1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/of_device.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi-mem.h>
31 #include <linux/timer.h>
32 
33 #define CQSPI_NAME			"cadence-qspi"
34 #define CQSPI_MAX_CHIPSELECT		16
35 
36 /* Quirks */
37 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
38 #define CQSPI_DISABLE_DAC_MODE		BIT(1)
39 #define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
40 #define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
41 
42 /* Capabilities */
43 #define CQSPI_SUPPORTS_OCTAL		BIT(0)
44 
45 struct cqspi_st;
46 
47 struct cqspi_flash_pdata {
48 	struct cqspi_st	*cqspi;
49 	u32		clk_rate;
50 	u32		read_delay;
51 	u32		tshsl_ns;
52 	u32		tsd2d_ns;
53 	u32		tchsh_ns;
54 	u32		tslch_ns;
55 	u8		inst_width;
56 	u8		addr_width;
57 	u8		data_width;
58 	bool		dtr;
59 	u8		cs;
60 };
61 
62 struct cqspi_st {
63 	struct platform_device	*pdev;
64 
65 	struct clk		*clk;
66 	unsigned int		sclk;
67 
68 	void __iomem		*iobase;
69 	void __iomem		*ahb_base;
70 	resource_size_t		ahb_size;
71 	struct completion	transfer_complete;
72 
73 	struct dma_chan		*rx_chan;
74 	struct completion	rx_dma_complete;
75 	dma_addr_t		mmap_phys_base;
76 
77 	int			current_cs;
78 	unsigned long		master_ref_clk_hz;
79 	bool			is_decoded_cs;
80 	u32			fifo_depth;
81 	u32			fifo_width;
82 	u32			num_chipselect;
83 	bool			rclk_en;
84 	u32			trigger_address;
85 	u32			wr_delay;
86 	bool			use_direct_mode;
87 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
88 	bool			use_dma_read;
89 	u32			pd_dev_id;
90 	bool			wr_completion;
91 };
92 
93 struct cqspi_driver_platdata {
94 	u32 hwcaps_mask;
95 	u8 quirks;
96 	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
97 				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
98 	u32 (*get_dma_status)(struct cqspi_st *cqspi);
99 };
100 
101 /* Operation timeout value */
102 #define CQSPI_TIMEOUT_MS			500
103 #define CQSPI_READ_TIMEOUT_MS			10
104 
105 /* Instruction type */
106 #define CQSPI_INST_TYPE_SINGLE			0
107 #define CQSPI_INST_TYPE_DUAL			1
108 #define CQSPI_INST_TYPE_QUAD			2
109 #define CQSPI_INST_TYPE_OCTAL			3
110 
111 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
112 #define CQSPI_DUMMY_BYTES_MAX			4
113 #define CQSPI_DUMMY_CLKS_MAX			31
114 
115 #define CQSPI_STIG_DATA_LEN_MAX			8
116 
117 /* Register map */
118 #define CQSPI_REG_CONFIG			0x00
119 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
120 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
121 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
122 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
123 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
124 #define CQSPI_REG_CONFIG_BAUD_LSB		19
125 #define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
126 #define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
127 #define CQSPI_REG_CONFIG_IDLE_LSB		31
128 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
129 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
130 
131 #define CQSPI_REG_RD_INSTR			0x04
132 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
133 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
134 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
135 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
136 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
137 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
138 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
139 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
140 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
141 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
142 
143 #define CQSPI_REG_WR_INSTR			0x08
144 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
145 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
146 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
147 
148 #define CQSPI_REG_DELAY				0x0C
149 #define CQSPI_REG_DELAY_TSLCH_LSB		0
150 #define CQSPI_REG_DELAY_TCHSH_LSB		8
151 #define CQSPI_REG_DELAY_TSD2D_LSB		16
152 #define CQSPI_REG_DELAY_TSHSL_LSB		24
153 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
154 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
155 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
156 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
157 
158 #define CQSPI_REG_READCAPTURE			0x10
159 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
160 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
161 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
162 
163 #define CQSPI_REG_SIZE				0x14
164 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
165 #define CQSPI_REG_SIZE_PAGE_LSB			4
166 #define CQSPI_REG_SIZE_BLOCK_LSB		16
167 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
168 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
169 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
170 
171 #define CQSPI_REG_SRAMPARTITION			0x18
172 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
173 
174 #define CQSPI_REG_DMA				0x20
175 #define CQSPI_REG_DMA_SINGLE_LSB		0
176 #define CQSPI_REG_DMA_BURST_LSB			8
177 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
178 #define CQSPI_REG_DMA_BURST_MASK		0xFF
179 
180 #define CQSPI_REG_REMAP				0x24
181 #define CQSPI_REG_MODE_BIT			0x28
182 
183 #define CQSPI_REG_SDRAMLEVEL			0x2C
184 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
185 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
186 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
187 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
188 
189 #define CQSPI_REG_WR_COMPLETION_CTRL		0x38
190 #define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
191 
192 #define CQSPI_REG_IRQSTATUS			0x40
193 #define CQSPI_REG_IRQMASK			0x44
194 
195 #define CQSPI_REG_INDIRECTRD			0x60
196 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
197 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
198 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
199 
200 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
201 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
202 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
203 
204 #define CQSPI_REG_CMDCTRL			0x90
205 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
206 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
207 #define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
208 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
209 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
210 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
211 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
212 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
213 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
214 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
215 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
216 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
217 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
218 #define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
219 
220 #define CQSPI_REG_INDIRECTWR			0x70
221 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
222 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
223 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
224 
225 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
226 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
227 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
228 
229 #define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
230 
231 #define CQSPI_REG_CMDADDRESS			0x94
232 #define CQSPI_REG_CMDREADDATALOWER		0xA0
233 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
234 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
235 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
236 
237 #define CQSPI_REG_POLLING_STATUS		0xB0
238 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
239 
240 #define CQSPI_REG_OP_EXT_LOWER			0xE0
241 #define CQSPI_REG_OP_EXT_READ_LSB		24
242 #define CQSPI_REG_OP_EXT_WRITE_LSB		16
243 #define CQSPI_REG_OP_EXT_STIG_LSB		0
244 
245 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
246 
247 #define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
248 #define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
249 
250 #define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
251 
252 #define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
253 #define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
254 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
255 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
256 
257 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
258 
259 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
260 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
261 
262 /* Interrupt status bits */
263 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
264 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
265 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
266 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
267 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
268 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
269 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
270 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
271 
272 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
273 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
274 					 CQSPI_REG_IRQ_IND_COMP)
275 
276 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
277 					 CQSPI_REG_IRQ_WATERMARK	| \
278 					 CQSPI_REG_IRQ_UNDERFLOW)
279 
280 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
281 #define CQSPI_DMA_UNALIGN		0x3
282 
283 #define CQSPI_REG_VERSAL_DMA_VAL		0x602
284 
285 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
286 {
287 	u32 val;
288 
289 	return readl_relaxed_poll_timeout(reg, val,
290 					  (((clr ? ~val : val) & mask) == mask),
291 					  10, CQSPI_TIMEOUT_MS * 1000);
292 }
293 
294 static bool cqspi_is_idle(struct cqspi_st *cqspi)
295 {
296 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
297 
298 	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
299 }
300 
301 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
302 {
303 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
304 
305 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
306 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
307 }
308 
309 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
310 {
311 	u32 dma_status;
312 
313 	dma_status = readl(cqspi->iobase +
314 					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
315 	writel(dma_status, cqspi->iobase +
316 		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
317 
318 	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
319 }
320 
321 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
322 {
323 	struct cqspi_st *cqspi = dev;
324 	unsigned int irq_status;
325 	struct device *device = &cqspi->pdev->dev;
326 	const struct cqspi_driver_platdata *ddata;
327 
328 	ddata = of_device_get_match_data(device);
329 
330 	/* Read interrupt status */
331 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
332 
333 	/* Clear interrupt */
334 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
335 
336 	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
337 		if (ddata->get_dma_status(cqspi)) {
338 			complete(&cqspi->transfer_complete);
339 			return IRQ_HANDLED;
340 		}
341 	}
342 
343 	irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
344 
345 	if (irq_status)
346 		complete(&cqspi->transfer_complete);
347 
348 	return IRQ_HANDLED;
349 }
350 
351 static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
352 {
353 	u32 rdreg = 0;
354 
355 	rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
356 	rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
357 	rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
358 
359 	return rdreg;
360 }
361 
362 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op, bool dtr)
363 {
364 	unsigned int dummy_clk;
365 
366 	if (!op->dummy.nbytes)
367 		return 0;
368 
369 	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
370 	if (dtr)
371 		dummy_clk /= 2;
372 
373 	return dummy_clk;
374 }
375 
376 static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
377 			      const struct spi_mem_op *op)
378 {
379 	f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
380 	f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
381 	f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
382 
383 	/*
384 	 * For an op to be DTR, cmd phase along with every other non-empty
385 	 * phase should have dtr field set to 1. If an op phase has zero
386 	 * nbytes, ignore its dtr field; otherwise, check its dtr field.
387 	 */
388 	f_pdata->dtr = op->cmd.dtr &&
389 		       (!op->addr.nbytes || op->addr.dtr) &&
390 		       (!op->data.nbytes || op->data.dtr);
391 
392 	switch (op->data.buswidth) {
393 	case 0:
394 		break;
395 	case 1:
396 		f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
397 		break;
398 	case 2:
399 		f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
400 		break;
401 	case 4:
402 		f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
403 		break;
404 	case 8:
405 		f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
406 		break;
407 	default:
408 		return -EINVAL;
409 	}
410 
411 	/* Right now we only support 8-8-8 DTR mode. */
412 	if (f_pdata->dtr) {
413 		switch (op->cmd.buswidth) {
414 		case 0:
415 			break;
416 		case 8:
417 			f_pdata->inst_width = CQSPI_INST_TYPE_OCTAL;
418 			break;
419 		default:
420 			return -EINVAL;
421 		}
422 
423 		switch (op->addr.buswidth) {
424 		case 0:
425 			break;
426 		case 8:
427 			f_pdata->addr_width = CQSPI_INST_TYPE_OCTAL;
428 			break;
429 		default:
430 			return -EINVAL;
431 		}
432 
433 		switch (op->data.buswidth) {
434 		case 0:
435 			break;
436 		case 8:
437 			f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
438 			break;
439 		default:
440 			return -EINVAL;
441 		}
442 	}
443 
444 	return 0;
445 }
446 
447 static int cqspi_wait_idle(struct cqspi_st *cqspi)
448 {
449 	const unsigned int poll_idle_retry = 3;
450 	unsigned int count = 0;
451 	unsigned long timeout;
452 
453 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
454 	while (1) {
455 		/*
456 		 * Read few times in succession to ensure the controller
457 		 * is indeed idle, that is, the bit does not transition
458 		 * low again.
459 		 */
460 		if (cqspi_is_idle(cqspi))
461 			count++;
462 		else
463 			count = 0;
464 
465 		if (count >= poll_idle_retry)
466 			return 0;
467 
468 		if (time_after(jiffies, timeout)) {
469 			/* Timeout, in busy mode. */
470 			dev_err(&cqspi->pdev->dev,
471 				"QSPI is still busy after %dms timeout.\n",
472 				CQSPI_TIMEOUT_MS);
473 			return -ETIMEDOUT;
474 		}
475 
476 		cpu_relax();
477 	}
478 }
479 
480 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
481 {
482 	void __iomem *reg_base = cqspi->iobase;
483 	int ret;
484 
485 	/* Write the CMDCTRL without start execution. */
486 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
487 	/* Start execute */
488 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
489 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
490 
491 	/* Polling for completion. */
492 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
493 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
494 	if (ret) {
495 		dev_err(&cqspi->pdev->dev,
496 			"Flash command execution timed out.\n");
497 		return ret;
498 	}
499 
500 	/* Polling QSPI idle status. */
501 	return cqspi_wait_idle(cqspi);
502 }
503 
504 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
505 				  const struct spi_mem_op *op,
506 				  unsigned int shift)
507 {
508 	struct cqspi_st *cqspi = f_pdata->cqspi;
509 	void __iomem *reg_base = cqspi->iobase;
510 	unsigned int reg;
511 	u8 ext;
512 
513 	if (op->cmd.nbytes != 2)
514 		return -EINVAL;
515 
516 	/* Opcode extension is the LSB. */
517 	ext = op->cmd.opcode & 0xff;
518 
519 	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
520 	reg &= ~(0xff << shift);
521 	reg |= ext << shift;
522 	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
523 
524 	return 0;
525 }
526 
527 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
528 			    const struct spi_mem_op *op, unsigned int shift,
529 			    bool enable)
530 {
531 	struct cqspi_st *cqspi = f_pdata->cqspi;
532 	void __iomem *reg_base = cqspi->iobase;
533 	unsigned int reg;
534 	int ret;
535 
536 	reg = readl(reg_base + CQSPI_REG_CONFIG);
537 
538 	/*
539 	 * We enable dual byte opcode here. The callers have to set up the
540 	 * extension opcode based on which type of operation it is.
541 	 */
542 	if (enable) {
543 		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
544 		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
545 
546 		/* Set up command opcode extension. */
547 		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
548 		if (ret)
549 			return ret;
550 	} else {
551 		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
552 		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
553 	}
554 
555 	writel(reg, reg_base + CQSPI_REG_CONFIG);
556 
557 	return cqspi_wait_idle(cqspi);
558 }
559 
560 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
561 			      const struct spi_mem_op *op)
562 {
563 	struct cqspi_st *cqspi = f_pdata->cqspi;
564 	void __iomem *reg_base = cqspi->iobase;
565 	u8 *rxbuf = op->data.buf.in;
566 	u8 opcode;
567 	size_t n_rx = op->data.nbytes;
568 	unsigned int rdreg;
569 	unsigned int reg;
570 	unsigned int dummy_clk;
571 	size_t read_len;
572 	int status;
573 
574 	status = cqspi_set_protocol(f_pdata, op);
575 	if (status)
576 		return status;
577 
578 	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
579 				  f_pdata->dtr);
580 	if (status)
581 		return status;
582 
583 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
584 		dev_err(&cqspi->pdev->dev,
585 			"Invalid input argument, len %zu rxbuf 0x%p\n",
586 			n_rx, rxbuf);
587 		return -EINVAL;
588 	}
589 
590 	if (f_pdata->dtr)
591 		opcode = op->cmd.opcode >> 8;
592 	else
593 		opcode = op->cmd.opcode;
594 
595 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
596 
597 	rdreg = cqspi_calc_rdreg(f_pdata);
598 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
599 
600 	dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
601 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
602 		return -EOPNOTSUPP;
603 
604 	if (dummy_clk)
605 		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
606 		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
607 
608 	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
609 
610 	/* 0 means 1 byte. */
611 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
612 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
613 	status = cqspi_exec_flash_cmd(cqspi, reg);
614 	if (status)
615 		return status;
616 
617 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
618 
619 	/* Put the read value into rx_buf */
620 	read_len = (n_rx > 4) ? 4 : n_rx;
621 	memcpy(rxbuf, &reg, read_len);
622 	rxbuf += read_len;
623 
624 	if (n_rx > 4) {
625 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
626 
627 		read_len = n_rx - read_len;
628 		memcpy(rxbuf, &reg, read_len);
629 	}
630 
631 	return 0;
632 }
633 
634 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
635 			       const struct spi_mem_op *op)
636 {
637 	struct cqspi_st *cqspi = f_pdata->cqspi;
638 	void __iomem *reg_base = cqspi->iobase;
639 	u8 opcode;
640 	const u8 *txbuf = op->data.buf.out;
641 	size_t n_tx = op->data.nbytes;
642 	unsigned int reg;
643 	unsigned int data;
644 	size_t write_len;
645 	int ret;
646 
647 	ret = cqspi_set_protocol(f_pdata, op);
648 	if (ret)
649 		return ret;
650 
651 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
652 			       f_pdata->dtr);
653 	if (ret)
654 		return ret;
655 
656 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
657 		dev_err(&cqspi->pdev->dev,
658 			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
659 			n_tx, txbuf);
660 		return -EINVAL;
661 	}
662 
663 	reg = cqspi_calc_rdreg(f_pdata);
664 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
665 
666 	if (f_pdata->dtr)
667 		opcode = op->cmd.opcode >> 8;
668 	else
669 		opcode = op->cmd.opcode;
670 
671 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
672 
673 	if (op->addr.nbytes) {
674 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
675 		reg |= ((op->addr.nbytes - 1) &
676 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
677 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
678 
679 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
680 	}
681 
682 	if (n_tx) {
683 		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
684 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
685 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
686 		data = 0;
687 		write_len = (n_tx > 4) ? 4 : n_tx;
688 		memcpy(&data, txbuf, write_len);
689 		txbuf += write_len;
690 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
691 
692 		if (n_tx > 4) {
693 			data = 0;
694 			write_len = n_tx - 4;
695 			memcpy(&data, txbuf, write_len);
696 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
697 		}
698 	}
699 
700 	return cqspi_exec_flash_cmd(cqspi, reg);
701 }
702 
703 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
704 			    const struct spi_mem_op *op)
705 {
706 	struct cqspi_st *cqspi = f_pdata->cqspi;
707 	void __iomem *reg_base = cqspi->iobase;
708 	unsigned int dummy_clk = 0;
709 	unsigned int reg;
710 	int ret;
711 	u8 opcode;
712 
713 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB,
714 			       f_pdata->dtr);
715 	if (ret)
716 		return ret;
717 
718 	if (f_pdata->dtr)
719 		opcode = op->cmd.opcode >> 8;
720 	else
721 		opcode = op->cmd.opcode;
722 
723 	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
724 	reg |= cqspi_calc_rdreg(f_pdata);
725 
726 	/* Setup dummy clock cycles */
727 	dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
728 
729 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
730 		return -EOPNOTSUPP;
731 
732 	if (dummy_clk)
733 		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
734 		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
735 
736 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
737 
738 	/* Set address width */
739 	reg = readl(reg_base + CQSPI_REG_SIZE);
740 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
741 	reg |= (op->addr.nbytes - 1);
742 	writel(reg, reg_base + CQSPI_REG_SIZE);
743 	return 0;
744 }
745 
746 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
747 				       u8 *rxbuf, loff_t from_addr,
748 				       const size_t n_rx)
749 {
750 	struct cqspi_st *cqspi = f_pdata->cqspi;
751 	struct device *dev = &cqspi->pdev->dev;
752 	void __iomem *reg_base = cqspi->iobase;
753 	void __iomem *ahb_base = cqspi->ahb_base;
754 	unsigned int remaining = n_rx;
755 	unsigned int mod_bytes = n_rx % 4;
756 	unsigned int bytes_to_read = 0;
757 	u8 *rxbuf_end = rxbuf + n_rx;
758 	int ret = 0;
759 
760 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
761 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
762 
763 	/* Clear all interrupts. */
764 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
765 
766 	writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
767 
768 	reinit_completion(&cqspi->transfer_complete);
769 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
770 	       reg_base + CQSPI_REG_INDIRECTRD);
771 
772 	while (remaining > 0) {
773 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
774 						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
775 			ret = -ETIMEDOUT;
776 
777 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
778 
779 		if (ret && bytes_to_read == 0) {
780 			dev_err(dev, "Indirect read timeout, no bytes\n");
781 			goto failrd;
782 		}
783 
784 		while (bytes_to_read != 0) {
785 			unsigned int word_remain = round_down(remaining, 4);
786 
787 			bytes_to_read *= cqspi->fifo_width;
788 			bytes_to_read = bytes_to_read > remaining ?
789 					remaining : bytes_to_read;
790 			bytes_to_read = round_down(bytes_to_read, 4);
791 			/* Read 4 byte word chunks then single bytes */
792 			if (bytes_to_read) {
793 				ioread32_rep(ahb_base, rxbuf,
794 					     (bytes_to_read / 4));
795 			} else if (!word_remain && mod_bytes) {
796 				unsigned int temp = ioread32(ahb_base);
797 
798 				bytes_to_read = mod_bytes;
799 				memcpy(rxbuf, &temp, min((unsigned int)
800 							 (rxbuf_end - rxbuf),
801 							 bytes_to_read));
802 			}
803 			rxbuf += bytes_to_read;
804 			remaining -= bytes_to_read;
805 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
806 		}
807 
808 		if (remaining > 0)
809 			reinit_completion(&cqspi->transfer_complete);
810 	}
811 
812 	/* Check indirect done status */
813 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
814 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
815 	if (ret) {
816 		dev_err(dev, "Indirect read completion error (%i)\n", ret);
817 		goto failrd;
818 	}
819 
820 	/* Disable interrupt */
821 	writel(0, reg_base + CQSPI_REG_IRQMASK);
822 
823 	/* Clear indirect completion status */
824 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
825 
826 	return 0;
827 
828 failrd:
829 	/* Disable interrupt */
830 	writel(0, reg_base + CQSPI_REG_IRQMASK);
831 
832 	/* Cancel the indirect read */
833 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
834 	       reg_base + CQSPI_REG_INDIRECTRD);
835 	return ret;
836 }
837 
838 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
839 					  u_char *rxbuf, loff_t from_addr,
840 					  size_t n_rx)
841 {
842 	struct cqspi_st *cqspi = f_pdata->cqspi;
843 	struct device *dev = &cqspi->pdev->dev;
844 	void __iomem *reg_base = cqspi->iobase;
845 	u32 reg, bytes_to_dma;
846 	loff_t addr = from_addr;
847 	void *buf = rxbuf;
848 	dma_addr_t dma_addr;
849 	u8 bytes_rem;
850 	int ret = 0;
851 
852 	bytes_rem = n_rx % 4;
853 	bytes_to_dma = (n_rx - bytes_rem);
854 
855 	if (!bytes_to_dma)
856 		goto nondmard;
857 
858 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
859 	if (ret)
860 		return ret;
861 
862 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
863 	reg |= CQSPI_REG_CONFIG_DMA_MASK;
864 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
865 
866 	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
867 	if (dma_mapping_error(dev, dma_addr)) {
868 		dev_err(dev, "dma mapping failed\n");
869 		return -ENOMEM;
870 	}
871 
872 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
873 	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
874 	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
875 	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
876 
877 	/* Clear all interrupts. */
878 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
879 
880 	/* Enable DMA done interrupt */
881 	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
882 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
883 
884 	/* Default DMA periph configuration */
885 	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
886 
887 	/* Configure DMA Dst address */
888 	writel(lower_32_bits(dma_addr),
889 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
890 	writel(upper_32_bits(dma_addr),
891 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
892 
893 	/* Configure DMA Src address */
894 	writel(cqspi->trigger_address, reg_base +
895 	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
896 
897 	/* Set DMA destination size */
898 	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
899 
900 	/* Set DMA destination control */
901 	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
902 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
903 
904 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
905 	       reg_base + CQSPI_REG_INDIRECTRD);
906 
907 	reinit_completion(&cqspi->transfer_complete);
908 
909 	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
910 					 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) {
911 		ret = -ETIMEDOUT;
912 		goto failrd;
913 	}
914 
915 	/* Disable DMA interrupt */
916 	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
917 
918 	/* Clear indirect completion status */
919 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
920 	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
921 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
922 
923 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
924 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
925 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
926 
927 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
928 					PM_OSPI_MUX_SEL_LINEAR);
929 	if (ret)
930 		return ret;
931 
932 nondmard:
933 	if (bytes_rem) {
934 		addr += bytes_to_dma;
935 		buf += bytes_to_dma;
936 		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
937 						  bytes_rem);
938 		if (ret)
939 			return ret;
940 	}
941 
942 	return 0;
943 
944 failrd:
945 	/* Disable DMA interrupt */
946 	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
947 
948 	/* Cancel the indirect read */
949 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
950 	       reg_base + CQSPI_REG_INDIRECTRD);
951 
952 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
953 
954 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
955 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
956 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
957 
958 	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
959 
960 	return ret;
961 }
962 
963 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
964 			     const struct spi_mem_op *op)
965 {
966 	unsigned int reg;
967 	int ret;
968 	struct cqspi_st *cqspi = f_pdata->cqspi;
969 	void __iomem *reg_base = cqspi->iobase;
970 	u8 opcode;
971 
972 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB,
973 			       f_pdata->dtr);
974 	if (ret)
975 		return ret;
976 
977 	if (f_pdata->dtr)
978 		opcode = op->cmd.opcode >> 8;
979 	else
980 		opcode = op->cmd.opcode;
981 
982 	/* Set opcode. */
983 	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
984 	reg |= f_pdata->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
985 	reg |= f_pdata->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
986 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
987 	reg = cqspi_calc_rdreg(f_pdata);
988 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
989 
990 	/*
991 	 * SPI NAND flashes require the address of the status register to be
992 	 * passed in the Read SR command. Also, some SPI NOR flashes like the
993 	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
994 	 * command in DTR mode.
995 	 *
996 	 * But this controller does not support address phase in the Read SR
997 	 * command when doing auto-HW polling. So, disable write completion
998 	 * polling on the controller's side. spinand and spi-nor will take
999 	 * care of polling the status register.
1000 	 */
1001 	if (cqspi->wr_completion) {
1002 		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1003 		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
1004 		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1005 	}
1006 
1007 	reg = readl(reg_base + CQSPI_REG_SIZE);
1008 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1009 	reg |= (op->addr.nbytes - 1);
1010 	writel(reg, reg_base + CQSPI_REG_SIZE);
1011 	return 0;
1012 }
1013 
1014 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1015 					loff_t to_addr, const u8 *txbuf,
1016 					const size_t n_tx)
1017 {
1018 	struct cqspi_st *cqspi = f_pdata->cqspi;
1019 	struct device *dev = &cqspi->pdev->dev;
1020 	void __iomem *reg_base = cqspi->iobase;
1021 	unsigned int remaining = n_tx;
1022 	unsigned int write_bytes;
1023 	int ret;
1024 
1025 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1026 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1027 
1028 	/* Clear all interrupts. */
1029 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1030 
1031 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1032 
1033 	reinit_completion(&cqspi->transfer_complete);
1034 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
1035 	       reg_base + CQSPI_REG_INDIRECTWR);
1036 	/*
1037 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1038 	 * Controller programming sequence, couple of cycles of
1039 	 * QSPI_REF_CLK delay is required for the above bit to
1040 	 * be internally synchronized by the QSPI module. Provide 5
1041 	 * cycles of delay.
1042 	 */
1043 	if (cqspi->wr_delay)
1044 		ndelay(cqspi->wr_delay);
1045 
1046 	while (remaining > 0) {
1047 		size_t write_words, mod_bytes;
1048 
1049 		write_bytes = remaining;
1050 		write_words = write_bytes / 4;
1051 		mod_bytes = write_bytes % 4;
1052 		/* Write 4 bytes at a time then single bytes. */
1053 		if (write_words) {
1054 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1055 			txbuf += (write_words * 4);
1056 		}
1057 		if (mod_bytes) {
1058 			unsigned int temp = 0xFFFFFFFF;
1059 
1060 			memcpy(&temp, txbuf, mod_bytes);
1061 			iowrite32(temp, cqspi->ahb_base);
1062 			txbuf += mod_bytes;
1063 		}
1064 
1065 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1066 						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1067 			dev_err(dev, "Indirect write timeout\n");
1068 			ret = -ETIMEDOUT;
1069 			goto failwr;
1070 		}
1071 
1072 		remaining -= write_bytes;
1073 
1074 		if (remaining > 0)
1075 			reinit_completion(&cqspi->transfer_complete);
1076 	}
1077 
1078 	/* Check indirect done status */
1079 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1080 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1081 	if (ret) {
1082 		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1083 		goto failwr;
1084 	}
1085 
1086 	/* Disable interrupt. */
1087 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1088 
1089 	/* Clear indirect completion status */
1090 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1091 
1092 	cqspi_wait_idle(cqspi);
1093 
1094 	return 0;
1095 
1096 failwr:
1097 	/* Disable interrupt. */
1098 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1099 
1100 	/* Cancel the indirect write */
1101 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1102 	       reg_base + CQSPI_REG_INDIRECTWR);
1103 	return ret;
1104 }
1105 
1106 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1107 {
1108 	struct cqspi_st *cqspi = f_pdata->cqspi;
1109 	void __iomem *reg_base = cqspi->iobase;
1110 	unsigned int chip_select = f_pdata->cs;
1111 	unsigned int reg;
1112 
1113 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1114 	if (cqspi->is_decoded_cs) {
1115 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1116 	} else {
1117 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1118 
1119 		/* Convert CS if without decoder.
1120 		 * CS0 to 4b'1110
1121 		 * CS1 to 4b'1101
1122 		 * CS2 to 4b'1011
1123 		 * CS3 to 4b'0111
1124 		 */
1125 		chip_select = 0xF & ~(1 << chip_select);
1126 	}
1127 
1128 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1129 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1130 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1131 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1132 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1133 }
1134 
1135 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1136 					   const unsigned int ns_val)
1137 {
1138 	unsigned int ticks;
1139 
1140 	ticks = ref_clk_hz / 1000;	/* kHz */
1141 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1142 
1143 	return ticks;
1144 }
1145 
1146 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1147 {
1148 	struct cqspi_st *cqspi = f_pdata->cqspi;
1149 	void __iomem *iobase = cqspi->iobase;
1150 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1151 	unsigned int tshsl, tchsh, tslch, tsd2d;
1152 	unsigned int reg;
1153 	unsigned int tsclk;
1154 
1155 	/* calculate the number of ref ticks for one sclk tick */
1156 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1157 
1158 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1159 	/* this particular value must be at least one sclk */
1160 	if (tshsl < tsclk)
1161 		tshsl = tsclk;
1162 
1163 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1164 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1165 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1166 
1167 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1168 	       << CQSPI_REG_DELAY_TSHSL_LSB;
1169 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1170 		<< CQSPI_REG_DELAY_TCHSH_LSB;
1171 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1172 		<< CQSPI_REG_DELAY_TSLCH_LSB;
1173 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1174 		<< CQSPI_REG_DELAY_TSD2D_LSB;
1175 	writel(reg, iobase + CQSPI_REG_DELAY);
1176 }
1177 
1178 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1179 {
1180 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1181 	void __iomem *reg_base = cqspi->iobase;
1182 	u32 reg, div;
1183 
1184 	/* Recalculate the baudrate divisor based on QSPI specification. */
1185 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1186 
1187 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1188 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1189 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1190 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1191 }
1192 
1193 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1194 				   const bool bypass,
1195 				   const unsigned int delay)
1196 {
1197 	void __iomem *reg_base = cqspi->iobase;
1198 	unsigned int reg;
1199 
1200 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1201 
1202 	if (bypass)
1203 		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1204 	else
1205 		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1206 
1207 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1208 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1209 
1210 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1211 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1212 
1213 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1214 }
1215 
1216 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1217 {
1218 	void __iomem *reg_base = cqspi->iobase;
1219 	unsigned int reg;
1220 
1221 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1222 
1223 	if (enable)
1224 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1225 	else
1226 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1227 
1228 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1229 }
1230 
1231 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1232 			    unsigned long sclk)
1233 {
1234 	struct cqspi_st *cqspi = f_pdata->cqspi;
1235 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1236 	int switch_ck = (cqspi->sclk != sclk);
1237 
1238 	if (switch_cs || switch_ck)
1239 		cqspi_controller_enable(cqspi, 0);
1240 
1241 	/* Switch chip select. */
1242 	if (switch_cs) {
1243 		cqspi->current_cs = f_pdata->cs;
1244 		cqspi_chipselect(f_pdata);
1245 	}
1246 
1247 	/* Setup baudrate divisor and delays */
1248 	if (switch_ck) {
1249 		cqspi->sclk = sclk;
1250 		cqspi_config_baudrate_div(cqspi);
1251 		cqspi_delay(f_pdata);
1252 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1253 				       f_pdata->read_delay);
1254 	}
1255 
1256 	if (switch_cs || switch_ck)
1257 		cqspi_controller_enable(cqspi, 1);
1258 }
1259 
1260 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1261 			   const struct spi_mem_op *op)
1262 {
1263 	struct cqspi_st *cqspi = f_pdata->cqspi;
1264 	loff_t to = op->addr.val;
1265 	size_t len = op->data.nbytes;
1266 	const u_char *buf = op->data.buf.out;
1267 	int ret;
1268 
1269 	ret = cqspi_set_protocol(f_pdata, op);
1270 	if (ret)
1271 		return ret;
1272 
1273 	ret = cqspi_write_setup(f_pdata, op);
1274 	if (ret)
1275 		return ret;
1276 
1277 	/*
1278 	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1279 	 * address (all 0s) with the read status register command in DTR mode.
1280 	 * But this controller does not support sending dummy address bytes to
1281 	 * the flash when it is polling the write completion register in DTR
1282 	 * mode. So, we can not use direct mode when in DTR mode for writing
1283 	 * data.
1284 	 */
1285 	if (!f_pdata->dtr && cqspi->use_direct_mode &&
1286 	    ((to + len) <= cqspi->ahb_size)) {
1287 		memcpy_toio(cqspi->ahb_base + to, buf, len);
1288 		return cqspi_wait_idle(cqspi);
1289 	}
1290 
1291 	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1292 }
1293 
1294 static void cqspi_rx_dma_callback(void *param)
1295 {
1296 	struct cqspi_st *cqspi = param;
1297 
1298 	complete(&cqspi->rx_dma_complete);
1299 }
1300 
1301 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1302 				     u_char *buf, loff_t from, size_t len)
1303 {
1304 	struct cqspi_st *cqspi = f_pdata->cqspi;
1305 	struct device *dev = &cqspi->pdev->dev;
1306 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1307 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1308 	int ret = 0;
1309 	struct dma_async_tx_descriptor *tx;
1310 	dma_cookie_t cookie;
1311 	dma_addr_t dma_dst;
1312 	struct device *ddev;
1313 
1314 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1315 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1316 		return 0;
1317 	}
1318 
1319 	ddev = cqspi->rx_chan->device->dev;
1320 	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1321 	if (dma_mapping_error(ddev, dma_dst)) {
1322 		dev_err(dev, "dma mapping failed\n");
1323 		return -ENOMEM;
1324 	}
1325 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1326 				       len, flags);
1327 	if (!tx) {
1328 		dev_err(dev, "device_prep_dma_memcpy error\n");
1329 		ret = -EIO;
1330 		goto err_unmap;
1331 	}
1332 
1333 	tx->callback = cqspi_rx_dma_callback;
1334 	tx->callback_param = cqspi;
1335 	cookie = tx->tx_submit(tx);
1336 	reinit_completion(&cqspi->rx_dma_complete);
1337 
1338 	ret = dma_submit_error(cookie);
1339 	if (ret) {
1340 		dev_err(dev, "dma_submit_error %d\n", cookie);
1341 		ret = -EIO;
1342 		goto err_unmap;
1343 	}
1344 
1345 	dma_async_issue_pending(cqspi->rx_chan);
1346 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1347 					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1348 		dmaengine_terminate_sync(cqspi->rx_chan);
1349 		dev_err(dev, "DMA wait_for_completion_timeout\n");
1350 		ret = -ETIMEDOUT;
1351 		goto err_unmap;
1352 	}
1353 
1354 err_unmap:
1355 	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1356 
1357 	return ret;
1358 }
1359 
1360 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1361 			  const struct spi_mem_op *op)
1362 {
1363 	struct cqspi_st *cqspi = f_pdata->cqspi;
1364 	struct device *dev = &cqspi->pdev->dev;
1365 	const struct cqspi_driver_platdata *ddata;
1366 	loff_t from = op->addr.val;
1367 	size_t len = op->data.nbytes;
1368 	u_char *buf = op->data.buf.in;
1369 	u64 dma_align = (u64)(uintptr_t)buf;
1370 	int ret;
1371 
1372 	ddata = of_device_get_match_data(dev);
1373 	ret = cqspi_set_protocol(f_pdata, op);
1374 	if (ret)
1375 		return ret;
1376 
1377 	ret = cqspi_read_setup(f_pdata, op);
1378 	if (ret)
1379 		return ret;
1380 
1381 	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1382 		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1383 
1384 	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1385 	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1386 		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1387 
1388 	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1389 }
1390 
1391 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1392 {
1393 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1394 	struct cqspi_flash_pdata *f_pdata;
1395 
1396 	f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1397 	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1398 
1399 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1400 		if (!op->addr.nbytes)
1401 			return cqspi_command_read(f_pdata, op);
1402 
1403 		return cqspi_read(f_pdata, op);
1404 	}
1405 
1406 	if (!op->addr.nbytes || !op->data.buf.out)
1407 		return cqspi_command_write(f_pdata, op);
1408 
1409 	return cqspi_write(f_pdata, op);
1410 }
1411 
1412 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1413 {
1414 	int ret;
1415 
1416 	ret = cqspi_mem_process(mem, op);
1417 	if (ret)
1418 		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1419 
1420 	return ret;
1421 }
1422 
1423 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1424 				  const struct spi_mem_op *op)
1425 {
1426 	bool all_true, all_false;
1427 
1428 	/*
1429 	 * op->dummy.dtr is required for converting nbytes into ncycles.
1430 	 * Also, don't check the dtr field of the op phase having zero nbytes.
1431 	 */
1432 	all_true = op->cmd.dtr &&
1433 		   (!op->addr.nbytes || op->addr.dtr) &&
1434 		   (!op->dummy.nbytes || op->dummy.dtr) &&
1435 		   (!op->data.nbytes || op->data.dtr);
1436 
1437 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1438 		    !op->data.dtr;
1439 
1440 	/* Mixed DTR modes not supported. */
1441 	if (!(all_true || all_false))
1442 		return false;
1443 
1444 	return spi_mem_default_supports_op(mem, op);
1445 }
1446 
1447 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1448 				    struct cqspi_flash_pdata *f_pdata,
1449 				    struct device_node *np)
1450 {
1451 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1452 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1453 		return -ENXIO;
1454 	}
1455 
1456 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1457 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1458 		return -ENXIO;
1459 	}
1460 
1461 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1462 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1463 		return -ENXIO;
1464 	}
1465 
1466 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1467 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1468 		return -ENXIO;
1469 	}
1470 
1471 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1472 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1473 		return -ENXIO;
1474 	}
1475 
1476 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1477 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1478 		return -ENXIO;
1479 	}
1480 
1481 	return 0;
1482 }
1483 
1484 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1485 {
1486 	struct device *dev = &cqspi->pdev->dev;
1487 	struct device_node *np = dev->of_node;
1488 	u32 id[2];
1489 
1490 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1491 
1492 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1493 		dev_err(dev, "couldn't determine fifo-depth\n");
1494 		return -ENXIO;
1495 	}
1496 
1497 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1498 		dev_err(dev, "couldn't determine fifo-width\n");
1499 		return -ENXIO;
1500 	}
1501 
1502 	if (of_property_read_u32(np, "cdns,trigger-address",
1503 				 &cqspi->trigger_address)) {
1504 		dev_err(dev, "couldn't determine trigger-address\n");
1505 		return -ENXIO;
1506 	}
1507 
1508 	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1509 		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1510 
1511 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1512 
1513 	if (!of_property_read_u32_array(np, "power-domains", id,
1514 					ARRAY_SIZE(id)))
1515 		cqspi->pd_dev_id = id[1];
1516 
1517 	return 0;
1518 }
1519 
1520 static void cqspi_controller_init(struct cqspi_st *cqspi)
1521 {
1522 	u32 reg;
1523 
1524 	cqspi_controller_enable(cqspi, 0);
1525 
1526 	/* Configure the remap address register, no remap */
1527 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1528 
1529 	/* Disable all interrupts. */
1530 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1531 
1532 	/* Configure the SRAM split to 1:1 . */
1533 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1534 
1535 	/* Load indirect trigger address. */
1536 	writel(cqspi->trigger_address,
1537 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1538 
1539 	/* Program read watermark -- 1/2 of the FIFO. */
1540 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1541 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1542 	/* Program write watermark -- 1/8 of the FIFO. */
1543 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1544 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1545 
1546 	/* Disable direct access controller */
1547 	if (!cqspi->use_direct_mode) {
1548 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1549 		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1550 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1551 	}
1552 
1553 	/* Enable DMA interface */
1554 	if (cqspi->use_dma_read) {
1555 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1556 		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1557 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1558 	}
1559 
1560 	cqspi_controller_enable(cqspi, 1);
1561 }
1562 
1563 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1564 {
1565 	dma_cap_mask_t mask;
1566 
1567 	dma_cap_zero(mask);
1568 	dma_cap_set(DMA_MEMCPY, mask);
1569 
1570 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1571 	if (IS_ERR(cqspi->rx_chan)) {
1572 		int ret = PTR_ERR(cqspi->rx_chan);
1573 		cqspi->rx_chan = NULL;
1574 		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1575 	}
1576 	init_completion(&cqspi->rx_dma_complete);
1577 
1578 	return 0;
1579 }
1580 
1581 static const char *cqspi_get_name(struct spi_mem *mem)
1582 {
1583 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1584 	struct device *dev = &cqspi->pdev->dev;
1585 
1586 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1587 }
1588 
1589 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1590 	.exec_op = cqspi_exec_mem_op,
1591 	.get_name = cqspi_get_name,
1592 	.supports_op = cqspi_supports_mem_op,
1593 };
1594 
1595 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1596 	.dtr = true,
1597 };
1598 
1599 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1600 {
1601 	struct platform_device *pdev = cqspi->pdev;
1602 	struct device *dev = &pdev->dev;
1603 	struct device_node *np = dev->of_node;
1604 	struct cqspi_flash_pdata *f_pdata;
1605 	unsigned int cs;
1606 	int ret;
1607 
1608 	/* Get flash device data */
1609 	for_each_available_child_of_node(dev->of_node, np) {
1610 		ret = of_property_read_u32(np, "reg", &cs);
1611 		if (ret) {
1612 			dev_err(dev, "Couldn't determine chip select.\n");
1613 			of_node_put(np);
1614 			return ret;
1615 		}
1616 
1617 		if (cs >= CQSPI_MAX_CHIPSELECT) {
1618 			dev_err(dev, "Chip select %d out of range.\n", cs);
1619 			of_node_put(np);
1620 			return -EINVAL;
1621 		}
1622 
1623 		f_pdata = &cqspi->f_pdata[cs];
1624 		f_pdata->cqspi = cqspi;
1625 		f_pdata->cs = cs;
1626 
1627 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1628 		if (ret) {
1629 			of_node_put(np);
1630 			return ret;
1631 		}
1632 	}
1633 
1634 	return 0;
1635 }
1636 
1637 static int cqspi_probe(struct platform_device *pdev)
1638 {
1639 	const struct cqspi_driver_platdata *ddata;
1640 	struct reset_control *rstc, *rstc_ocp;
1641 	struct device *dev = &pdev->dev;
1642 	struct spi_master *master;
1643 	struct resource *res_ahb;
1644 	struct cqspi_st *cqspi;
1645 	struct resource *res;
1646 	int ret;
1647 	int irq;
1648 
1649 	master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1650 	if (!master) {
1651 		dev_err(&pdev->dev, "spi_alloc_master failed\n");
1652 		return -ENOMEM;
1653 	}
1654 	master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1655 	master->mem_ops = &cqspi_mem_ops;
1656 	master->mem_caps = &cqspi_mem_caps;
1657 	master->dev.of_node = pdev->dev.of_node;
1658 
1659 	cqspi = spi_master_get_devdata(master);
1660 
1661 	cqspi->pdev = pdev;
1662 	platform_set_drvdata(pdev, cqspi);
1663 
1664 	/* Obtain configuration from OF. */
1665 	ret = cqspi_of_get_pdata(cqspi);
1666 	if (ret) {
1667 		dev_err(dev, "Cannot get mandatory OF data.\n");
1668 		ret = -ENODEV;
1669 		goto probe_master_put;
1670 	}
1671 
1672 	/* Obtain QSPI clock. */
1673 	cqspi->clk = devm_clk_get(dev, NULL);
1674 	if (IS_ERR(cqspi->clk)) {
1675 		dev_err(dev, "Cannot claim QSPI clock.\n");
1676 		ret = PTR_ERR(cqspi->clk);
1677 		goto probe_master_put;
1678 	}
1679 
1680 	/* Obtain and remap controller address. */
1681 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1682 	cqspi->iobase = devm_ioremap_resource(dev, res);
1683 	if (IS_ERR(cqspi->iobase)) {
1684 		dev_err(dev, "Cannot remap controller address.\n");
1685 		ret = PTR_ERR(cqspi->iobase);
1686 		goto probe_master_put;
1687 	}
1688 
1689 	/* Obtain and remap AHB address. */
1690 	res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1691 	cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1692 	if (IS_ERR(cqspi->ahb_base)) {
1693 		dev_err(dev, "Cannot remap AHB address.\n");
1694 		ret = PTR_ERR(cqspi->ahb_base);
1695 		goto probe_master_put;
1696 	}
1697 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1698 	cqspi->ahb_size = resource_size(res_ahb);
1699 
1700 	init_completion(&cqspi->transfer_complete);
1701 
1702 	/* Obtain IRQ line. */
1703 	irq = platform_get_irq(pdev, 0);
1704 	if (irq < 0) {
1705 		ret = -ENXIO;
1706 		goto probe_master_put;
1707 	}
1708 
1709 	pm_runtime_enable(dev);
1710 	ret = pm_runtime_get_sync(dev);
1711 	if (ret < 0) {
1712 		pm_runtime_put_noidle(dev);
1713 		goto probe_master_put;
1714 	}
1715 
1716 	ret = clk_prepare_enable(cqspi->clk);
1717 	if (ret) {
1718 		dev_err(dev, "Cannot enable QSPI clock.\n");
1719 		goto probe_clk_failed;
1720 	}
1721 
1722 	/* Obtain QSPI reset control */
1723 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1724 	if (IS_ERR(rstc)) {
1725 		ret = PTR_ERR(rstc);
1726 		dev_err(dev, "Cannot get QSPI reset.\n");
1727 		goto probe_reset_failed;
1728 	}
1729 
1730 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1731 	if (IS_ERR(rstc_ocp)) {
1732 		ret = PTR_ERR(rstc_ocp);
1733 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1734 		goto probe_reset_failed;
1735 	}
1736 
1737 	reset_control_assert(rstc);
1738 	reset_control_deassert(rstc);
1739 
1740 	reset_control_assert(rstc_ocp);
1741 	reset_control_deassert(rstc_ocp);
1742 
1743 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1744 	master->max_speed_hz = cqspi->master_ref_clk_hz;
1745 
1746 	/* write completion is supported by default */
1747 	cqspi->wr_completion = true;
1748 
1749 	ddata  = of_device_get_match_data(dev);
1750 	if (ddata) {
1751 		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1752 			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1753 						cqspi->master_ref_clk_hz);
1754 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1755 			master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1756 		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1757 			cqspi->use_direct_mode = true;
1758 		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1759 			cqspi->use_dma_read = true;
1760 		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1761 			cqspi->wr_completion = false;
1762 
1763 		if (of_device_is_compatible(pdev->dev.of_node,
1764 					    "xlnx,versal-ospi-1.0"))
1765 			dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1766 	}
1767 
1768 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1769 			       pdev->name, cqspi);
1770 	if (ret) {
1771 		dev_err(dev, "Cannot request IRQ.\n");
1772 		goto probe_reset_failed;
1773 	}
1774 
1775 	cqspi_wait_idle(cqspi);
1776 	cqspi_controller_init(cqspi);
1777 	cqspi->current_cs = -1;
1778 	cqspi->sclk = 0;
1779 
1780 	master->num_chipselect = cqspi->num_chipselect;
1781 
1782 	ret = cqspi_setup_flash(cqspi);
1783 	if (ret) {
1784 		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1785 		goto probe_setup_failed;
1786 	}
1787 
1788 	if (cqspi->use_direct_mode) {
1789 		ret = cqspi_request_mmap_dma(cqspi);
1790 		if (ret == -EPROBE_DEFER)
1791 			goto probe_setup_failed;
1792 	}
1793 
1794 	ret = devm_spi_register_master(dev, master);
1795 	if (ret) {
1796 		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1797 		goto probe_setup_failed;
1798 	}
1799 
1800 	return 0;
1801 probe_setup_failed:
1802 	cqspi_controller_enable(cqspi, 0);
1803 probe_reset_failed:
1804 	clk_disable_unprepare(cqspi->clk);
1805 probe_clk_failed:
1806 	pm_runtime_put_sync(dev);
1807 	pm_runtime_disable(dev);
1808 probe_master_put:
1809 	spi_master_put(master);
1810 	return ret;
1811 }
1812 
1813 static int cqspi_remove(struct platform_device *pdev)
1814 {
1815 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1816 
1817 	cqspi_controller_enable(cqspi, 0);
1818 
1819 	if (cqspi->rx_chan)
1820 		dma_release_channel(cqspi->rx_chan);
1821 
1822 	clk_disable_unprepare(cqspi->clk);
1823 
1824 	pm_runtime_put_sync(&pdev->dev);
1825 	pm_runtime_disable(&pdev->dev);
1826 
1827 	return 0;
1828 }
1829 
1830 #ifdef CONFIG_PM_SLEEP
1831 static int cqspi_suspend(struct device *dev)
1832 {
1833 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1834 
1835 	cqspi_controller_enable(cqspi, 0);
1836 	return 0;
1837 }
1838 
1839 static int cqspi_resume(struct device *dev)
1840 {
1841 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1842 
1843 	cqspi_controller_enable(cqspi, 1);
1844 	return 0;
1845 }
1846 
1847 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1848 	.suspend = cqspi_suspend,
1849 	.resume = cqspi_resume,
1850 };
1851 
1852 #define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
1853 #else
1854 #define CQSPI_DEV_PM_OPS	NULL
1855 #endif
1856 
1857 static const struct cqspi_driver_platdata cdns_qspi = {
1858 	.quirks = CQSPI_DISABLE_DAC_MODE,
1859 };
1860 
1861 static const struct cqspi_driver_platdata k2g_qspi = {
1862 	.quirks = CQSPI_NEEDS_WR_DELAY,
1863 };
1864 
1865 static const struct cqspi_driver_platdata am654_ospi = {
1866 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1867 	.quirks = CQSPI_NEEDS_WR_DELAY,
1868 };
1869 
1870 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1871 	.quirks = CQSPI_DISABLE_DAC_MODE,
1872 };
1873 
1874 static const struct cqspi_driver_platdata socfpga_qspi = {
1875 	.quirks = CQSPI_NO_SUPPORT_WR_COMPLETION,
1876 };
1877 
1878 static const struct cqspi_driver_platdata versal_ospi = {
1879 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1880 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1881 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
1882 	.get_dma_status = cqspi_get_versal_dma_status,
1883 };
1884 
1885 static const struct of_device_id cqspi_dt_ids[] = {
1886 	{
1887 		.compatible = "cdns,qspi-nor",
1888 		.data = &cdns_qspi,
1889 	},
1890 	{
1891 		.compatible = "ti,k2g-qspi",
1892 		.data = &k2g_qspi,
1893 	},
1894 	{
1895 		.compatible = "ti,am654-ospi",
1896 		.data = &am654_ospi,
1897 	},
1898 	{
1899 		.compatible = "intel,lgm-qspi",
1900 		.data = &intel_lgm_qspi,
1901 	},
1902 	{
1903 		.compatible = "xlnx,versal-ospi-1.0",
1904 		.data = (void *)&versal_ospi,
1905 	},
1906 	{
1907 		.compatible = "intel,socfpga-qspi",
1908 		.data = (void *)&socfpga_qspi,
1909 	},
1910 	{ /* end of table */ }
1911 };
1912 
1913 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1914 
1915 static struct platform_driver cqspi_platform_driver = {
1916 	.probe = cqspi_probe,
1917 	.remove = cqspi_remove,
1918 	.driver = {
1919 		.name = CQSPI_NAME,
1920 		.pm = CQSPI_DEV_PM_OPS,
1921 		.of_match_table = cqspi_dt_ids,
1922 	},
1923 };
1924 
1925 module_platform_driver(cqspi_platform_driver);
1926 
1927 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1928 MODULE_LICENSE("GPL v2");
1929 MODULE_ALIAS("platform:" CQSPI_NAME);
1930 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1931 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1932 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1933 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1934 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
1935