_mem_op, 1596 }; 1597 1598 static int cqspi_setup_flash(struct cqspi_st *cqspi) 1599 { 1600 struct platform_device *pdev = cqspi->pdev; 1601 struct device *dev = &pdev->dev; 1602 struct device_node *np = dev->of_node; 1603 struct cqspi_flash_pdata *f_pdata; 1604 unsigned int cs; 1605 int ret; 1606 1607 /* Get flash device data */ 1608 for_each_available_child_of_node(dev->of_node, np) { 1609 ret = of_property_read_u32(np, "reg", &cs); 1610 if (ret) { 1611 dev_err(dev, "Couldn't determine chip select.\n"); 1612 of_node_put(np); 1613 return ret; 1614 } 1615 1616 if (cs >= CQSPI_MAX_CHIPSELECT) { 1617 dev_err(dev, "Chip select %d out of range.\n", cs); 1618 of_node_put(np); 1619 return -EINVAL; 1620 } 1621 1622 f_pdata = &cqspi->f_pdata[cs]; 1623 f_pdata->cqspi = cqspi; 1624 f_pdata->cs = cs; 1625 1626 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np); 1627 if (ret) { 1628 of_node_put(np); 1629 return ret; 1630 } 1631 } 1632 1633 return 0; 1634 } 1635 1636 static int cqspi_probe(struct platform_device *pdev) 1637 { 1638 const struct cqspi_driver_platdata *ddata; 1639 struct reset_control *rstc, *rstc_ocp; 1640 struct device *dev = &pdev->dev; 1641 struct spi_master *master; 1642 struct resource *res_ahb; 1643 struct cqspi_st *cqspi; 1644 struct resource *res; 1645 int ret; 1646 int irq; 1647 1648 master = spi_alloc_master(&pdev->dev, sizeof(*cqspi)); 1649 if (!master) { 1650 dev_err(&pdev->dev, "spi_alloc_master failed\n"); 1651 return -ENOMEM; 1652 } 1653 master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL; 1654 master->mem_ops = &cqspi_mem_ops; 1655 master->dev.of_node = pdev->dev.of_node; 1656 1657 cqspi = spi_master_get_devdata(master); 1658 1659 cqspi->pdev = pdev; 1660 platform_set_drvdata(pdev, cqspi); 1661 1662 /* Obtain configuration from OF. */ 1663 ret = cqspi_of_get_pdata(cqspi); 1664 if (ret) { 1665 dev_err(dev, "Cannot get mandatory OF data.\n"); 1666 ret = -ENODEV; 1667 goto probe_master_put; 1668 } 1669 1670 /* Obtain QSPI clock. */ 1671 cqspi->clk = devm_clk_get(dev, NULL); 1672 if (IS_ERR(cqspi->clk)) { 1673 dev_err(dev, "Cannot claim QSPI clock.\n"); 1674 ret = PTR_ERR(cqspi->clk); 1675 goto probe_master_put; 1676 } 1677 1678 /* Obtain and remap controller address. */ 1679 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1680 cqspi->iobase = devm_ioremap_resource(dev, res); 1681 if (IS_ERR(cqspi->iobase)) { 1682 dev_err(dev, "Cannot remap controller address.\n"); 1683 ret = PTR_ERR(cqspi->iobase); 1684 goto probe_master_put; 1685 } 1686 1687 /* Obtain and remap AHB address. */ 1688 res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1689 cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb); 1690 if (IS_ERR(cqspi->ahb_base)) { 1691 dev_err(dev, "Cannot remap AHB address.\n"); 1692 ret = PTR_ERR(cqspi->ahb_base); 1693 goto probe_master_put; 1694 } 1695 cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start; 1696 cqspi->ahb_size = resource_size(res_ahb); 1697 1698 init_completion(&cqspi->transfer_complete); 1699 1700 /* Obtain IRQ line. */ 1701 irq = platform_get_irq(pdev, 0); 1702 if (irq < 0) { 1703 ret = -ENXIO; 1704 goto probe_master_put; 1705 } 1706 1707 pm_runtime_enable(dev); 1708 ret = pm_runtime_get_sync(dev); 1709 if (ret < 0) { 1710 pm_runtime_put_noidle(dev); 1711 goto probe_master_put; 1712 } 1713 1714 ret = clk_prepare_enable(cqspi->clk); 1715 if (ret) { 1716 dev_err(dev, "Cannot enable QSPI clock.\n"); 1717 goto probe_clk_failed; 1718 } 1719 1720 /* Obtain QSPI reset control */ 1721 rstc = devm_reset_control_get_optional_exclusive(dev, "qspi"); 1722 if (IS_ERR(rstc)) { 1723 ret = PTR_ERR(rstc); 1724 dev_err(dev, "Cannot get QSPI reset.\n"); 1725 goto probe_reset_failed; 1726 } 1727 1728 rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp"); 1729 if (IS_ERR(rstc_ocp)) { 1730 ret = PTR_ERR(rstc_ocp); 1731 dev_err(dev, "Cannot get QSPI OCP reset.\n"); 1732 goto probe_reset_failed; 1733 } 1734 1735 reset_control_assert(rstc); 1736 reset_control_deassert(rstc); 1737 1738 reset_control_assert(rstc_ocp); 1739 reset_control_deassert(rstc_ocp); 1740 1741 cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk); 1742 master->max_speed_hz = cqspi->master_ref_clk_hz; 1743 1744 /* write completion is supported by default */ 1745 cqspi->wr_completion = true; 1746 1747 ddata = of_device_get_match_data(dev); 1748 if (ddata) { 1749 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY) 1750 cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC, 1751 cqspi->master_ref_clk_hz); 1752 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL) 1753 master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL; 1754 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) 1755 cqspi->use_direct_mode = true; 1756 if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA) 1757 cqspi->use_dma_read = true; 1758 if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION) 1759 cqspi->wr_completion = false; 1760 1761 if (of_device_is_compatible(pdev->dev.of_node, 1762 "xlnx,versal-ospi-1.0")) 1763 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)); 1764 } 1765 1766 ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0, 1767 pdev->name, cqspi); 1768 if (ret) { 1769 dev_err(dev, "Cannot request IRQ.\n"); 1770 goto probe_reset_failed; 1771 } 1772 1773 cqspi_wait_idle(cqspi); 1774 cqspi_controller_init(cqspi); 1775 cqspi->current_cs = -1; 1776 cqspi->sclk = 0; 1777 1778 master->num_chipselect = cqspi->num_chipselect; 1779 1780 ret = cqspi_setup_flash(cqspi); 1781 if (ret) { 1782 dev_err(dev, "failed to setup flash parameters %d\n", ret); 1783 goto probe_setup_failed; 1784 } 1785 1786 if (cqspi->use_direct_mode) { 1787 ret = cqspi_request_mmap_dma(cqspi); 1788 if (ret == -EPROBE_DEFER) 1789 goto probe_setup_failed; 1790 } 1791 1792 ret = devm_spi_register_master(dev, master); 1793 if (ret) { 1794 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret); 1795 goto probe_setup_failed; 1796 } 1797 1798 return 0; 1799 probe_setup_failed: 1800 cqspi_controller_enable(cqspi, 0); 1801 probe_reset_failed: 1802 clk_disable_unprepare(cqspi->clk); 1803 probe_clk_failed: 1804 pm_runtime_put_sync(dev); 1805 pm_runtime_disable(dev); 1806 probe_master_put: 1807 spi_master_put(master); 1808 return ret; 1809 } 1810 1811 static int cqspi_remove(struct platform_device *pdev) 1812 { 1813 struct cqspi_st *cqspi = platform_get_drvdata(pdev); 1814 1815 cqspi_controller_enable(cqspi, 0); 1816 1817 if (cqspi->rx_chan) 1818 dma_release_channel(cqspi->rx_chan); 1819 1820 clk_disable_unprepare(cqspi->clk); 1821 1822 pm_runtime_put_sync(&pdev->dev); 1823 pm_runtime_disable(&pdev->dev); 1824 1825 return 0; 1826 } 1827 1828 #ifdef CONFIG_PM_SLEEP 1829 static int cqspi_suspend(struct device *dev) 1830 { 1831 struct cqspi_st *cqspi = dev_get_drvdata(dev); 1832 1833 cqspi_controller_enable(cqspi, 0); 1834 return 0; 1835 } 1836 1837 static int cqspi_resume(struct device *dev) 1838 { 1839 struct cqspi_st *cqspi = dev_get_drvdata(dev); 1840 1841 cqspi_controller_enable(cqspi, 1); 1842 return 0; 1843 } 1844 1845 static const struct dev_pm_ops cqspi__dev_pm_ops = { 1846 .suspend = cqspi_suspend, 1847 .resume = cqspi_resume, 1848 }; 1849 1850 #define CQSPI_DEV_PM_OPS (&cqspi__dev_pm_ops) 1851 #else 1852 #define CQSPI_DEV_PM_OPS NULL 1853 #endif 1854 1855 static const struct cqspi_driver_platdata cdns_qspi = { 1856 .quirks = CQSPI_DISABLE_DAC_MODE, 1857 }; 1858 1859 static const struct cqspi_driver_platdata k2g_qspi = { 1860 .quirks = CQSPI_NEEDS_WR_DELAY, 1861 }; 1862 1863 static const struct cqspi_driver_platdata am654_ospi = { 1864 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL, 1865 .quirks = CQSPI_NEEDS_WR_DELAY, 1866 }; 1867 1868 static const struct cqspi_driver_platdata intel_lgm_qspi = { 1869 .quirks = CQSPI_DISABLE_DAC_MODE, 1870 }; 1871 1872 static const struct cqspi_driver_platdata socfpga_qspi = { 1873 .quirks = CQSPI_NO_SUPPORT_WR_COMPLETION, 1874 }; 1875 1876 static const struct cqspi_driver_platdata versal_ospi = { 1877 .hwcaps_mask = CQSPI_SUPPORTS_OCTAL, 1878 .quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA, 1879 .indirect_read_dma = cqspi_versal_indirect_read_dma, 1880 .get_dma_status = cqspi_get_versal_dma_status, 1881 }; 1882 1883 static const struct of_device_id cqspi_dt_ids[] = { 1884 { 1885 .compatible = "cdns,qspi-nor", 1886 .data = &cdns_qspi, 1887 }, 1888 { 1889 .compatible = "ti,k2g-qspi", 1890 .data = &k2g_qspi, 1891 }, 1892 { 1893 .compatible = "ti,am654-ospi", 1894 .data = &am654_ospi, 1895 }, 1896 { 1897 .compatible = "intel,lgm-qspi", 1898 .data = &intel_lgm_qspi, 1899 }, 1900 { 1901 .compatible = "xlnx,versal-ospi-1.0", 1902 .data = (void *)&versal_ospi, 1903 }, 1904 { 1905 .compatible = "intel,socfpga-qspi", 1906 .data = (void *)&socfpga_qspi, 1907 }, 1908 { /* end of table */ } 1909 }; 1910 1911 MODULE_DEVICE_TABLE(of, cqspi_dt_ids); 1912 1913 static struct platform_driver cqspi_platform_driver = { 1914 .probe = cqspi_probe, 1915 .remove = cqspi_remove, 1916 .driver = { 1917 .name = CQSPI_NAME, 1918 .pm = CQSPI_DEV_PM_OPS, 1919 .of_match_table = cqspi_dt_ids, 1920 }, 1921 }; 1922 1923 module_platform_driver(cqspi_platform_driver); 1924 1925 MODULE_DESCRIPTION("Cadence QSPI Controller Driver"); 1926 MODULE_LICENSE("GPL v2"); 1927 MODULE_ALIAS("platform:" CQSPI_NAME); 1928 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>"); 1929 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>"); 1930 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>"); 1931 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>"); 1932 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>"); 1933