1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of_device.h>
23 #include <linux/of.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/reset.h>
27 #include <linux/sched.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/spi-mem.h>
30 #include <linux/timer.h>
31 
32 #define CQSPI_NAME			"cadence-qspi"
33 #define CQSPI_MAX_CHIPSELECT		16
34 
35 /* Quirks */
36 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
37 #define CQSPI_DISABLE_DAC_MODE		BIT(1)
38 
39 /* Capabilities */
40 #define CQSPI_SUPPORTS_OCTAL		BIT(0)
41 
42 struct cqspi_st;
43 
44 struct cqspi_flash_pdata {
45 	struct cqspi_st	*cqspi;
46 	u32		clk_rate;
47 	u32		read_delay;
48 	u32		tshsl_ns;
49 	u32		tsd2d_ns;
50 	u32		tchsh_ns;
51 	u32		tslch_ns;
52 	u8		inst_width;
53 	u8		addr_width;
54 	u8		data_width;
55 	bool		dtr;
56 	u8		cs;
57 };
58 
59 struct cqspi_st {
60 	struct platform_device	*pdev;
61 
62 	struct clk		*clk;
63 	unsigned int		sclk;
64 
65 	void __iomem		*iobase;
66 	void __iomem		*ahb_base;
67 	resource_size_t		ahb_size;
68 	struct completion	transfer_complete;
69 
70 	struct dma_chan		*rx_chan;
71 	struct completion	rx_dma_complete;
72 	dma_addr_t		mmap_phys_base;
73 
74 	int			current_cs;
75 	unsigned long		master_ref_clk_hz;
76 	bool			is_decoded_cs;
77 	u32			fifo_depth;
78 	u32			fifo_width;
79 	u32			num_chipselect;
80 	bool			rclk_en;
81 	u32			trigger_address;
82 	u32			wr_delay;
83 	bool			use_direct_mode;
84 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
85 };
86 
87 struct cqspi_driver_platdata {
88 	u32 hwcaps_mask;
89 	u8 quirks;
90 };
91 
92 /* Operation timeout value */
93 #define CQSPI_TIMEOUT_MS			500
94 #define CQSPI_READ_TIMEOUT_MS			10
95 
96 /* Instruction type */
97 #define CQSPI_INST_TYPE_SINGLE			0
98 #define CQSPI_INST_TYPE_DUAL			1
99 #define CQSPI_INST_TYPE_QUAD			2
100 #define CQSPI_INST_TYPE_OCTAL			3
101 
102 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
103 #define CQSPI_DUMMY_BYTES_MAX			4
104 #define CQSPI_DUMMY_CLKS_MAX			31
105 
106 #define CQSPI_STIG_DATA_LEN_MAX			8
107 
108 /* Register map */
109 #define CQSPI_REG_CONFIG			0x00
110 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
111 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
112 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
113 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
114 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
115 #define CQSPI_REG_CONFIG_BAUD_LSB		19
116 #define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
117 #define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
118 #define CQSPI_REG_CONFIG_IDLE_LSB		31
119 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
120 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
121 
122 #define CQSPI_REG_RD_INSTR			0x04
123 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
124 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
125 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
126 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
127 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
128 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
129 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
130 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
131 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
132 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
133 
134 #define CQSPI_REG_WR_INSTR			0x08
135 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
136 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
137 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
138 
139 #define CQSPI_REG_DELAY				0x0C
140 #define CQSPI_REG_DELAY_TSLCH_LSB		0
141 #define CQSPI_REG_DELAY_TCHSH_LSB		8
142 #define CQSPI_REG_DELAY_TSD2D_LSB		16
143 #define CQSPI_REG_DELAY_TSHSL_LSB		24
144 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
145 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
146 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
147 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
148 
149 #define CQSPI_REG_READCAPTURE			0x10
150 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
151 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
152 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
153 
154 #define CQSPI_REG_SIZE				0x14
155 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
156 #define CQSPI_REG_SIZE_PAGE_LSB			4
157 #define CQSPI_REG_SIZE_BLOCK_LSB		16
158 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
159 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
160 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
161 
162 #define CQSPI_REG_SRAMPARTITION			0x18
163 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
164 
165 #define CQSPI_REG_DMA				0x20
166 #define CQSPI_REG_DMA_SINGLE_LSB		0
167 #define CQSPI_REG_DMA_BURST_LSB			8
168 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
169 #define CQSPI_REG_DMA_BURST_MASK		0xFF
170 
171 #define CQSPI_REG_REMAP				0x24
172 #define CQSPI_REG_MODE_BIT			0x28
173 
174 #define CQSPI_REG_SDRAMLEVEL			0x2C
175 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
176 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
177 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
178 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
179 
180 #define CQSPI_REG_WR_COMPLETION_CTRL		0x38
181 #define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
182 
183 #define CQSPI_REG_IRQSTATUS			0x40
184 #define CQSPI_REG_IRQMASK			0x44
185 
186 #define CQSPI_REG_INDIRECTRD			0x60
187 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
188 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
189 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
190 
191 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
192 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
193 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
194 
195 #define CQSPI_REG_CMDCTRL			0x90
196 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
197 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
198 #define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
199 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
200 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
201 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
202 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
203 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
204 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
205 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
206 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
207 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
208 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
209 #define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
210 
211 #define CQSPI_REG_INDIRECTWR			0x70
212 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
213 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
214 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
215 
216 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
217 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
218 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
219 
220 #define CQSPI_REG_CMDADDRESS			0x94
221 #define CQSPI_REG_CMDREADDATALOWER		0xA0
222 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
223 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
224 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
225 
226 #define CQSPI_REG_POLLING_STATUS		0xB0
227 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
228 
229 #define CQSPI_REG_OP_EXT_LOWER			0xE0
230 #define CQSPI_REG_OP_EXT_READ_LSB		24
231 #define CQSPI_REG_OP_EXT_WRITE_LSB		16
232 #define CQSPI_REG_OP_EXT_STIG_LSB		0
233 
234 /* Interrupt status bits */
235 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
236 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
237 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
238 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
239 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
240 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
241 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
242 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
243 
244 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
245 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
246 					 CQSPI_REG_IRQ_IND_COMP)
247 
248 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
249 					 CQSPI_REG_IRQ_WATERMARK	| \
250 					 CQSPI_REG_IRQ_UNDERFLOW)
251 
252 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
253 
254 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
255 {
256 	u32 val;
257 
258 	return readl_relaxed_poll_timeout(reg, val,
259 					  (((clr ? ~val : val) & mask) == mask),
260 					  10, CQSPI_TIMEOUT_MS * 1000);
261 }
262 
263 static bool cqspi_is_idle(struct cqspi_st *cqspi)
264 {
265 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
266 
267 	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
268 }
269 
270 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
271 {
272 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
273 
274 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
275 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
276 }
277 
278 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
279 {
280 	struct cqspi_st *cqspi = dev;
281 	unsigned int irq_status;
282 
283 	/* Read interrupt status */
284 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
285 
286 	/* Clear interrupt */
287 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
288 
289 	irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
290 
291 	if (irq_status)
292 		complete(&cqspi->transfer_complete);
293 
294 	return IRQ_HANDLED;
295 }
296 
297 static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
298 {
299 	u32 rdreg = 0;
300 
301 	rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
302 	rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
303 	rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
304 
305 	return rdreg;
306 }
307 
308 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op, bool dtr)
309 {
310 	unsigned int dummy_clk;
311 
312 	if (!op->dummy.nbytes)
313 		return 0;
314 
315 	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
316 	if (dtr)
317 		dummy_clk /= 2;
318 
319 	return dummy_clk;
320 }
321 
322 static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
323 			      const struct spi_mem_op *op)
324 {
325 	f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
326 	f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
327 	f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
328 	f_pdata->dtr = op->data.dtr && op->cmd.dtr && op->addr.dtr;
329 
330 	switch (op->data.buswidth) {
331 	case 0:
332 		break;
333 	case 1:
334 		f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
335 		break;
336 	case 2:
337 		f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
338 		break;
339 	case 4:
340 		f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
341 		break;
342 	case 8:
343 		f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
344 		break;
345 	default:
346 		return -EINVAL;
347 	}
348 
349 	/* Right now we only support 8-8-8 DTR mode. */
350 	if (f_pdata->dtr) {
351 		switch (op->cmd.buswidth) {
352 		case 0:
353 			break;
354 		case 8:
355 			f_pdata->inst_width = CQSPI_INST_TYPE_OCTAL;
356 			break;
357 		default:
358 			return -EINVAL;
359 		}
360 
361 		switch (op->addr.buswidth) {
362 		case 0:
363 			break;
364 		case 8:
365 			f_pdata->addr_width = CQSPI_INST_TYPE_OCTAL;
366 			break;
367 		default:
368 			return -EINVAL;
369 		}
370 
371 		switch (op->data.buswidth) {
372 		case 0:
373 			break;
374 		case 8:
375 			f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
376 			break;
377 		default:
378 			return -EINVAL;
379 		}
380 	}
381 
382 	return 0;
383 }
384 
385 static int cqspi_wait_idle(struct cqspi_st *cqspi)
386 {
387 	const unsigned int poll_idle_retry = 3;
388 	unsigned int count = 0;
389 	unsigned long timeout;
390 
391 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
392 	while (1) {
393 		/*
394 		 * Read few times in succession to ensure the controller
395 		 * is indeed idle, that is, the bit does not transition
396 		 * low again.
397 		 */
398 		if (cqspi_is_idle(cqspi))
399 			count++;
400 		else
401 			count = 0;
402 
403 		if (count >= poll_idle_retry)
404 			return 0;
405 
406 		if (time_after(jiffies, timeout)) {
407 			/* Timeout, in busy mode. */
408 			dev_err(&cqspi->pdev->dev,
409 				"QSPI is still busy after %dms timeout.\n",
410 				CQSPI_TIMEOUT_MS);
411 			return -ETIMEDOUT;
412 		}
413 
414 		cpu_relax();
415 	}
416 }
417 
418 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
419 {
420 	void __iomem *reg_base = cqspi->iobase;
421 	int ret;
422 
423 	/* Write the CMDCTRL without start execution. */
424 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
425 	/* Start execute */
426 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
427 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
428 
429 	/* Polling for completion. */
430 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
431 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
432 	if (ret) {
433 		dev_err(&cqspi->pdev->dev,
434 			"Flash command execution timed out.\n");
435 		return ret;
436 	}
437 
438 	/* Polling QSPI idle status. */
439 	return cqspi_wait_idle(cqspi);
440 }
441 
442 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
443 				  const struct spi_mem_op *op,
444 				  unsigned int shift)
445 {
446 	struct cqspi_st *cqspi = f_pdata->cqspi;
447 	void __iomem *reg_base = cqspi->iobase;
448 	unsigned int reg;
449 	u8 ext;
450 
451 	if (op->cmd.nbytes != 2)
452 		return -EINVAL;
453 
454 	/* Opcode extension is the LSB. */
455 	ext = op->cmd.opcode & 0xff;
456 
457 	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
458 	reg &= ~(0xff << shift);
459 	reg |= ext << shift;
460 	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
461 
462 	return 0;
463 }
464 
465 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
466 			    const struct spi_mem_op *op, unsigned int shift,
467 			    bool enable)
468 {
469 	struct cqspi_st *cqspi = f_pdata->cqspi;
470 	void __iomem *reg_base = cqspi->iobase;
471 	unsigned int reg;
472 	int ret;
473 
474 	reg = readl(reg_base + CQSPI_REG_CONFIG);
475 
476 	/*
477 	 * We enable dual byte opcode here. The callers have to set up the
478 	 * extension opcode based on which type of operation it is.
479 	 */
480 	if (enable) {
481 		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
482 		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
483 
484 		/* Set up command opcode extension. */
485 		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
486 		if (ret)
487 			return ret;
488 	} else {
489 		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
490 		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
491 	}
492 
493 	writel(reg, reg_base + CQSPI_REG_CONFIG);
494 
495 	return cqspi_wait_idle(cqspi);
496 }
497 
498 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
499 			      const struct spi_mem_op *op)
500 {
501 	struct cqspi_st *cqspi = f_pdata->cqspi;
502 	void __iomem *reg_base = cqspi->iobase;
503 	u8 *rxbuf = op->data.buf.in;
504 	u8 opcode;
505 	size_t n_rx = op->data.nbytes;
506 	unsigned int rdreg;
507 	unsigned int reg;
508 	unsigned int dummy_clk;
509 	size_t read_len;
510 	int status;
511 
512 	status = cqspi_set_protocol(f_pdata, op);
513 	if (status)
514 		return status;
515 
516 	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
517 				  f_pdata->dtr);
518 	if (status)
519 		return status;
520 
521 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
522 		dev_err(&cqspi->pdev->dev,
523 			"Invalid input argument, len %zu rxbuf 0x%p\n",
524 			n_rx, rxbuf);
525 		return -EINVAL;
526 	}
527 
528 	if (f_pdata->dtr)
529 		opcode = op->cmd.opcode >> 8;
530 	else
531 		opcode = op->cmd.opcode;
532 
533 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
534 
535 	rdreg = cqspi_calc_rdreg(f_pdata);
536 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
537 
538 	dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
539 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
540 		return -EOPNOTSUPP;
541 
542 	if (dummy_clk)
543 		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
544 		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
545 
546 	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
547 
548 	/* 0 means 1 byte. */
549 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
550 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
551 	status = cqspi_exec_flash_cmd(cqspi, reg);
552 	if (status)
553 		return status;
554 
555 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
556 
557 	/* Put the read value into rx_buf */
558 	read_len = (n_rx > 4) ? 4 : n_rx;
559 	memcpy(rxbuf, &reg, read_len);
560 	rxbuf += read_len;
561 
562 	if (n_rx > 4) {
563 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
564 
565 		read_len = n_rx - read_len;
566 		memcpy(rxbuf, &reg, read_len);
567 	}
568 
569 	return 0;
570 }
571 
572 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
573 			       const struct spi_mem_op *op)
574 {
575 	struct cqspi_st *cqspi = f_pdata->cqspi;
576 	void __iomem *reg_base = cqspi->iobase;
577 	u8 opcode;
578 	const u8 *txbuf = op->data.buf.out;
579 	size_t n_tx = op->data.nbytes;
580 	unsigned int reg;
581 	unsigned int data;
582 	size_t write_len;
583 	int ret;
584 
585 	ret = cqspi_set_protocol(f_pdata, op);
586 	if (ret)
587 		return ret;
588 
589 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
590 			       f_pdata->dtr);
591 	if (ret)
592 		return ret;
593 
594 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
595 		dev_err(&cqspi->pdev->dev,
596 			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
597 			n_tx, txbuf);
598 		return -EINVAL;
599 	}
600 
601 	reg = cqspi_calc_rdreg(f_pdata);
602 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
603 
604 	if (f_pdata->dtr)
605 		opcode = op->cmd.opcode >> 8;
606 	else
607 		opcode = op->cmd.opcode;
608 
609 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
610 
611 	if (op->addr.nbytes) {
612 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
613 		reg |= ((op->addr.nbytes - 1) &
614 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
615 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
616 
617 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
618 	}
619 
620 	if (n_tx) {
621 		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
622 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
623 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
624 		data = 0;
625 		write_len = (n_tx > 4) ? 4 : n_tx;
626 		memcpy(&data, txbuf, write_len);
627 		txbuf += write_len;
628 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
629 
630 		if (n_tx > 4) {
631 			data = 0;
632 			write_len = n_tx - 4;
633 			memcpy(&data, txbuf, write_len);
634 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
635 		}
636 	}
637 
638 	return cqspi_exec_flash_cmd(cqspi, reg);
639 }
640 
641 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
642 			    const struct spi_mem_op *op)
643 {
644 	struct cqspi_st *cqspi = f_pdata->cqspi;
645 	void __iomem *reg_base = cqspi->iobase;
646 	unsigned int dummy_clk = 0;
647 	unsigned int reg;
648 	int ret;
649 	u8 opcode;
650 
651 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB,
652 			       f_pdata->dtr);
653 	if (ret)
654 		return ret;
655 
656 	if (f_pdata->dtr)
657 		opcode = op->cmd.opcode >> 8;
658 	else
659 		opcode = op->cmd.opcode;
660 
661 	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
662 	reg |= cqspi_calc_rdreg(f_pdata);
663 
664 	/* Setup dummy clock cycles */
665 	dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
666 
667 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
668 		return -EOPNOTSUPP;
669 
670 	if (dummy_clk)
671 		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
672 		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
673 
674 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
675 
676 	/* Set address width */
677 	reg = readl(reg_base + CQSPI_REG_SIZE);
678 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
679 	reg |= (op->addr.nbytes - 1);
680 	writel(reg, reg_base + CQSPI_REG_SIZE);
681 	return 0;
682 }
683 
684 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
685 				       u8 *rxbuf, loff_t from_addr,
686 				       const size_t n_rx)
687 {
688 	struct cqspi_st *cqspi = f_pdata->cqspi;
689 	struct device *dev = &cqspi->pdev->dev;
690 	void __iomem *reg_base = cqspi->iobase;
691 	void __iomem *ahb_base = cqspi->ahb_base;
692 	unsigned int remaining = n_rx;
693 	unsigned int mod_bytes = n_rx % 4;
694 	unsigned int bytes_to_read = 0;
695 	u8 *rxbuf_end = rxbuf + n_rx;
696 	int ret = 0;
697 
698 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
699 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
700 
701 	/* Clear all interrupts. */
702 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
703 
704 	writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
705 
706 	reinit_completion(&cqspi->transfer_complete);
707 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
708 	       reg_base + CQSPI_REG_INDIRECTRD);
709 
710 	while (remaining > 0) {
711 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
712 						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
713 			ret = -ETIMEDOUT;
714 
715 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
716 
717 		if (ret && bytes_to_read == 0) {
718 			dev_err(dev, "Indirect read timeout, no bytes\n");
719 			goto failrd;
720 		}
721 
722 		while (bytes_to_read != 0) {
723 			unsigned int word_remain = round_down(remaining, 4);
724 
725 			bytes_to_read *= cqspi->fifo_width;
726 			bytes_to_read = bytes_to_read > remaining ?
727 					remaining : bytes_to_read;
728 			bytes_to_read = round_down(bytes_to_read, 4);
729 			/* Read 4 byte word chunks then single bytes */
730 			if (bytes_to_read) {
731 				ioread32_rep(ahb_base, rxbuf,
732 					     (bytes_to_read / 4));
733 			} else if (!word_remain && mod_bytes) {
734 				unsigned int temp = ioread32(ahb_base);
735 
736 				bytes_to_read = mod_bytes;
737 				memcpy(rxbuf, &temp, min((unsigned int)
738 							 (rxbuf_end - rxbuf),
739 							 bytes_to_read));
740 			}
741 			rxbuf += bytes_to_read;
742 			remaining -= bytes_to_read;
743 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
744 		}
745 
746 		if (remaining > 0)
747 			reinit_completion(&cqspi->transfer_complete);
748 	}
749 
750 	/* Check indirect done status */
751 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
752 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
753 	if (ret) {
754 		dev_err(dev, "Indirect read completion error (%i)\n", ret);
755 		goto failrd;
756 	}
757 
758 	/* Disable interrupt */
759 	writel(0, reg_base + CQSPI_REG_IRQMASK);
760 
761 	/* Clear indirect completion status */
762 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
763 
764 	return 0;
765 
766 failrd:
767 	/* Disable interrupt */
768 	writel(0, reg_base + CQSPI_REG_IRQMASK);
769 
770 	/* Cancel the indirect read */
771 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
772 	       reg_base + CQSPI_REG_INDIRECTRD);
773 	return ret;
774 }
775 
776 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
777 			     const struct spi_mem_op *op)
778 {
779 	unsigned int reg;
780 	int ret;
781 	struct cqspi_st *cqspi = f_pdata->cqspi;
782 	void __iomem *reg_base = cqspi->iobase;
783 	u8 opcode;
784 
785 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB,
786 			       f_pdata->dtr);
787 	if (ret)
788 		return ret;
789 
790 	if (f_pdata->dtr)
791 		opcode = op->cmd.opcode >> 8;
792 	else
793 		opcode = op->cmd.opcode;
794 
795 	/* Set opcode. */
796 	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
797 	reg |= f_pdata->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
798 	reg |= f_pdata->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
799 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
800 	reg = cqspi_calc_rdreg(f_pdata);
801 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
802 
803 	/*
804 	 * SPI NAND flashes require the address of the status register to be
805 	 * passed in the Read SR command. Also, some SPI NOR flashes like the
806 	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
807 	 * command in DTR mode.
808 	 *
809 	 * But this controller does not support address phase in the Read SR
810 	 * command when doing auto-HW polling. So, disable write completion
811 	 * polling on the controller's side. spinand and spi-nor will take
812 	 * care of polling the status register.
813 	 */
814 	reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
815 	reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
816 	writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
817 
818 	reg = readl(reg_base + CQSPI_REG_SIZE);
819 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
820 	reg |= (op->addr.nbytes - 1);
821 	writel(reg, reg_base + CQSPI_REG_SIZE);
822 	return 0;
823 }
824 
825 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
826 					loff_t to_addr, const u8 *txbuf,
827 					const size_t n_tx)
828 {
829 	struct cqspi_st *cqspi = f_pdata->cqspi;
830 	struct device *dev = &cqspi->pdev->dev;
831 	void __iomem *reg_base = cqspi->iobase;
832 	unsigned int remaining = n_tx;
833 	unsigned int write_bytes;
834 	int ret;
835 
836 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
837 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
838 
839 	/* Clear all interrupts. */
840 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
841 
842 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
843 
844 	reinit_completion(&cqspi->transfer_complete);
845 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
846 	       reg_base + CQSPI_REG_INDIRECTWR);
847 	/*
848 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
849 	 * Controller programming sequence, couple of cycles of
850 	 * QSPI_REF_CLK delay is required for the above bit to
851 	 * be internally synchronized by the QSPI module. Provide 5
852 	 * cycles of delay.
853 	 */
854 	if (cqspi->wr_delay)
855 		ndelay(cqspi->wr_delay);
856 
857 	while (remaining > 0) {
858 		size_t write_words, mod_bytes;
859 
860 		write_bytes = remaining;
861 		write_words = write_bytes / 4;
862 		mod_bytes = write_bytes % 4;
863 		/* Write 4 bytes at a time then single bytes. */
864 		if (write_words) {
865 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
866 			txbuf += (write_words * 4);
867 		}
868 		if (mod_bytes) {
869 			unsigned int temp = 0xFFFFFFFF;
870 
871 			memcpy(&temp, txbuf, mod_bytes);
872 			iowrite32(temp, cqspi->ahb_base);
873 			txbuf += mod_bytes;
874 		}
875 
876 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
877 						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
878 			dev_err(dev, "Indirect write timeout\n");
879 			ret = -ETIMEDOUT;
880 			goto failwr;
881 		}
882 
883 		remaining -= write_bytes;
884 
885 		if (remaining > 0)
886 			reinit_completion(&cqspi->transfer_complete);
887 	}
888 
889 	/* Check indirect done status */
890 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
891 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
892 	if (ret) {
893 		dev_err(dev, "Indirect write completion error (%i)\n", ret);
894 		goto failwr;
895 	}
896 
897 	/* Disable interrupt. */
898 	writel(0, reg_base + CQSPI_REG_IRQMASK);
899 
900 	/* Clear indirect completion status */
901 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
902 
903 	cqspi_wait_idle(cqspi);
904 
905 	return 0;
906 
907 failwr:
908 	/* Disable interrupt. */
909 	writel(0, reg_base + CQSPI_REG_IRQMASK);
910 
911 	/* Cancel the indirect write */
912 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
913 	       reg_base + CQSPI_REG_INDIRECTWR);
914 	return ret;
915 }
916 
917 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
918 {
919 	struct cqspi_st *cqspi = f_pdata->cqspi;
920 	void __iomem *reg_base = cqspi->iobase;
921 	unsigned int chip_select = f_pdata->cs;
922 	unsigned int reg;
923 
924 	reg = readl(reg_base + CQSPI_REG_CONFIG);
925 	if (cqspi->is_decoded_cs) {
926 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
927 	} else {
928 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
929 
930 		/* Convert CS if without decoder.
931 		 * CS0 to 4b'1110
932 		 * CS1 to 4b'1101
933 		 * CS2 to 4b'1011
934 		 * CS3 to 4b'0111
935 		 */
936 		chip_select = 0xF & ~(1 << chip_select);
937 	}
938 
939 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
940 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
941 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
942 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
943 	writel(reg, reg_base + CQSPI_REG_CONFIG);
944 }
945 
946 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
947 					   const unsigned int ns_val)
948 {
949 	unsigned int ticks;
950 
951 	ticks = ref_clk_hz / 1000;	/* kHz */
952 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
953 
954 	return ticks;
955 }
956 
957 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
958 {
959 	struct cqspi_st *cqspi = f_pdata->cqspi;
960 	void __iomem *iobase = cqspi->iobase;
961 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
962 	unsigned int tshsl, tchsh, tslch, tsd2d;
963 	unsigned int reg;
964 	unsigned int tsclk;
965 
966 	/* calculate the number of ref ticks for one sclk tick */
967 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
968 
969 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
970 	/* this particular value must be at least one sclk */
971 	if (tshsl < tsclk)
972 		tshsl = tsclk;
973 
974 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
975 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
976 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
977 
978 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
979 	       << CQSPI_REG_DELAY_TSHSL_LSB;
980 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
981 		<< CQSPI_REG_DELAY_TCHSH_LSB;
982 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
983 		<< CQSPI_REG_DELAY_TSLCH_LSB;
984 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
985 		<< CQSPI_REG_DELAY_TSD2D_LSB;
986 	writel(reg, iobase + CQSPI_REG_DELAY);
987 }
988 
989 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
990 {
991 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
992 	void __iomem *reg_base = cqspi->iobase;
993 	u32 reg, div;
994 
995 	/* Recalculate the baudrate divisor based on QSPI specification. */
996 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
997 
998 	reg = readl(reg_base + CQSPI_REG_CONFIG);
999 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1000 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1001 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1002 }
1003 
1004 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1005 				   const bool bypass,
1006 				   const unsigned int delay)
1007 {
1008 	void __iomem *reg_base = cqspi->iobase;
1009 	unsigned int reg;
1010 
1011 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1012 
1013 	if (bypass)
1014 		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1015 	else
1016 		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1017 
1018 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1019 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1020 
1021 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1022 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1023 
1024 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1025 }
1026 
1027 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1028 {
1029 	void __iomem *reg_base = cqspi->iobase;
1030 	unsigned int reg;
1031 
1032 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1033 
1034 	if (enable)
1035 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1036 	else
1037 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1038 
1039 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1040 }
1041 
1042 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1043 			    unsigned long sclk)
1044 {
1045 	struct cqspi_st *cqspi = f_pdata->cqspi;
1046 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1047 	int switch_ck = (cqspi->sclk != sclk);
1048 
1049 	if (switch_cs || switch_ck)
1050 		cqspi_controller_enable(cqspi, 0);
1051 
1052 	/* Switch chip select. */
1053 	if (switch_cs) {
1054 		cqspi->current_cs = f_pdata->cs;
1055 		cqspi_chipselect(f_pdata);
1056 	}
1057 
1058 	/* Setup baudrate divisor and delays */
1059 	if (switch_ck) {
1060 		cqspi->sclk = sclk;
1061 		cqspi_config_baudrate_div(cqspi);
1062 		cqspi_delay(f_pdata);
1063 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1064 				       f_pdata->read_delay);
1065 	}
1066 
1067 	if (switch_cs || switch_ck)
1068 		cqspi_controller_enable(cqspi, 1);
1069 }
1070 
1071 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1072 			   const struct spi_mem_op *op)
1073 {
1074 	struct cqspi_st *cqspi = f_pdata->cqspi;
1075 	loff_t to = op->addr.val;
1076 	size_t len = op->data.nbytes;
1077 	const u_char *buf = op->data.buf.out;
1078 	int ret;
1079 
1080 	ret = cqspi_set_protocol(f_pdata, op);
1081 	if (ret)
1082 		return ret;
1083 
1084 	ret = cqspi_write_setup(f_pdata, op);
1085 	if (ret)
1086 		return ret;
1087 
1088 	/*
1089 	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1090 	 * address (all 0s) with the read status register command in DTR mode.
1091 	 * But this controller does not support sending dummy address bytes to
1092 	 * the flash when it is polling the write completion register in DTR
1093 	 * mode. So, we can not use direct mode when in DTR mode for writing
1094 	 * data.
1095 	 */
1096 	if (!f_pdata->dtr && cqspi->use_direct_mode &&
1097 	    ((to + len) <= cqspi->ahb_size)) {
1098 		memcpy_toio(cqspi->ahb_base + to, buf, len);
1099 		return cqspi_wait_idle(cqspi);
1100 	}
1101 
1102 	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1103 }
1104 
1105 static void cqspi_rx_dma_callback(void *param)
1106 {
1107 	struct cqspi_st *cqspi = param;
1108 
1109 	complete(&cqspi->rx_dma_complete);
1110 }
1111 
1112 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1113 				     u_char *buf, loff_t from, size_t len)
1114 {
1115 	struct cqspi_st *cqspi = f_pdata->cqspi;
1116 	struct device *dev = &cqspi->pdev->dev;
1117 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1118 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1119 	int ret = 0;
1120 	struct dma_async_tx_descriptor *tx;
1121 	dma_cookie_t cookie;
1122 	dma_addr_t dma_dst;
1123 	struct device *ddev;
1124 
1125 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1126 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1127 		return 0;
1128 	}
1129 
1130 	ddev = cqspi->rx_chan->device->dev;
1131 	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1132 	if (dma_mapping_error(ddev, dma_dst)) {
1133 		dev_err(dev, "dma mapping failed\n");
1134 		return -ENOMEM;
1135 	}
1136 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1137 				       len, flags);
1138 	if (!tx) {
1139 		dev_err(dev, "device_prep_dma_memcpy error\n");
1140 		ret = -EIO;
1141 		goto err_unmap;
1142 	}
1143 
1144 	tx->callback = cqspi_rx_dma_callback;
1145 	tx->callback_param = cqspi;
1146 	cookie = tx->tx_submit(tx);
1147 	reinit_completion(&cqspi->rx_dma_complete);
1148 
1149 	ret = dma_submit_error(cookie);
1150 	if (ret) {
1151 		dev_err(dev, "dma_submit_error %d\n", cookie);
1152 		ret = -EIO;
1153 		goto err_unmap;
1154 	}
1155 
1156 	dma_async_issue_pending(cqspi->rx_chan);
1157 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1158 					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1159 		dmaengine_terminate_sync(cqspi->rx_chan);
1160 		dev_err(dev, "DMA wait_for_completion_timeout\n");
1161 		ret = -ETIMEDOUT;
1162 		goto err_unmap;
1163 	}
1164 
1165 err_unmap:
1166 	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1167 
1168 	return ret;
1169 }
1170 
1171 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1172 			  const struct spi_mem_op *op)
1173 {
1174 	struct cqspi_st *cqspi = f_pdata->cqspi;
1175 	loff_t from = op->addr.val;
1176 	size_t len = op->data.nbytes;
1177 	u_char *buf = op->data.buf.in;
1178 	int ret;
1179 
1180 	ret = cqspi_set_protocol(f_pdata, op);
1181 	if (ret)
1182 		return ret;
1183 
1184 	ret = cqspi_read_setup(f_pdata, op);
1185 	if (ret)
1186 		return ret;
1187 
1188 	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1189 		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1190 
1191 	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1192 }
1193 
1194 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1195 {
1196 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1197 	struct cqspi_flash_pdata *f_pdata;
1198 
1199 	f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1200 	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1201 
1202 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1203 		if (!op->addr.nbytes)
1204 			return cqspi_command_read(f_pdata, op);
1205 
1206 		return cqspi_read(f_pdata, op);
1207 	}
1208 
1209 	if (!op->addr.nbytes || !op->data.buf.out)
1210 		return cqspi_command_write(f_pdata, op);
1211 
1212 	return cqspi_write(f_pdata, op);
1213 }
1214 
1215 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1216 {
1217 	int ret;
1218 
1219 	ret = cqspi_mem_process(mem, op);
1220 	if (ret)
1221 		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1222 
1223 	return ret;
1224 }
1225 
1226 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1227 				  const struct spi_mem_op *op)
1228 {
1229 	bool all_true, all_false;
1230 
1231 	all_true = op->cmd.dtr && op->addr.dtr && op->dummy.dtr &&
1232 		   op->data.dtr;
1233 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1234 		    !op->data.dtr;
1235 
1236 	/* Mixed DTR modes not supported. */
1237 	if (!(all_true || all_false))
1238 		return false;
1239 
1240 	if (all_true)
1241 		return spi_mem_dtr_supports_op(mem, op);
1242 	else
1243 		return spi_mem_default_supports_op(mem, op);
1244 }
1245 
1246 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1247 				    struct cqspi_flash_pdata *f_pdata,
1248 				    struct device_node *np)
1249 {
1250 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1251 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1252 		return -ENXIO;
1253 	}
1254 
1255 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1256 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1257 		return -ENXIO;
1258 	}
1259 
1260 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1261 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1262 		return -ENXIO;
1263 	}
1264 
1265 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1266 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1267 		return -ENXIO;
1268 	}
1269 
1270 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1271 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1272 		return -ENXIO;
1273 	}
1274 
1275 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1276 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1277 		return -ENXIO;
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1284 {
1285 	struct device *dev = &cqspi->pdev->dev;
1286 	struct device_node *np = dev->of_node;
1287 
1288 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1289 
1290 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1291 		dev_err(dev, "couldn't determine fifo-depth\n");
1292 		return -ENXIO;
1293 	}
1294 
1295 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1296 		dev_err(dev, "couldn't determine fifo-width\n");
1297 		return -ENXIO;
1298 	}
1299 
1300 	if (of_property_read_u32(np, "cdns,trigger-address",
1301 				 &cqspi->trigger_address)) {
1302 		dev_err(dev, "couldn't determine trigger-address\n");
1303 		return -ENXIO;
1304 	}
1305 
1306 	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1307 		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1308 
1309 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1310 
1311 	return 0;
1312 }
1313 
1314 static void cqspi_controller_init(struct cqspi_st *cqspi)
1315 {
1316 	u32 reg;
1317 
1318 	cqspi_controller_enable(cqspi, 0);
1319 
1320 	/* Configure the remap address register, no remap */
1321 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1322 
1323 	/* Disable all interrupts. */
1324 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1325 
1326 	/* Configure the SRAM split to 1:1 . */
1327 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1328 
1329 	/* Load indirect trigger address. */
1330 	writel(cqspi->trigger_address,
1331 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1332 
1333 	/* Program read watermark -- 1/2 of the FIFO. */
1334 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1335 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1336 	/* Program write watermark -- 1/8 of the FIFO. */
1337 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1338 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1339 
1340 	/* Disable direct access controller */
1341 	if (!cqspi->use_direct_mode) {
1342 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1343 		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1344 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1345 	}
1346 
1347 	cqspi_controller_enable(cqspi, 1);
1348 }
1349 
1350 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1351 {
1352 	dma_cap_mask_t mask;
1353 
1354 	dma_cap_zero(mask);
1355 	dma_cap_set(DMA_MEMCPY, mask);
1356 
1357 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1358 	if (IS_ERR(cqspi->rx_chan)) {
1359 		int ret = PTR_ERR(cqspi->rx_chan);
1360 		cqspi->rx_chan = NULL;
1361 		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1362 	}
1363 	init_completion(&cqspi->rx_dma_complete);
1364 
1365 	return 0;
1366 }
1367 
1368 static const char *cqspi_get_name(struct spi_mem *mem)
1369 {
1370 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1371 	struct device *dev = &cqspi->pdev->dev;
1372 
1373 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1374 }
1375 
1376 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1377 	.exec_op = cqspi_exec_mem_op,
1378 	.get_name = cqspi_get_name,
1379 	.supports_op = cqspi_supports_mem_op,
1380 };
1381 
1382 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1383 {
1384 	struct platform_device *pdev = cqspi->pdev;
1385 	struct device *dev = &pdev->dev;
1386 	struct device_node *np = dev->of_node;
1387 	struct cqspi_flash_pdata *f_pdata;
1388 	unsigned int cs;
1389 	int ret;
1390 
1391 	/* Get flash device data */
1392 	for_each_available_child_of_node(dev->of_node, np) {
1393 		ret = of_property_read_u32(np, "reg", &cs);
1394 		if (ret) {
1395 			dev_err(dev, "Couldn't determine chip select.\n");
1396 			of_node_put(np);
1397 			return ret;
1398 		}
1399 
1400 		if (cs >= CQSPI_MAX_CHIPSELECT) {
1401 			dev_err(dev, "Chip select %d out of range.\n", cs);
1402 			of_node_put(np);
1403 			return -EINVAL;
1404 		}
1405 
1406 		f_pdata = &cqspi->f_pdata[cs];
1407 		f_pdata->cqspi = cqspi;
1408 		f_pdata->cs = cs;
1409 
1410 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1411 		if (ret) {
1412 			of_node_put(np);
1413 			return ret;
1414 		}
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 static int cqspi_probe(struct platform_device *pdev)
1421 {
1422 	const struct cqspi_driver_platdata *ddata;
1423 	struct reset_control *rstc, *rstc_ocp;
1424 	struct device *dev = &pdev->dev;
1425 	struct spi_master *master;
1426 	struct resource *res_ahb;
1427 	struct cqspi_st *cqspi;
1428 	struct resource *res;
1429 	int ret;
1430 	int irq;
1431 
1432 	master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1433 	if (!master) {
1434 		dev_err(&pdev->dev, "spi_alloc_master failed\n");
1435 		return -ENOMEM;
1436 	}
1437 	master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1438 	master->mem_ops = &cqspi_mem_ops;
1439 	master->dev.of_node = pdev->dev.of_node;
1440 
1441 	cqspi = spi_master_get_devdata(master);
1442 
1443 	cqspi->pdev = pdev;
1444 	platform_set_drvdata(pdev, cqspi);
1445 
1446 	/* Obtain configuration from OF. */
1447 	ret = cqspi_of_get_pdata(cqspi);
1448 	if (ret) {
1449 		dev_err(dev, "Cannot get mandatory OF data.\n");
1450 		ret = -ENODEV;
1451 		goto probe_master_put;
1452 	}
1453 
1454 	/* Obtain QSPI clock. */
1455 	cqspi->clk = devm_clk_get(dev, NULL);
1456 	if (IS_ERR(cqspi->clk)) {
1457 		dev_err(dev, "Cannot claim QSPI clock.\n");
1458 		ret = PTR_ERR(cqspi->clk);
1459 		goto probe_master_put;
1460 	}
1461 
1462 	/* Obtain and remap controller address. */
1463 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1464 	cqspi->iobase = devm_ioremap_resource(dev, res);
1465 	if (IS_ERR(cqspi->iobase)) {
1466 		dev_err(dev, "Cannot remap controller address.\n");
1467 		ret = PTR_ERR(cqspi->iobase);
1468 		goto probe_master_put;
1469 	}
1470 
1471 	/* Obtain and remap AHB address. */
1472 	res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1473 	cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1474 	if (IS_ERR(cqspi->ahb_base)) {
1475 		dev_err(dev, "Cannot remap AHB address.\n");
1476 		ret = PTR_ERR(cqspi->ahb_base);
1477 		goto probe_master_put;
1478 	}
1479 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1480 	cqspi->ahb_size = resource_size(res_ahb);
1481 
1482 	init_completion(&cqspi->transfer_complete);
1483 
1484 	/* Obtain IRQ line. */
1485 	irq = platform_get_irq(pdev, 0);
1486 	if (irq < 0) {
1487 		ret = -ENXIO;
1488 		goto probe_master_put;
1489 	}
1490 
1491 	pm_runtime_enable(dev);
1492 	ret = pm_runtime_get_sync(dev);
1493 	if (ret < 0) {
1494 		pm_runtime_put_noidle(dev);
1495 		goto probe_master_put;
1496 	}
1497 
1498 	ret = clk_prepare_enable(cqspi->clk);
1499 	if (ret) {
1500 		dev_err(dev, "Cannot enable QSPI clock.\n");
1501 		goto probe_clk_failed;
1502 	}
1503 
1504 	/* Obtain QSPI reset control */
1505 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1506 	if (IS_ERR(rstc)) {
1507 		ret = PTR_ERR(rstc);
1508 		dev_err(dev, "Cannot get QSPI reset.\n");
1509 		goto probe_reset_failed;
1510 	}
1511 
1512 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1513 	if (IS_ERR(rstc_ocp)) {
1514 		ret = PTR_ERR(rstc_ocp);
1515 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1516 		goto probe_reset_failed;
1517 	}
1518 
1519 	reset_control_assert(rstc);
1520 	reset_control_deassert(rstc);
1521 
1522 	reset_control_assert(rstc_ocp);
1523 	reset_control_deassert(rstc_ocp);
1524 
1525 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1526 	master->max_speed_hz = cqspi->master_ref_clk_hz;
1527 	ddata  = of_device_get_match_data(dev);
1528 	if (ddata) {
1529 		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1530 			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1531 						cqspi->master_ref_clk_hz);
1532 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1533 			master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1534 		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1535 			cqspi->use_direct_mode = true;
1536 	}
1537 
1538 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1539 			       pdev->name, cqspi);
1540 	if (ret) {
1541 		dev_err(dev, "Cannot request IRQ.\n");
1542 		goto probe_reset_failed;
1543 	}
1544 
1545 	cqspi_wait_idle(cqspi);
1546 	cqspi_controller_init(cqspi);
1547 	cqspi->current_cs = -1;
1548 	cqspi->sclk = 0;
1549 
1550 	master->num_chipselect = cqspi->num_chipselect;
1551 
1552 	ret = cqspi_setup_flash(cqspi);
1553 	if (ret) {
1554 		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1555 		goto probe_setup_failed;
1556 	}
1557 
1558 	if (cqspi->use_direct_mode) {
1559 		ret = cqspi_request_mmap_dma(cqspi);
1560 		if (ret == -EPROBE_DEFER)
1561 			goto probe_setup_failed;
1562 	}
1563 
1564 	ret = devm_spi_register_master(dev, master);
1565 	if (ret) {
1566 		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1567 		goto probe_setup_failed;
1568 	}
1569 
1570 	return 0;
1571 probe_setup_failed:
1572 	cqspi_controller_enable(cqspi, 0);
1573 probe_reset_failed:
1574 	clk_disable_unprepare(cqspi->clk);
1575 probe_clk_failed:
1576 	pm_runtime_put_sync(dev);
1577 	pm_runtime_disable(dev);
1578 probe_master_put:
1579 	spi_master_put(master);
1580 	return ret;
1581 }
1582 
1583 static int cqspi_remove(struct platform_device *pdev)
1584 {
1585 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1586 
1587 	cqspi_controller_enable(cqspi, 0);
1588 
1589 	if (cqspi->rx_chan)
1590 		dma_release_channel(cqspi->rx_chan);
1591 
1592 	clk_disable_unprepare(cqspi->clk);
1593 
1594 	pm_runtime_put_sync(&pdev->dev);
1595 	pm_runtime_disable(&pdev->dev);
1596 
1597 	return 0;
1598 }
1599 
1600 #ifdef CONFIG_PM_SLEEP
1601 static int cqspi_suspend(struct device *dev)
1602 {
1603 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1604 
1605 	cqspi_controller_enable(cqspi, 0);
1606 	return 0;
1607 }
1608 
1609 static int cqspi_resume(struct device *dev)
1610 {
1611 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1612 
1613 	cqspi_controller_enable(cqspi, 1);
1614 	return 0;
1615 }
1616 
1617 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1618 	.suspend = cqspi_suspend,
1619 	.resume = cqspi_resume,
1620 };
1621 
1622 #define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
1623 #else
1624 #define CQSPI_DEV_PM_OPS	NULL
1625 #endif
1626 
1627 static const struct cqspi_driver_platdata cdns_qspi = {
1628 	.quirks = CQSPI_DISABLE_DAC_MODE,
1629 };
1630 
1631 static const struct cqspi_driver_platdata k2g_qspi = {
1632 	.quirks = CQSPI_NEEDS_WR_DELAY,
1633 };
1634 
1635 static const struct cqspi_driver_platdata am654_ospi = {
1636 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1637 	.quirks = CQSPI_NEEDS_WR_DELAY,
1638 };
1639 
1640 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1641 	.quirks = CQSPI_DISABLE_DAC_MODE,
1642 };
1643 
1644 static const struct of_device_id cqspi_dt_ids[] = {
1645 	{
1646 		.compatible = "cdns,qspi-nor",
1647 		.data = &cdns_qspi,
1648 	},
1649 	{
1650 		.compatible = "ti,k2g-qspi",
1651 		.data = &k2g_qspi,
1652 	},
1653 	{
1654 		.compatible = "ti,am654-ospi",
1655 		.data = &am654_ospi,
1656 	},
1657 	{
1658 		.compatible = "intel,lgm-qspi",
1659 		.data = &intel_lgm_qspi,
1660 	},
1661 	{ /* end of table */ }
1662 };
1663 
1664 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1665 
1666 static struct platform_driver cqspi_platform_driver = {
1667 	.probe = cqspi_probe,
1668 	.remove = cqspi_remove,
1669 	.driver = {
1670 		.name = CQSPI_NAME,
1671 		.pm = CQSPI_DEV_PM_OPS,
1672 		.of_match_table = cqspi_dt_ids,
1673 	},
1674 };
1675 
1676 module_platform_driver(cqspi_platform_driver);
1677 
1678 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1679 MODULE_LICENSE("GPL v2");
1680 MODULE_ALIAS("platform:" CQSPI_NAME);
1681 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1682 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1683 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1684 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1685 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
1686