1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/firmware/xlnx-zynqmp.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/jiffies.h>
21 #include <linux/kernel.h>
22 #include <linux/log2.h>
23 #include <linux/module.h>
24 #include <linux/of_device.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 #include <linux/sched.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/spi-mem.h>
32 #include <linux/timer.h>
33 
34 #define CQSPI_NAME			"cadence-qspi"
35 #define CQSPI_MAX_CHIPSELECT		16
36 
37 /* Quirks */
38 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
39 #define CQSPI_DISABLE_DAC_MODE		BIT(1)
40 #define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
41 #define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
42 
43 /* Capabilities */
44 #define CQSPI_SUPPORTS_OCTAL		BIT(0)
45 
46 struct cqspi_st;
47 
48 struct cqspi_flash_pdata {
49 	struct cqspi_st	*cqspi;
50 	u32		clk_rate;
51 	u32		read_delay;
52 	u32		tshsl_ns;
53 	u32		tsd2d_ns;
54 	u32		tchsh_ns;
55 	u32		tslch_ns;
56 	u8		inst_width;
57 	u8		addr_width;
58 	u8		data_width;
59 	bool		dtr;
60 	u8		cs;
61 };
62 
63 struct cqspi_st {
64 	struct platform_device	*pdev;
65 
66 	struct clk		*clk;
67 	unsigned int		sclk;
68 
69 	void __iomem		*iobase;
70 	void __iomem		*ahb_base;
71 	resource_size_t		ahb_size;
72 	struct completion	transfer_complete;
73 
74 	struct dma_chan		*rx_chan;
75 	struct completion	rx_dma_complete;
76 	dma_addr_t		mmap_phys_base;
77 
78 	int			current_cs;
79 	unsigned long		master_ref_clk_hz;
80 	bool			is_decoded_cs;
81 	u32			fifo_depth;
82 	u32			fifo_width;
83 	u32			num_chipselect;
84 	bool			rclk_en;
85 	u32			trigger_address;
86 	u32			wr_delay;
87 	bool			use_direct_mode;
88 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
89 	bool			use_dma_read;
90 	u32			pd_dev_id;
91 	bool			wr_completion;
92 };
93 
94 struct cqspi_driver_platdata {
95 	u32 hwcaps_mask;
96 	u8 quirks;
97 	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
98 				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
99 	u32 (*get_dma_status)(struct cqspi_st *cqspi);
100 };
101 
102 /* Operation timeout value */
103 #define CQSPI_TIMEOUT_MS			500
104 #define CQSPI_READ_TIMEOUT_MS			10
105 
106 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
107 #define CQSPI_DUMMY_BYTES_MAX			4
108 #define CQSPI_DUMMY_CLKS_MAX			31
109 
110 #define CQSPI_STIG_DATA_LEN_MAX			8
111 
112 /* Register map */
113 #define CQSPI_REG_CONFIG			0x00
114 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
115 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
116 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
117 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
118 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
119 #define CQSPI_REG_CONFIG_BAUD_LSB		19
120 #define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
121 #define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
122 #define CQSPI_REG_CONFIG_IDLE_LSB		31
123 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
124 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
125 
126 #define CQSPI_REG_RD_INSTR			0x04
127 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
128 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
129 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
130 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
131 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
132 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
133 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
134 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
135 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
136 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
137 
138 #define CQSPI_REG_WR_INSTR			0x08
139 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
140 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
141 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
142 
143 #define CQSPI_REG_DELAY				0x0C
144 #define CQSPI_REG_DELAY_TSLCH_LSB		0
145 #define CQSPI_REG_DELAY_TCHSH_LSB		8
146 #define CQSPI_REG_DELAY_TSD2D_LSB		16
147 #define CQSPI_REG_DELAY_TSHSL_LSB		24
148 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
149 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
150 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
151 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
152 
153 #define CQSPI_REG_READCAPTURE			0x10
154 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
155 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
156 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
157 
158 #define CQSPI_REG_SIZE				0x14
159 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
160 #define CQSPI_REG_SIZE_PAGE_LSB			4
161 #define CQSPI_REG_SIZE_BLOCK_LSB		16
162 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
163 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
164 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
165 
166 #define CQSPI_REG_SRAMPARTITION			0x18
167 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
168 
169 #define CQSPI_REG_DMA				0x20
170 #define CQSPI_REG_DMA_SINGLE_LSB		0
171 #define CQSPI_REG_DMA_BURST_LSB			8
172 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
173 #define CQSPI_REG_DMA_BURST_MASK		0xFF
174 
175 #define CQSPI_REG_REMAP				0x24
176 #define CQSPI_REG_MODE_BIT			0x28
177 
178 #define CQSPI_REG_SDRAMLEVEL			0x2C
179 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
180 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
181 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
182 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
183 
184 #define CQSPI_REG_WR_COMPLETION_CTRL		0x38
185 #define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
186 
187 #define CQSPI_REG_IRQSTATUS			0x40
188 #define CQSPI_REG_IRQMASK			0x44
189 
190 #define CQSPI_REG_INDIRECTRD			0x60
191 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
192 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
193 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
194 
195 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
196 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
197 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
198 
199 #define CQSPI_REG_CMDCTRL			0x90
200 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
201 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
202 #define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
203 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
204 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
205 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
206 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
207 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
208 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
209 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
210 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
211 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
212 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
213 #define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
214 
215 #define CQSPI_REG_INDIRECTWR			0x70
216 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
217 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
218 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
219 
220 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
221 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
222 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
223 
224 #define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
225 
226 #define CQSPI_REG_CMDADDRESS			0x94
227 #define CQSPI_REG_CMDREADDATALOWER		0xA0
228 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
229 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
230 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
231 
232 #define CQSPI_REG_POLLING_STATUS		0xB0
233 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
234 
235 #define CQSPI_REG_OP_EXT_LOWER			0xE0
236 #define CQSPI_REG_OP_EXT_READ_LSB		24
237 #define CQSPI_REG_OP_EXT_WRITE_LSB		16
238 #define CQSPI_REG_OP_EXT_STIG_LSB		0
239 
240 #define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
241 
242 #define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
243 #define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
244 
245 #define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
246 
247 #define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
248 #define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
249 #define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
250 #define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
251 
252 #define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
253 
254 #define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
255 #define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
256 
257 /* Interrupt status bits */
258 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
259 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
260 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
261 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
262 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
263 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
264 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
265 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
266 
267 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
268 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
269 					 CQSPI_REG_IRQ_IND_COMP)
270 
271 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
272 					 CQSPI_REG_IRQ_WATERMARK	| \
273 					 CQSPI_REG_IRQ_UNDERFLOW)
274 
275 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
276 #define CQSPI_DMA_UNALIGN		0x3
277 
278 #define CQSPI_REG_VERSAL_DMA_VAL		0x602
279 
280 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
281 {
282 	u32 val;
283 
284 	return readl_relaxed_poll_timeout(reg, val,
285 					  (((clr ? ~val : val) & mask) == mask),
286 					  10, CQSPI_TIMEOUT_MS * 1000);
287 }
288 
289 static bool cqspi_is_idle(struct cqspi_st *cqspi)
290 {
291 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
292 
293 	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
294 }
295 
296 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
297 {
298 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
299 
300 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
301 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
302 }
303 
304 static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
305 {
306 	u32 dma_status;
307 
308 	dma_status = readl(cqspi->iobase +
309 					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
310 	writel(dma_status, cqspi->iobase +
311 		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
312 
313 	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
314 }
315 
316 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
317 {
318 	struct cqspi_st *cqspi = dev;
319 	unsigned int irq_status;
320 	struct device *device = &cqspi->pdev->dev;
321 	const struct cqspi_driver_platdata *ddata;
322 
323 	ddata = of_device_get_match_data(device);
324 
325 	/* Read interrupt status */
326 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
327 
328 	/* Clear interrupt */
329 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
330 
331 	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
332 		if (ddata->get_dma_status(cqspi)) {
333 			complete(&cqspi->transfer_complete);
334 			return IRQ_HANDLED;
335 		}
336 	}
337 
338 	irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
339 
340 	if (irq_status)
341 		complete(&cqspi->transfer_complete);
342 
343 	return IRQ_HANDLED;
344 }
345 
346 static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
347 {
348 	u32 rdreg = 0;
349 
350 	rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
351 	rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
352 	rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
353 
354 	return rdreg;
355 }
356 
357 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op, bool dtr)
358 {
359 	unsigned int dummy_clk;
360 
361 	if (!op->dummy.nbytes)
362 		return 0;
363 
364 	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
365 	if (dtr)
366 		dummy_clk /= 2;
367 
368 	return dummy_clk;
369 }
370 
371 static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
372 			      const struct spi_mem_op *op)
373 {
374 	/*
375 	 * For an op to be DTR, cmd phase along with every other non-empty
376 	 * phase should have dtr field set to 1. If an op phase has zero
377 	 * nbytes, ignore its dtr field; otherwise, check its dtr field.
378 	 */
379 	f_pdata->dtr = op->cmd.dtr &&
380 		       (!op->addr.nbytes || op->addr.dtr) &&
381 		       (!op->data.nbytes || op->data.dtr);
382 
383 	f_pdata->inst_width = 0;
384 	if (op->cmd.buswidth)
385 		f_pdata->inst_width = ilog2(op->cmd.buswidth);
386 
387 	f_pdata->addr_width = 0;
388 	if (op->addr.buswidth)
389 		f_pdata->addr_width = ilog2(op->addr.buswidth);
390 
391 	f_pdata->data_width = 0;
392 	if (op->data.buswidth)
393 		f_pdata->data_width = ilog2(op->data.buswidth);
394 
395 	/* Right now we only support 8-8-8 DTR mode. */
396 	if (f_pdata->dtr) {
397 		switch (op->cmd.buswidth) {
398 		case 0:
399 		case 8:
400 			break;
401 		default:
402 			return -EINVAL;
403 		}
404 
405 		switch (op->addr.buswidth) {
406 		case 0:
407 		case 8:
408 			break;
409 		default:
410 			return -EINVAL;
411 		}
412 
413 		switch (op->data.buswidth) {
414 		case 0:
415 		case 8:
416 			break;
417 		default:
418 			return -EINVAL;
419 		}
420 	}
421 
422 	return 0;
423 }
424 
425 static int cqspi_wait_idle(struct cqspi_st *cqspi)
426 {
427 	const unsigned int poll_idle_retry = 3;
428 	unsigned int count = 0;
429 	unsigned long timeout;
430 
431 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
432 	while (1) {
433 		/*
434 		 * Read few times in succession to ensure the controller
435 		 * is indeed idle, that is, the bit does not transition
436 		 * low again.
437 		 */
438 		if (cqspi_is_idle(cqspi))
439 			count++;
440 		else
441 			count = 0;
442 
443 		if (count >= poll_idle_retry)
444 			return 0;
445 
446 		if (time_after(jiffies, timeout)) {
447 			/* Timeout, in busy mode. */
448 			dev_err(&cqspi->pdev->dev,
449 				"QSPI is still busy after %dms timeout.\n",
450 				CQSPI_TIMEOUT_MS);
451 			return -ETIMEDOUT;
452 		}
453 
454 		cpu_relax();
455 	}
456 }
457 
458 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
459 {
460 	void __iomem *reg_base = cqspi->iobase;
461 	int ret;
462 
463 	/* Write the CMDCTRL without start execution. */
464 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
465 	/* Start execute */
466 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
467 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
468 
469 	/* Polling for completion. */
470 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
471 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
472 	if (ret) {
473 		dev_err(&cqspi->pdev->dev,
474 			"Flash command execution timed out.\n");
475 		return ret;
476 	}
477 
478 	/* Polling QSPI idle status. */
479 	return cqspi_wait_idle(cqspi);
480 }
481 
482 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
483 				  const struct spi_mem_op *op,
484 				  unsigned int shift)
485 {
486 	struct cqspi_st *cqspi = f_pdata->cqspi;
487 	void __iomem *reg_base = cqspi->iobase;
488 	unsigned int reg;
489 	u8 ext;
490 
491 	if (op->cmd.nbytes != 2)
492 		return -EINVAL;
493 
494 	/* Opcode extension is the LSB. */
495 	ext = op->cmd.opcode & 0xff;
496 
497 	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
498 	reg &= ~(0xff << shift);
499 	reg |= ext << shift;
500 	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
501 
502 	return 0;
503 }
504 
505 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
506 			    const struct spi_mem_op *op, unsigned int shift,
507 			    bool enable)
508 {
509 	struct cqspi_st *cqspi = f_pdata->cqspi;
510 	void __iomem *reg_base = cqspi->iobase;
511 	unsigned int reg;
512 	int ret;
513 
514 	reg = readl(reg_base + CQSPI_REG_CONFIG);
515 
516 	/*
517 	 * We enable dual byte opcode here. The callers have to set up the
518 	 * extension opcode based on which type of operation it is.
519 	 */
520 	if (enable) {
521 		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
522 		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
523 
524 		/* Set up command opcode extension. */
525 		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
526 		if (ret)
527 			return ret;
528 	} else {
529 		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
530 		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
531 	}
532 
533 	writel(reg, reg_base + CQSPI_REG_CONFIG);
534 
535 	return cqspi_wait_idle(cqspi);
536 }
537 
538 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
539 			      const struct spi_mem_op *op)
540 {
541 	struct cqspi_st *cqspi = f_pdata->cqspi;
542 	void __iomem *reg_base = cqspi->iobase;
543 	u8 *rxbuf = op->data.buf.in;
544 	u8 opcode;
545 	size_t n_rx = op->data.nbytes;
546 	unsigned int rdreg;
547 	unsigned int reg;
548 	unsigned int dummy_clk;
549 	size_t read_len;
550 	int status;
551 
552 	status = cqspi_set_protocol(f_pdata, op);
553 	if (status)
554 		return status;
555 
556 	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
557 				  f_pdata->dtr);
558 	if (status)
559 		return status;
560 
561 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
562 		dev_err(&cqspi->pdev->dev,
563 			"Invalid input argument, len %zu rxbuf 0x%p\n",
564 			n_rx, rxbuf);
565 		return -EINVAL;
566 	}
567 
568 	if (f_pdata->dtr)
569 		opcode = op->cmd.opcode >> 8;
570 	else
571 		opcode = op->cmd.opcode;
572 
573 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
574 
575 	rdreg = cqspi_calc_rdreg(f_pdata);
576 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
577 
578 	dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
579 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
580 		return -EOPNOTSUPP;
581 
582 	if (dummy_clk)
583 		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
584 		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
585 
586 	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
587 
588 	/* 0 means 1 byte. */
589 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
590 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
591 	status = cqspi_exec_flash_cmd(cqspi, reg);
592 	if (status)
593 		return status;
594 
595 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
596 
597 	/* Put the read value into rx_buf */
598 	read_len = (n_rx > 4) ? 4 : n_rx;
599 	memcpy(rxbuf, &reg, read_len);
600 	rxbuf += read_len;
601 
602 	if (n_rx > 4) {
603 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
604 
605 		read_len = n_rx - read_len;
606 		memcpy(rxbuf, &reg, read_len);
607 	}
608 
609 	return 0;
610 }
611 
612 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
613 			       const struct spi_mem_op *op)
614 {
615 	struct cqspi_st *cqspi = f_pdata->cqspi;
616 	void __iomem *reg_base = cqspi->iobase;
617 	u8 opcode;
618 	const u8 *txbuf = op->data.buf.out;
619 	size_t n_tx = op->data.nbytes;
620 	unsigned int reg;
621 	unsigned int data;
622 	size_t write_len;
623 	int ret;
624 
625 	ret = cqspi_set_protocol(f_pdata, op);
626 	if (ret)
627 		return ret;
628 
629 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
630 			       f_pdata->dtr);
631 	if (ret)
632 		return ret;
633 
634 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
635 		dev_err(&cqspi->pdev->dev,
636 			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
637 			n_tx, txbuf);
638 		return -EINVAL;
639 	}
640 
641 	reg = cqspi_calc_rdreg(f_pdata);
642 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
643 
644 	if (f_pdata->dtr)
645 		opcode = op->cmd.opcode >> 8;
646 	else
647 		opcode = op->cmd.opcode;
648 
649 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
650 
651 	if (op->addr.nbytes) {
652 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
653 		reg |= ((op->addr.nbytes - 1) &
654 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
655 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
656 
657 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
658 	}
659 
660 	if (n_tx) {
661 		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
662 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
663 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
664 		data = 0;
665 		write_len = (n_tx > 4) ? 4 : n_tx;
666 		memcpy(&data, txbuf, write_len);
667 		txbuf += write_len;
668 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
669 
670 		if (n_tx > 4) {
671 			data = 0;
672 			write_len = n_tx - 4;
673 			memcpy(&data, txbuf, write_len);
674 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
675 		}
676 	}
677 
678 	return cqspi_exec_flash_cmd(cqspi, reg);
679 }
680 
681 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
682 			    const struct spi_mem_op *op)
683 {
684 	struct cqspi_st *cqspi = f_pdata->cqspi;
685 	void __iomem *reg_base = cqspi->iobase;
686 	unsigned int dummy_clk = 0;
687 	unsigned int reg;
688 	int ret;
689 	u8 opcode;
690 
691 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB,
692 			       f_pdata->dtr);
693 	if (ret)
694 		return ret;
695 
696 	if (f_pdata->dtr)
697 		opcode = op->cmd.opcode >> 8;
698 	else
699 		opcode = op->cmd.opcode;
700 
701 	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
702 	reg |= cqspi_calc_rdreg(f_pdata);
703 
704 	/* Setup dummy clock cycles */
705 	dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
706 
707 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
708 		return -EOPNOTSUPP;
709 
710 	if (dummy_clk)
711 		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
712 		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
713 
714 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
715 
716 	/* Set address width */
717 	reg = readl(reg_base + CQSPI_REG_SIZE);
718 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
719 	reg |= (op->addr.nbytes - 1);
720 	writel(reg, reg_base + CQSPI_REG_SIZE);
721 	return 0;
722 }
723 
724 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
725 				       u8 *rxbuf, loff_t from_addr,
726 				       const size_t n_rx)
727 {
728 	struct cqspi_st *cqspi = f_pdata->cqspi;
729 	struct device *dev = &cqspi->pdev->dev;
730 	void __iomem *reg_base = cqspi->iobase;
731 	void __iomem *ahb_base = cqspi->ahb_base;
732 	unsigned int remaining = n_rx;
733 	unsigned int mod_bytes = n_rx % 4;
734 	unsigned int bytes_to_read = 0;
735 	u8 *rxbuf_end = rxbuf + n_rx;
736 	int ret = 0;
737 
738 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
739 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
740 
741 	/* Clear all interrupts. */
742 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
743 
744 	writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
745 
746 	reinit_completion(&cqspi->transfer_complete);
747 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
748 	       reg_base + CQSPI_REG_INDIRECTRD);
749 
750 	while (remaining > 0) {
751 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
752 						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
753 			ret = -ETIMEDOUT;
754 
755 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
756 
757 		if (ret && bytes_to_read == 0) {
758 			dev_err(dev, "Indirect read timeout, no bytes\n");
759 			goto failrd;
760 		}
761 
762 		while (bytes_to_read != 0) {
763 			unsigned int word_remain = round_down(remaining, 4);
764 
765 			bytes_to_read *= cqspi->fifo_width;
766 			bytes_to_read = bytes_to_read > remaining ?
767 					remaining : bytes_to_read;
768 			bytes_to_read = round_down(bytes_to_read, 4);
769 			/* Read 4 byte word chunks then single bytes */
770 			if (bytes_to_read) {
771 				ioread32_rep(ahb_base, rxbuf,
772 					     (bytes_to_read / 4));
773 			} else if (!word_remain && mod_bytes) {
774 				unsigned int temp = ioread32(ahb_base);
775 
776 				bytes_to_read = mod_bytes;
777 				memcpy(rxbuf, &temp, min((unsigned int)
778 							 (rxbuf_end - rxbuf),
779 							 bytes_to_read));
780 			}
781 			rxbuf += bytes_to_read;
782 			remaining -= bytes_to_read;
783 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
784 		}
785 
786 		if (remaining > 0)
787 			reinit_completion(&cqspi->transfer_complete);
788 	}
789 
790 	/* Check indirect done status */
791 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
792 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
793 	if (ret) {
794 		dev_err(dev, "Indirect read completion error (%i)\n", ret);
795 		goto failrd;
796 	}
797 
798 	/* Disable interrupt */
799 	writel(0, reg_base + CQSPI_REG_IRQMASK);
800 
801 	/* Clear indirect completion status */
802 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
803 
804 	return 0;
805 
806 failrd:
807 	/* Disable interrupt */
808 	writel(0, reg_base + CQSPI_REG_IRQMASK);
809 
810 	/* Cancel the indirect read */
811 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
812 	       reg_base + CQSPI_REG_INDIRECTRD);
813 	return ret;
814 }
815 
816 static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
817 					  u_char *rxbuf, loff_t from_addr,
818 					  size_t n_rx)
819 {
820 	struct cqspi_st *cqspi = f_pdata->cqspi;
821 	struct device *dev = &cqspi->pdev->dev;
822 	void __iomem *reg_base = cqspi->iobase;
823 	u32 reg, bytes_to_dma;
824 	loff_t addr = from_addr;
825 	void *buf = rxbuf;
826 	dma_addr_t dma_addr;
827 	u8 bytes_rem;
828 	int ret = 0;
829 
830 	bytes_rem = n_rx % 4;
831 	bytes_to_dma = (n_rx - bytes_rem);
832 
833 	if (!bytes_to_dma)
834 		goto nondmard;
835 
836 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
837 	if (ret)
838 		return ret;
839 
840 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
841 	reg |= CQSPI_REG_CONFIG_DMA_MASK;
842 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
843 
844 	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
845 	if (dma_mapping_error(dev, dma_addr)) {
846 		dev_err(dev, "dma mapping failed\n");
847 		return -ENOMEM;
848 	}
849 
850 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
851 	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
852 	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
853 	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
854 
855 	/* Clear all interrupts. */
856 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
857 
858 	/* Enable DMA done interrupt */
859 	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
860 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
861 
862 	/* Default DMA periph configuration */
863 	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
864 
865 	/* Configure DMA Dst address */
866 	writel(lower_32_bits(dma_addr),
867 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
868 	writel(upper_32_bits(dma_addr),
869 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
870 
871 	/* Configure DMA Src address */
872 	writel(cqspi->trigger_address, reg_base +
873 	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
874 
875 	/* Set DMA destination size */
876 	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
877 
878 	/* Set DMA destination control */
879 	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
880 	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
881 
882 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
883 	       reg_base + CQSPI_REG_INDIRECTRD);
884 
885 	reinit_completion(&cqspi->transfer_complete);
886 
887 	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
888 					 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) {
889 		ret = -ETIMEDOUT;
890 		goto failrd;
891 	}
892 
893 	/* Disable DMA interrupt */
894 	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
895 
896 	/* Clear indirect completion status */
897 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
898 	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
899 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
900 
901 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
902 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
903 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
904 
905 	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
906 					PM_OSPI_MUX_SEL_LINEAR);
907 	if (ret)
908 		return ret;
909 
910 nondmard:
911 	if (bytes_rem) {
912 		addr += bytes_to_dma;
913 		buf += bytes_to_dma;
914 		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
915 						  bytes_rem);
916 		if (ret)
917 			return ret;
918 	}
919 
920 	return 0;
921 
922 failrd:
923 	/* Disable DMA interrupt */
924 	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
925 
926 	/* Cancel the indirect read */
927 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
928 	       reg_base + CQSPI_REG_INDIRECTRD);
929 
930 	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
931 
932 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
933 	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
934 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
935 
936 	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
937 
938 	return ret;
939 }
940 
941 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
942 			     const struct spi_mem_op *op)
943 {
944 	unsigned int reg;
945 	int ret;
946 	struct cqspi_st *cqspi = f_pdata->cqspi;
947 	void __iomem *reg_base = cqspi->iobase;
948 	u8 opcode;
949 
950 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB,
951 			       f_pdata->dtr);
952 	if (ret)
953 		return ret;
954 
955 	if (f_pdata->dtr)
956 		opcode = op->cmd.opcode >> 8;
957 	else
958 		opcode = op->cmd.opcode;
959 
960 	/* Set opcode. */
961 	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
962 	reg |= f_pdata->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
963 	reg |= f_pdata->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
964 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
965 	reg = cqspi_calc_rdreg(f_pdata);
966 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
967 
968 	/*
969 	 * SPI NAND flashes require the address of the status register to be
970 	 * passed in the Read SR command. Also, some SPI NOR flashes like the
971 	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
972 	 * command in DTR mode.
973 	 *
974 	 * But this controller does not support address phase in the Read SR
975 	 * command when doing auto-HW polling. So, disable write completion
976 	 * polling on the controller's side. spinand and spi-nor will take
977 	 * care of polling the status register.
978 	 */
979 	if (cqspi->wr_completion) {
980 		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
981 		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
982 		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
983 	}
984 
985 	reg = readl(reg_base + CQSPI_REG_SIZE);
986 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
987 	reg |= (op->addr.nbytes - 1);
988 	writel(reg, reg_base + CQSPI_REG_SIZE);
989 	return 0;
990 }
991 
992 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
993 					loff_t to_addr, const u8 *txbuf,
994 					const size_t n_tx)
995 {
996 	struct cqspi_st *cqspi = f_pdata->cqspi;
997 	struct device *dev = &cqspi->pdev->dev;
998 	void __iomem *reg_base = cqspi->iobase;
999 	unsigned int remaining = n_tx;
1000 	unsigned int write_bytes;
1001 	int ret;
1002 
1003 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1004 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1005 
1006 	/* Clear all interrupts. */
1007 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1008 
1009 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1010 
1011 	reinit_completion(&cqspi->transfer_complete);
1012 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
1013 	       reg_base + CQSPI_REG_INDIRECTWR);
1014 	/*
1015 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1016 	 * Controller programming sequence, couple of cycles of
1017 	 * QSPI_REF_CLK delay is required for the above bit to
1018 	 * be internally synchronized by the QSPI module. Provide 5
1019 	 * cycles of delay.
1020 	 */
1021 	if (cqspi->wr_delay)
1022 		ndelay(cqspi->wr_delay);
1023 
1024 	while (remaining > 0) {
1025 		size_t write_words, mod_bytes;
1026 
1027 		write_bytes = remaining;
1028 		write_words = write_bytes / 4;
1029 		mod_bytes = write_bytes % 4;
1030 		/* Write 4 bytes at a time then single bytes. */
1031 		if (write_words) {
1032 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1033 			txbuf += (write_words * 4);
1034 		}
1035 		if (mod_bytes) {
1036 			unsigned int temp = 0xFFFFFFFF;
1037 
1038 			memcpy(&temp, txbuf, mod_bytes);
1039 			iowrite32(temp, cqspi->ahb_base);
1040 			txbuf += mod_bytes;
1041 		}
1042 
1043 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1044 						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1045 			dev_err(dev, "Indirect write timeout\n");
1046 			ret = -ETIMEDOUT;
1047 			goto failwr;
1048 		}
1049 
1050 		remaining -= write_bytes;
1051 
1052 		if (remaining > 0)
1053 			reinit_completion(&cqspi->transfer_complete);
1054 	}
1055 
1056 	/* Check indirect done status */
1057 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1058 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1059 	if (ret) {
1060 		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1061 		goto failwr;
1062 	}
1063 
1064 	/* Disable interrupt. */
1065 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1066 
1067 	/* Clear indirect completion status */
1068 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1069 
1070 	cqspi_wait_idle(cqspi);
1071 
1072 	return 0;
1073 
1074 failwr:
1075 	/* Disable interrupt. */
1076 	writel(0, reg_base + CQSPI_REG_IRQMASK);
1077 
1078 	/* Cancel the indirect write */
1079 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1080 	       reg_base + CQSPI_REG_INDIRECTWR);
1081 	return ret;
1082 }
1083 
1084 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1085 {
1086 	struct cqspi_st *cqspi = f_pdata->cqspi;
1087 	void __iomem *reg_base = cqspi->iobase;
1088 	unsigned int chip_select = f_pdata->cs;
1089 	unsigned int reg;
1090 
1091 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1092 	if (cqspi->is_decoded_cs) {
1093 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1094 	} else {
1095 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1096 
1097 		/* Convert CS if without decoder.
1098 		 * CS0 to 4b'1110
1099 		 * CS1 to 4b'1101
1100 		 * CS2 to 4b'1011
1101 		 * CS3 to 4b'0111
1102 		 */
1103 		chip_select = 0xF & ~(1 << chip_select);
1104 	}
1105 
1106 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1107 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1108 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1109 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1110 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1111 }
1112 
1113 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1114 					   const unsigned int ns_val)
1115 {
1116 	unsigned int ticks;
1117 
1118 	ticks = ref_clk_hz / 1000;	/* kHz */
1119 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1120 
1121 	return ticks;
1122 }
1123 
1124 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1125 {
1126 	struct cqspi_st *cqspi = f_pdata->cqspi;
1127 	void __iomem *iobase = cqspi->iobase;
1128 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1129 	unsigned int tshsl, tchsh, tslch, tsd2d;
1130 	unsigned int reg;
1131 	unsigned int tsclk;
1132 
1133 	/* calculate the number of ref ticks for one sclk tick */
1134 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1135 
1136 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1137 	/* this particular value must be at least one sclk */
1138 	if (tshsl < tsclk)
1139 		tshsl = tsclk;
1140 
1141 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1142 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1143 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1144 
1145 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1146 	       << CQSPI_REG_DELAY_TSHSL_LSB;
1147 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1148 		<< CQSPI_REG_DELAY_TCHSH_LSB;
1149 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1150 		<< CQSPI_REG_DELAY_TSLCH_LSB;
1151 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1152 		<< CQSPI_REG_DELAY_TSD2D_LSB;
1153 	writel(reg, iobase + CQSPI_REG_DELAY);
1154 }
1155 
1156 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1157 {
1158 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1159 	void __iomem *reg_base = cqspi->iobase;
1160 	u32 reg, div;
1161 
1162 	/* Recalculate the baudrate divisor based on QSPI specification. */
1163 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1164 
1165 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1166 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1167 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1168 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1169 }
1170 
1171 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1172 				   const bool bypass,
1173 				   const unsigned int delay)
1174 {
1175 	void __iomem *reg_base = cqspi->iobase;
1176 	unsigned int reg;
1177 
1178 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1179 
1180 	if (bypass)
1181 		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1182 	else
1183 		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1184 
1185 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1186 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1187 
1188 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1189 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1190 
1191 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1192 }
1193 
1194 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1195 {
1196 	void __iomem *reg_base = cqspi->iobase;
1197 	unsigned int reg;
1198 
1199 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1200 
1201 	if (enable)
1202 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1203 	else
1204 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1205 
1206 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1207 }
1208 
1209 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1210 			    unsigned long sclk)
1211 {
1212 	struct cqspi_st *cqspi = f_pdata->cqspi;
1213 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1214 	int switch_ck = (cqspi->sclk != sclk);
1215 
1216 	if (switch_cs || switch_ck)
1217 		cqspi_controller_enable(cqspi, 0);
1218 
1219 	/* Switch chip select. */
1220 	if (switch_cs) {
1221 		cqspi->current_cs = f_pdata->cs;
1222 		cqspi_chipselect(f_pdata);
1223 	}
1224 
1225 	/* Setup baudrate divisor and delays */
1226 	if (switch_ck) {
1227 		cqspi->sclk = sclk;
1228 		cqspi_config_baudrate_div(cqspi);
1229 		cqspi_delay(f_pdata);
1230 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1231 				       f_pdata->read_delay);
1232 	}
1233 
1234 	if (switch_cs || switch_ck)
1235 		cqspi_controller_enable(cqspi, 1);
1236 }
1237 
1238 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1239 			   const struct spi_mem_op *op)
1240 {
1241 	struct cqspi_st *cqspi = f_pdata->cqspi;
1242 	loff_t to = op->addr.val;
1243 	size_t len = op->data.nbytes;
1244 	const u_char *buf = op->data.buf.out;
1245 	int ret;
1246 
1247 	ret = cqspi_set_protocol(f_pdata, op);
1248 	if (ret)
1249 		return ret;
1250 
1251 	ret = cqspi_write_setup(f_pdata, op);
1252 	if (ret)
1253 		return ret;
1254 
1255 	/*
1256 	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1257 	 * address (all 0s) with the read status register command in DTR mode.
1258 	 * But this controller does not support sending dummy address bytes to
1259 	 * the flash when it is polling the write completion register in DTR
1260 	 * mode. So, we can not use direct mode when in DTR mode for writing
1261 	 * data.
1262 	 */
1263 	if (!f_pdata->dtr && cqspi->use_direct_mode &&
1264 	    ((to + len) <= cqspi->ahb_size)) {
1265 		memcpy_toio(cqspi->ahb_base + to, buf, len);
1266 		return cqspi_wait_idle(cqspi);
1267 	}
1268 
1269 	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1270 }
1271 
1272 static void cqspi_rx_dma_callback(void *param)
1273 {
1274 	struct cqspi_st *cqspi = param;
1275 
1276 	complete(&cqspi->rx_dma_complete);
1277 }
1278 
1279 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1280 				     u_char *buf, loff_t from, size_t len)
1281 {
1282 	struct cqspi_st *cqspi = f_pdata->cqspi;
1283 	struct device *dev = &cqspi->pdev->dev;
1284 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1285 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1286 	int ret = 0;
1287 	struct dma_async_tx_descriptor *tx;
1288 	dma_cookie_t cookie;
1289 	dma_addr_t dma_dst;
1290 	struct device *ddev;
1291 
1292 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1293 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1294 		return 0;
1295 	}
1296 
1297 	ddev = cqspi->rx_chan->device->dev;
1298 	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1299 	if (dma_mapping_error(ddev, dma_dst)) {
1300 		dev_err(dev, "dma mapping failed\n");
1301 		return -ENOMEM;
1302 	}
1303 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1304 				       len, flags);
1305 	if (!tx) {
1306 		dev_err(dev, "device_prep_dma_memcpy error\n");
1307 		ret = -EIO;
1308 		goto err_unmap;
1309 	}
1310 
1311 	tx->callback = cqspi_rx_dma_callback;
1312 	tx->callback_param = cqspi;
1313 	cookie = tx->tx_submit(tx);
1314 	reinit_completion(&cqspi->rx_dma_complete);
1315 
1316 	ret = dma_submit_error(cookie);
1317 	if (ret) {
1318 		dev_err(dev, "dma_submit_error %d\n", cookie);
1319 		ret = -EIO;
1320 		goto err_unmap;
1321 	}
1322 
1323 	dma_async_issue_pending(cqspi->rx_chan);
1324 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1325 					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1326 		dmaengine_terminate_sync(cqspi->rx_chan);
1327 		dev_err(dev, "DMA wait_for_completion_timeout\n");
1328 		ret = -ETIMEDOUT;
1329 		goto err_unmap;
1330 	}
1331 
1332 err_unmap:
1333 	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1334 
1335 	return ret;
1336 }
1337 
1338 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1339 			  const struct spi_mem_op *op)
1340 {
1341 	struct cqspi_st *cqspi = f_pdata->cqspi;
1342 	struct device *dev = &cqspi->pdev->dev;
1343 	const struct cqspi_driver_platdata *ddata;
1344 	loff_t from = op->addr.val;
1345 	size_t len = op->data.nbytes;
1346 	u_char *buf = op->data.buf.in;
1347 	u64 dma_align = (u64)(uintptr_t)buf;
1348 	int ret;
1349 
1350 	ddata = of_device_get_match_data(dev);
1351 	ret = cqspi_set_protocol(f_pdata, op);
1352 	if (ret)
1353 		return ret;
1354 
1355 	ret = cqspi_read_setup(f_pdata, op);
1356 	if (ret)
1357 		return ret;
1358 
1359 	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1360 		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1361 
1362 	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1363 	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1364 		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1365 
1366 	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1367 }
1368 
1369 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1370 {
1371 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1372 	struct cqspi_flash_pdata *f_pdata;
1373 
1374 	f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1375 	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1376 
1377 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1378 		if (!op->addr.nbytes)
1379 			return cqspi_command_read(f_pdata, op);
1380 
1381 		return cqspi_read(f_pdata, op);
1382 	}
1383 
1384 	if (!op->addr.nbytes || !op->data.buf.out)
1385 		return cqspi_command_write(f_pdata, op);
1386 
1387 	return cqspi_write(f_pdata, op);
1388 }
1389 
1390 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1391 {
1392 	int ret;
1393 
1394 	ret = cqspi_mem_process(mem, op);
1395 	if (ret)
1396 		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1397 
1398 	return ret;
1399 }
1400 
1401 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1402 				  const struct spi_mem_op *op)
1403 {
1404 	bool all_true, all_false;
1405 
1406 	/*
1407 	 * op->dummy.dtr is required for converting nbytes into ncycles.
1408 	 * Also, don't check the dtr field of the op phase having zero nbytes.
1409 	 */
1410 	all_true = op->cmd.dtr &&
1411 		   (!op->addr.nbytes || op->addr.dtr) &&
1412 		   (!op->dummy.nbytes || op->dummy.dtr) &&
1413 		   (!op->data.nbytes || op->data.dtr);
1414 
1415 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1416 		    !op->data.dtr;
1417 
1418 	if (all_true) {
1419 		/* Right now we only support 8-8-8 DTR mode. */
1420 		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1421 			return false;
1422 		if (op->addr.nbytes && op->addr.buswidth != 8)
1423 			return false;
1424 		if (op->data.nbytes && op->data.buswidth != 8)
1425 			return false;
1426 	} else if (all_false) {
1427 		/* Only 1-1-X ops are supported without DTR */
1428 		if (op->cmd.nbytes && op->cmd.buswidth > 1)
1429 			return false;
1430 		if (op->addr.nbytes && op->addr.buswidth > 1)
1431 			return false;
1432 	} else {
1433 		/* Mixed DTR modes are not supported. */
1434 		return false;
1435 	}
1436 
1437 	return spi_mem_default_supports_op(mem, op);
1438 }
1439 
1440 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1441 				    struct cqspi_flash_pdata *f_pdata,
1442 				    struct device_node *np)
1443 {
1444 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1445 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1446 		return -ENXIO;
1447 	}
1448 
1449 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1450 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1451 		return -ENXIO;
1452 	}
1453 
1454 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1455 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1456 		return -ENXIO;
1457 	}
1458 
1459 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1460 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1461 		return -ENXIO;
1462 	}
1463 
1464 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1465 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1466 		return -ENXIO;
1467 	}
1468 
1469 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1470 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1471 		return -ENXIO;
1472 	}
1473 
1474 	return 0;
1475 }
1476 
1477 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1478 {
1479 	struct device *dev = &cqspi->pdev->dev;
1480 	struct device_node *np = dev->of_node;
1481 	u32 id[2];
1482 
1483 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1484 
1485 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1486 		dev_err(dev, "couldn't determine fifo-depth\n");
1487 		return -ENXIO;
1488 	}
1489 
1490 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1491 		dev_err(dev, "couldn't determine fifo-width\n");
1492 		return -ENXIO;
1493 	}
1494 
1495 	if (of_property_read_u32(np, "cdns,trigger-address",
1496 				 &cqspi->trigger_address)) {
1497 		dev_err(dev, "couldn't determine trigger-address\n");
1498 		return -ENXIO;
1499 	}
1500 
1501 	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1502 		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1503 
1504 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1505 
1506 	if (!of_property_read_u32_array(np, "power-domains", id,
1507 					ARRAY_SIZE(id)))
1508 		cqspi->pd_dev_id = id[1];
1509 
1510 	return 0;
1511 }
1512 
1513 static void cqspi_controller_init(struct cqspi_st *cqspi)
1514 {
1515 	u32 reg;
1516 
1517 	cqspi_controller_enable(cqspi, 0);
1518 
1519 	/* Configure the remap address register, no remap */
1520 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1521 
1522 	/* Disable all interrupts. */
1523 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1524 
1525 	/* Configure the SRAM split to 1:1 . */
1526 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1527 
1528 	/* Load indirect trigger address. */
1529 	writel(cqspi->trigger_address,
1530 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1531 
1532 	/* Program read watermark -- 1/2 of the FIFO. */
1533 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1534 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1535 	/* Program write watermark -- 1/8 of the FIFO. */
1536 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1537 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1538 
1539 	/* Disable direct access controller */
1540 	if (!cqspi->use_direct_mode) {
1541 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1542 		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1543 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1544 	}
1545 
1546 	/* Enable DMA interface */
1547 	if (cqspi->use_dma_read) {
1548 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1549 		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1550 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1551 	}
1552 
1553 	cqspi_controller_enable(cqspi, 1);
1554 }
1555 
1556 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1557 {
1558 	dma_cap_mask_t mask;
1559 
1560 	dma_cap_zero(mask);
1561 	dma_cap_set(DMA_MEMCPY, mask);
1562 
1563 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1564 	if (IS_ERR(cqspi->rx_chan)) {
1565 		int ret = PTR_ERR(cqspi->rx_chan);
1566 		cqspi->rx_chan = NULL;
1567 		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1568 	}
1569 	init_completion(&cqspi->rx_dma_complete);
1570 
1571 	return 0;
1572 }
1573 
1574 static const char *cqspi_get_name(struct spi_mem *mem)
1575 {
1576 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1577 	struct device *dev = &cqspi->pdev->dev;
1578 
1579 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1580 }
1581 
1582 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1583 	.exec_op = cqspi_exec_mem_op,
1584 	.get_name = cqspi_get_name,
1585 	.supports_op = cqspi_supports_mem_op,
1586 };
1587 
1588 static const struct spi_controller_mem_caps cqspi_mem_caps = {
1589 	.dtr = true,
1590 };
1591 
1592 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1593 {
1594 	struct platform_device *pdev = cqspi->pdev;
1595 	struct device *dev = &pdev->dev;
1596 	struct device_node *np = dev->of_node;
1597 	struct cqspi_flash_pdata *f_pdata;
1598 	unsigned int cs;
1599 	int ret;
1600 
1601 	/* Get flash device data */
1602 	for_each_available_child_of_node(dev->of_node, np) {
1603 		ret = of_property_read_u32(np, "reg", &cs);
1604 		if (ret) {
1605 			dev_err(dev, "Couldn't determine chip select.\n");
1606 			of_node_put(np);
1607 			return ret;
1608 		}
1609 
1610 		if (cs >= CQSPI_MAX_CHIPSELECT) {
1611 			dev_err(dev, "Chip select %d out of range.\n", cs);
1612 			of_node_put(np);
1613 			return -EINVAL;
1614 		}
1615 
1616 		f_pdata = &cqspi->f_pdata[cs];
1617 		f_pdata->cqspi = cqspi;
1618 		f_pdata->cs = cs;
1619 
1620 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1621 		if (ret) {
1622 			of_node_put(np);
1623 			return ret;
1624 		}
1625 	}
1626 
1627 	return 0;
1628 }
1629 
1630 static int cqspi_probe(struct platform_device *pdev)
1631 {
1632 	const struct cqspi_driver_platdata *ddata;
1633 	struct reset_control *rstc, *rstc_ocp;
1634 	struct device *dev = &pdev->dev;
1635 	struct spi_master *master;
1636 	struct resource *res_ahb;
1637 	struct cqspi_st *cqspi;
1638 	struct resource *res;
1639 	int ret;
1640 	int irq;
1641 
1642 	master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1643 	if (!master) {
1644 		dev_err(&pdev->dev, "spi_alloc_master failed\n");
1645 		return -ENOMEM;
1646 	}
1647 	master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1648 	master->mem_ops = &cqspi_mem_ops;
1649 	master->mem_caps = &cqspi_mem_caps;
1650 	master->dev.of_node = pdev->dev.of_node;
1651 
1652 	cqspi = spi_master_get_devdata(master);
1653 
1654 	cqspi->pdev = pdev;
1655 	platform_set_drvdata(pdev, cqspi);
1656 
1657 	/* Obtain configuration from OF. */
1658 	ret = cqspi_of_get_pdata(cqspi);
1659 	if (ret) {
1660 		dev_err(dev, "Cannot get mandatory OF data.\n");
1661 		ret = -ENODEV;
1662 		goto probe_master_put;
1663 	}
1664 
1665 	/* Obtain QSPI clock. */
1666 	cqspi->clk = devm_clk_get(dev, NULL);
1667 	if (IS_ERR(cqspi->clk)) {
1668 		dev_err(dev, "Cannot claim QSPI clock.\n");
1669 		ret = PTR_ERR(cqspi->clk);
1670 		goto probe_master_put;
1671 	}
1672 
1673 	/* Obtain and remap controller address. */
1674 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1675 	cqspi->iobase = devm_ioremap_resource(dev, res);
1676 	if (IS_ERR(cqspi->iobase)) {
1677 		dev_err(dev, "Cannot remap controller address.\n");
1678 		ret = PTR_ERR(cqspi->iobase);
1679 		goto probe_master_put;
1680 	}
1681 
1682 	/* Obtain and remap AHB address. */
1683 	res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1684 	cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1685 	if (IS_ERR(cqspi->ahb_base)) {
1686 		dev_err(dev, "Cannot remap AHB address.\n");
1687 		ret = PTR_ERR(cqspi->ahb_base);
1688 		goto probe_master_put;
1689 	}
1690 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1691 	cqspi->ahb_size = resource_size(res_ahb);
1692 
1693 	init_completion(&cqspi->transfer_complete);
1694 
1695 	/* Obtain IRQ line. */
1696 	irq = platform_get_irq(pdev, 0);
1697 	if (irq < 0) {
1698 		ret = -ENXIO;
1699 		goto probe_master_put;
1700 	}
1701 
1702 	pm_runtime_enable(dev);
1703 	ret = pm_runtime_get_sync(dev);
1704 	if (ret < 0) {
1705 		pm_runtime_put_noidle(dev);
1706 		goto probe_master_put;
1707 	}
1708 
1709 	ret = clk_prepare_enable(cqspi->clk);
1710 	if (ret) {
1711 		dev_err(dev, "Cannot enable QSPI clock.\n");
1712 		goto probe_clk_failed;
1713 	}
1714 
1715 	/* Obtain QSPI reset control */
1716 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1717 	if (IS_ERR(rstc)) {
1718 		ret = PTR_ERR(rstc);
1719 		dev_err(dev, "Cannot get QSPI reset.\n");
1720 		goto probe_reset_failed;
1721 	}
1722 
1723 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1724 	if (IS_ERR(rstc_ocp)) {
1725 		ret = PTR_ERR(rstc_ocp);
1726 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1727 		goto probe_reset_failed;
1728 	}
1729 
1730 	reset_control_assert(rstc);
1731 	reset_control_deassert(rstc);
1732 
1733 	reset_control_assert(rstc_ocp);
1734 	reset_control_deassert(rstc_ocp);
1735 
1736 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1737 	master->max_speed_hz = cqspi->master_ref_clk_hz;
1738 
1739 	/* write completion is supported by default */
1740 	cqspi->wr_completion = true;
1741 
1742 	ddata  = of_device_get_match_data(dev);
1743 	if (ddata) {
1744 		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1745 			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1746 						cqspi->master_ref_clk_hz);
1747 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1748 			master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1749 		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1750 			cqspi->use_direct_mode = true;
1751 		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1752 			cqspi->use_dma_read = true;
1753 		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1754 			cqspi->wr_completion = false;
1755 
1756 		if (of_device_is_compatible(pdev->dev.of_node,
1757 					    "xlnx,versal-ospi-1.0"))
1758 			dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1759 	}
1760 
1761 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1762 			       pdev->name, cqspi);
1763 	if (ret) {
1764 		dev_err(dev, "Cannot request IRQ.\n");
1765 		goto probe_reset_failed;
1766 	}
1767 
1768 	cqspi_wait_idle(cqspi);
1769 	cqspi_controller_init(cqspi);
1770 	cqspi->current_cs = -1;
1771 	cqspi->sclk = 0;
1772 
1773 	master->num_chipselect = cqspi->num_chipselect;
1774 
1775 	ret = cqspi_setup_flash(cqspi);
1776 	if (ret) {
1777 		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1778 		goto probe_setup_failed;
1779 	}
1780 
1781 	if (cqspi->use_direct_mode) {
1782 		ret = cqspi_request_mmap_dma(cqspi);
1783 		if (ret == -EPROBE_DEFER)
1784 			goto probe_setup_failed;
1785 	}
1786 
1787 	ret = devm_spi_register_master(dev, master);
1788 	if (ret) {
1789 		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1790 		goto probe_setup_failed;
1791 	}
1792 
1793 	return 0;
1794 probe_setup_failed:
1795 	cqspi_controller_enable(cqspi, 0);
1796 probe_reset_failed:
1797 	clk_disable_unprepare(cqspi->clk);
1798 probe_clk_failed:
1799 	pm_runtime_put_sync(dev);
1800 	pm_runtime_disable(dev);
1801 probe_master_put:
1802 	spi_master_put(master);
1803 	return ret;
1804 }
1805 
1806 static int cqspi_remove(struct platform_device *pdev)
1807 {
1808 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1809 
1810 	cqspi_controller_enable(cqspi, 0);
1811 
1812 	if (cqspi->rx_chan)
1813 		dma_release_channel(cqspi->rx_chan);
1814 
1815 	clk_disable_unprepare(cqspi->clk);
1816 
1817 	pm_runtime_put_sync(&pdev->dev);
1818 	pm_runtime_disable(&pdev->dev);
1819 
1820 	return 0;
1821 }
1822 
1823 #ifdef CONFIG_PM_SLEEP
1824 static int cqspi_suspend(struct device *dev)
1825 {
1826 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1827 
1828 	cqspi_controller_enable(cqspi, 0);
1829 	return 0;
1830 }
1831 
1832 static int cqspi_resume(struct device *dev)
1833 {
1834 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1835 
1836 	cqspi_controller_enable(cqspi, 1);
1837 	return 0;
1838 }
1839 
1840 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1841 	.suspend = cqspi_suspend,
1842 	.resume = cqspi_resume,
1843 };
1844 
1845 #define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
1846 #else
1847 #define CQSPI_DEV_PM_OPS	NULL
1848 #endif
1849 
1850 static const struct cqspi_driver_platdata cdns_qspi = {
1851 	.quirks = CQSPI_DISABLE_DAC_MODE,
1852 };
1853 
1854 static const struct cqspi_driver_platdata k2g_qspi = {
1855 	.quirks = CQSPI_NEEDS_WR_DELAY,
1856 };
1857 
1858 static const struct cqspi_driver_platdata am654_ospi = {
1859 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1860 	.quirks = CQSPI_NEEDS_WR_DELAY,
1861 };
1862 
1863 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1864 	.quirks = CQSPI_DISABLE_DAC_MODE,
1865 };
1866 
1867 static const struct cqspi_driver_platdata socfpga_qspi = {
1868 	.quirks = CQSPI_NO_SUPPORT_WR_COMPLETION,
1869 };
1870 
1871 static const struct cqspi_driver_platdata versal_ospi = {
1872 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1873 	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1874 	.indirect_read_dma = cqspi_versal_indirect_read_dma,
1875 	.get_dma_status = cqspi_get_versal_dma_status,
1876 };
1877 
1878 static const struct of_device_id cqspi_dt_ids[] = {
1879 	{
1880 		.compatible = "cdns,qspi-nor",
1881 		.data = &cdns_qspi,
1882 	},
1883 	{
1884 		.compatible = "ti,k2g-qspi",
1885 		.data = &k2g_qspi,
1886 	},
1887 	{
1888 		.compatible = "ti,am654-ospi",
1889 		.data = &am654_ospi,
1890 	},
1891 	{
1892 		.compatible = "intel,lgm-qspi",
1893 		.data = &intel_lgm_qspi,
1894 	},
1895 	{
1896 		.compatible = "xlnx,versal-ospi-1.0",
1897 		.data = (void *)&versal_ospi,
1898 	},
1899 	{
1900 		.compatible = "intel,socfpga-qspi",
1901 		.data = (void *)&socfpga_qspi,
1902 	},
1903 	{ /* end of table */ }
1904 };
1905 
1906 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1907 
1908 static struct platform_driver cqspi_platform_driver = {
1909 	.probe = cqspi_probe,
1910 	.remove = cqspi_remove,
1911 	.driver = {
1912 		.name = CQSPI_NAME,
1913 		.pm = CQSPI_DEV_PM_OPS,
1914 		.of_match_table = cqspi_dt_ids,
1915 	},
1916 };
1917 
1918 module_platform_driver(cqspi_platform_driver);
1919 
1920 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1921 MODULE_LICENSE("GPL v2");
1922 MODULE_ALIAS("platform:" CQSPI_NAME);
1923 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1924 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1925 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1926 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1927 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
1928