xref: /openbmc/linux/drivers/spi/spi-bitbang.c (revision 52cdded0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * polling/bitbanging SPI master controller driver utilities
4  */
5 
6 #include <linux/spinlock.h>
7 #include <linux/workqueue.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/platform_device.h>
13 #include <linux/slab.h>
14 
15 #include <linux/spi/spi.h>
16 #include <linux/spi/spi_bitbang.h>
17 
18 #define SPI_BITBANG_CS_DELAY	100
19 
20 
21 /*----------------------------------------------------------------------*/
22 
23 /*
24  * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
25  * Use this for GPIO or shift-register level hardware APIs.
26  *
27  * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
28  * to glue code.  These bitbang setup() and cleanup() routines are always
29  * used, though maybe they're called from controller-aware code.
30  *
31  * chipselect() and friends may use spi_device->controller_data and
32  * controller registers as appropriate.
33  *
34  *
35  * NOTE:  SPI controller pins can often be used as GPIO pins instead,
36  * which means you could use a bitbang driver either to get hardware
37  * working quickly, or testing for differences that aren't speed related.
38  */
39 
40 struct spi_bitbang_cs {
41 	unsigned	nsecs;	/* (clock cycle time)/2 */
42 	u32		(*txrx_word)(struct spi_device *spi, unsigned nsecs,
43 					u32 word, u8 bits, unsigned flags);
44 	unsigned	(*txrx_bufs)(struct spi_device *,
45 					u32 (*txrx_word)(
46 						struct spi_device *spi,
47 						unsigned nsecs,
48 						u32 word, u8 bits,
49 						unsigned flags),
50 					unsigned, struct spi_transfer *,
51 					unsigned);
52 };
53 
54 static unsigned bitbang_txrx_8(
55 	struct spi_device	*spi,
56 	u32			(*txrx_word)(struct spi_device *spi,
57 					unsigned nsecs,
58 					u32 word, u8 bits,
59 					unsigned flags),
60 	unsigned		ns,
61 	struct spi_transfer	*t,
62 	unsigned flags
63 ) {
64 	unsigned		bits = t->bits_per_word;
65 	unsigned		count = t->len;
66 	const u8		*tx = t->tx_buf;
67 	u8			*rx = t->rx_buf;
68 
69 	while (likely(count > 0)) {
70 		u8		word = 0;
71 
72 		if (tx)
73 			word = *tx++;
74 		word = txrx_word(spi, ns, word, bits, flags);
75 		if (rx)
76 			*rx++ = word;
77 		count -= 1;
78 	}
79 	return t->len - count;
80 }
81 
82 static unsigned bitbang_txrx_16(
83 	struct spi_device	*spi,
84 	u32			(*txrx_word)(struct spi_device *spi,
85 					unsigned nsecs,
86 					u32 word, u8 bits,
87 					unsigned flags),
88 	unsigned		ns,
89 	struct spi_transfer	*t,
90 	unsigned flags
91 ) {
92 	unsigned		bits = t->bits_per_word;
93 	unsigned		count = t->len;
94 	const u16		*tx = t->tx_buf;
95 	u16			*rx = t->rx_buf;
96 
97 	while (likely(count > 1)) {
98 		u16		word = 0;
99 
100 		if (tx)
101 			word = *tx++;
102 		word = txrx_word(spi, ns, word, bits, flags);
103 		if (rx)
104 			*rx++ = word;
105 		count -= 2;
106 	}
107 	return t->len - count;
108 }
109 
110 static unsigned bitbang_txrx_32(
111 	struct spi_device	*spi,
112 	u32			(*txrx_word)(struct spi_device *spi,
113 					unsigned nsecs,
114 					u32 word, u8 bits,
115 					unsigned flags),
116 	unsigned		ns,
117 	struct spi_transfer	*t,
118 	unsigned flags
119 ) {
120 	unsigned		bits = t->bits_per_word;
121 	unsigned		count = t->len;
122 	const u32		*tx = t->tx_buf;
123 	u32			*rx = t->rx_buf;
124 
125 	while (likely(count > 3)) {
126 		u32		word = 0;
127 
128 		if (tx)
129 			word = *tx++;
130 		word = txrx_word(spi, ns, word, bits, flags);
131 		if (rx)
132 			*rx++ = word;
133 		count -= 4;
134 	}
135 	return t->len - count;
136 }
137 
138 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
139 {
140 	struct spi_bitbang_cs	*cs = spi->controller_state;
141 	u8			bits_per_word;
142 	u32			hz;
143 
144 	if (t) {
145 		bits_per_word = t->bits_per_word;
146 		hz = t->speed_hz;
147 	} else {
148 		bits_per_word = 0;
149 		hz = 0;
150 	}
151 
152 	/* spi_transfer level calls that work per-word */
153 	if (!bits_per_word)
154 		bits_per_word = spi->bits_per_word;
155 	if (bits_per_word <= 8)
156 		cs->txrx_bufs = bitbang_txrx_8;
157 	else if (bits_per_word <= 16)
158 		cs->txrx_bufs = bitbang_txrx_16;
159 	else if (bits_per_word <= 32)
160 		cs->txrx_bufs = bitbang_txrx_32;
161 	else
162 		return -EINVAL;
163 
164 	/* nsecs = (clock period)/2 */
165 	if (!hz)
166 		hz = spi->max_speed_hz;
167 	if (hz) {
168 		cs->nsecs = (1000000000/2) / hz;
169 		if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
170 			return -EINVAL;
171 	}
172 
173 	return 0;
174 }
175 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
176 
177 /*
178  * spi_bitbang_setup - default setup for per-word I/O loops
179  */
180 int spi_bitbang_setup(struct spi_device *spi)
181 {
182 	struct spi_bitbang_cs	*cs = spi->controller_state;
183 	struct spi_bitbang	*bitbang;
184 
185 	bitbang = spi_master_get_devdata(spi->master);
186 
187 	if (!cs) {
188 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
189 		if (!cs)
190 			return -ENOMEM;
191 		spi->controller_state = cs;
192 	}
193 
194 	/* per-word shift register access, in hardware or bitbanging */
195 	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
196 	if (!cs->txrx_word)
197 		return -EINVAL;
198 
199 	if (bitbang->setup_transfer) {
200 		int retval = bitbang->setup_transfer(spi, NULL);
201 		if (retval < 0)
202 			return retval;
203 	}
204 
205 	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
206 
207 	return 0;
208 }
209 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
210 
211 /*
212  * spi_bitbang_cleanup - default cleanup for per-word I/O loops
213  */
214 void spi_bitbang_cleanup(struct spi_device *spi)
215 {
216 	kfree(spi->controller_state);
217 }
218 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
219 
220 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
221 {
222 	struct spi_bitbang_cs	*cs = spi->controller_state;
223 	unsigned		nsecs = cs->nsecs;
224 	struct spi_bitbang	*bitbang;
225 
226 	bitbang = spi_master_get_devdata(spi->master);
227 	if (bitbang->set_line_direction) {
228 		int err;
229 
230 		err = bitbang->set_line_direction(spi, !!(t->tx_buf));
231 		if (err < 0)
232 			return err;
233 	}
234 
235 	if (spi->mode & SPI_3WIRE) {
236 		unsigned flags;
237 
238 		flags = t->tx_buf ? SPI_MASTER_NO_RX : SPI_MASTER_NO_TX;
239 		return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, flags);
240 	}
241 	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, 0);
242 }
243 
244 /*----------------------------------------------------------------------*/
245 
246 /*
247  * SECOND PART ... simple transfer queue runner.
248  *
249  * This costs a task context per controller, running the queue by
250  * performing each transfer in sequence.  Smarter hardware can queue
251  * several DMA transfers at once, and process several controller queues
252  * in parallel; this driver doesn't match such hardware very well.
253  *
254  * Drivers can provide word-at-a-time i/o primitives, or provide
255  * transfer-at-a-time ones to leverage dma or fifo hardware.
256  */
257 
258 static int spi_bitbang_prepare_hardware(struct spi_master *spi)
259 {
260 	struct spi_bitbang	*bitbang;
261 
262 	bitbang = spi_master_get_devdata(spi);
263 
264 	mutex_lock(&bitbang->lock);
265 	bitbang->busy = 1;
266 	mutex_unlock(&bitbang->lock);
267 
268 	return 0;
269 }
270 
271 static int spi_bitbang_transfer_one(struct spi_master *master,
272 				    struct spi_device *spi,
273 				    struct spi_transfer *transfer)
274 {
275 	struct spi_bitbang *bitbang = spi_master_get_devdata(master);
276 	int status = 0;
277 
278 	if (bitbang->setup_transfer) {
279 		status = bitbang->setup_transfer(spi, transfer);
280 		if (status < 0)
281 			goto out;
282 	}
283 
284 	if (transfer->len)
285 		status = bitbang->txrx_bufs(spi, transfer);
286 
287 	if (status == transfer->len)
288 		status = 0;
289 	else if (status >= 0)
290 		status = -EREMOTEIO;
291 
292 out:
293 	spi_finalize_current_transfer(master);
294 
295 	return status;
296 }
297 
298 static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
299 {
300 	struct spi_bitbang	*bitbang;
301 
302 	bitbang = spi_master_get_devdata(spi);
303 
304 	mutex_lock(&bitbang->lock);
305 	bitbang->busy = 0;
306 	mutex_unlock(&bitbang->lock);
307 
308 	return 0;
309 }
310 
311 static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
312 {
313 	struct spi_bitbang *bitbang = spi_master_get_devdata(spi->master);
314 
315 	/* SPI core provides CS high / low, but bitbang driver
316 	 * expects CS active
317 	 * spi device driver takes care of handling SPI_CS_HIGH
318 	 */
319 	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
320 
321 	ndelay(SPI_BITBANG_CS_DELAY);
322 	bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
323 			    BITBANG_CS_INACTIVE);
324 	ndelay(SPI_BITBANG_CS_DELAY);
325 }
326 
327 /*----------------------------------------------------------------------*/
328 
329 int spi_bitbang_init(struct spi_bitbang *bitbang)
330 {
331 	struct spi_master *master = bitbang->master;
332 	bool custom_cs;
333 
334 	if (!master)
335 		return -EINVAL;
336 	/*
337 	 * We only need the chipselect callback if we are actually using it.
338 	 * If we just use GPIO descriptors, it is surplus. If the
339 	 * SPI_MASTER_GPIO_SS flag is set, we always need to call the
340 	 * driver-specific chipselect routine.
341 	 */
342 	custom_cs = (!master->use_gpio_descriptors ||
343 		     (master->flags & SPI_MASTER_GPIO_SS));
344 
345 	if (custom_cs && !bitbang->chipselect)
346 		return -EINVAL;
347 
348 	mutex_init(&bitbang->lock);
349 
350 	if (!master->mode_bits)
351 		master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
352 
353 	if (master->transfer || master->transfer_one_message)
354 		return -EINVAL;
355 
356 	master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
357 	master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
358 	master->transfer_one = spi_bitbang_transfer_one;
359 	/*
360 	 * When using GPIO descriptors, the ->set_cs() callback doesn't even
361 	 * get called unless SPI_MASTER_GPIO_SS is set.
362 	 */
363 	if (custom_cs)
364 		master->set_cs = spi_bitbang_set_cs;
365 
366 	if (!bitbang->txrx_bufs) {
367 		bitbang->use_dma = 0;
368 		bitbang->txrx_bufs = spi_bitbang_bufs;
369 		if (!master->setup) {
370 			if (!bitbang->setup_transfer)
371 				bitbang->setup_transfer =
372 					 spi_bitbang_setup_transfer;
373 			master->setup = spi_bitbang_setup;
374 			master->cleanup = spi_bitbang_cleanup;
375 		}
376 	}
377 
378 	return 0;
379 }
380 EXPORT_SYMBOL_GPL(spi_bitbang_init);
381 
382 /**
383  * spi_bitbang_start - start up a polled/bitbanging SPI master driver
384  * @bitbang: driver handle
385  *
386  * Caller should have zero-initialized all parts of the structure, and then
387  * provided callbacks for chip selection and I/O loops.  If the master has
388  * a transfer method, its final step should call spi_bitbang_transfer; or,
389  * that's the default if the transfer routine is not initialized.  It should
390  * also set up the bus number and number of chipselects.
391  *
392  * For i/o loops, provide callbacks either per-word (for bitbanging, or for
393  * hardware that basically exposes a shift register) or per-spi_transfer
394  * (which takes better advantage of hardware like fifos or DMA engines).
395  *
396  * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
397  * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
398  * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
399  * routine isn't initialized.
400  *
401  * This routine registers the spi_master, which will process requests in a
402  * dedicated task, keeping IRQs unblocked most of the time.  To stop
403  * processing those requests, call spi_bitbang_stop().
404  *
405  * On success, this routine will take a reference to master. The caller is
406  * responsible for calling spi_bitbang_stop() to decrement the reference and
407  * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
408  * leak.
409  */
410 int spi_bitbang_start(struct spi_bitbang *bitbang)
411 {
412 	struct spi_master *master = bitbang->master;
413 	int ret;
414 
415 	ret = spi_bitbang_init(bitbang);
416 	if (ret)
417 		return ret;
418 
419 	/* driver may get busy before register() returns, especially
420 	 * if someone registered boardinfo for devices
421 	 */
422 	ret = spi_register_master(spi_master_get(master));
423 	if (ret)
424 		spi_master_put(master);
425 
426 	return ret;
427 }
428 EXPORT_SYMBOL_GPL(spi_bitbang_start);
429 
430 /*
431  * spi_bitbang_stop - stops the task providing spi communication
432  */
433 void spi_bitbang_stop(struct spi_bitbang *bitbang)
434 {
435 	spi_unregister_master(bitbang->master);
436 }
437 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
438 
439 MODULE_LICENSE("GPL");
440 
441