xref: /openbmc/linux/drivers/spi/spi-bitbang.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * polling/bitbanging SPI master controller driver utilities
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/spinlock.h>
16 #include <linux/workqueue.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 
24 #include <linux/spi/spi.h>
25 #include <linux/spi/spi_bitbang.h>
26 
27 #define SPI_BITBANG_CS_DELAY	100
28 
29 
30 /*----------------------------------------------------------------------*/
31 
32 /*
33  * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
34  * Use this for GPIO or shift-register level hardware APIs.
35  *
36  * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
37  * to glue code.  These bitbang setup() and cleanup() routines are always
38  * used, though maybe they're called from controller-aware code.
39  *
40  * chipselect() and friends may use spi_device->controller_data and
41  * controller registers as appropriate.
42  *
43  *
44  * NOTE:  SPI controller pins can often be used as GPIO pins instead,
45  * which means you could use a bitbang driver either to get hardware
46  * working quickly, or testing for differences that aren't speed related.
47  */
48 
49 struct spi_bitbang_cs {
50 	unsigned	nsecs;	/* (clock cycle time)/2 */
51 	u32		(*txrx_word)(struct spi_device *spi, unsigned nsecs,
52 					u32 word, u8 bits, unsigned flags);
53 	unsigned	(*txrx_bufs)(struct spi_device *,
54 					u32 (*txrx_word)(
55 						struct spi_device *spi,
56 						unsigned nsecs,
57 						u32 word, u8 bits,
58 						unsigned flags),
59 					unsigned, struct spi_transfer *,
60 					unsigned);
61 };
62 
63 static unsigned bitbang_txrx_8(
64 	struct spi_device	*spi,
65 	u32			(*txrx_word)(struct spi_device *spi,
66 					unsigned nsecs,
67 					u32 word, u8 bits,
68 					unsigned flags),
69 	unsigned		ns,
70 	struct spi_transfer	*t,
71 	unsigned flags
72 ) {
73 	unsigned		bits = t->bits_per_word;
74 	unsigned		count = t->len;
75 	const u8		*tx = t->tx_buf;
76 	u8			*rx = t->rx_buf;
77 
78 	while (likely(count > 0)) {
79 		u8		word = 0;
80 
81 		if (tx)
82 			word = *tx++;
83 		word = txrx_word(spi, ns, word, bits, flags);
84 		if (rx)
85 			*rx++ = word;
86 		count -= 1;
87 	}
88 	return t->len - count;
89 }
90 
91 static unsigned bitbang_txrx_16(
92 	struct spi_device	*spi,
93 	u32			(*txrx_word)(struct spi_device *spi,
94 					unsigned nsecs,
95 					u32 word, u8 bits,
96 					unsigned flags),
97 	unsigned		ns,
98 	struct spi_transfer	*t,
99 	unsigned flags
100 ) {
101 	unsigned		bits = t->bits_per_word;
102 	unsigned		count = t->len;
103 	const u16		*tx = t->tx_buf;
104 	u16			*rx = t->rx_buf;
105 
106 	while (likely(count > 1)) {
107 		u16		word = 0;
108 
109 		if (tx)
110 			word = *tx++;
111 		word = txrx_word(spi, ns, word, bits, flags);
112 		if (rx)
113 			*rx++ = word;
114 		count -= 2;
115 	}
116 	return t->len - count;
117 }
118 
119 static unsigned bitbang_txrx_32(
120 	struct spi_device	*spi,
121 	u32			(*txrx_word)(struct spi_device *spi,
122 					unsigned nsecs,
123 					u32 word, u8 bits,
124 					unsigned flags),
125 	unsigned		ns,
126 	struct spi_transfer	*t,
127 	unsigned flags
128 ) {
129 	unsigned		bits = t->bits_per_word;
130 	unsigned		count = t->len;
131 	const u32		*tx = t->tx_buf;
132 	u32			*rx = t->rx_buf;
133 
134 	while (likely(count > 3)) {
135 		u32		word = 0;
136 
137 		if (tx)
138 			word = *tx++;
139 		word = txrx_word(spi, ns, word, bits, flags);
140 		if (rx)
141 			*rx++ = word;
142 		count -= 4;
143 	}
144 	return t->len - count;
145 }
146 
147 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
148 {
149 	struct spi_bitbang_cs	*cs = spi->controller_state;
150 	u8			bits_per_word;
151 	u32			hz;
152 
153 	if (t) {
154 		bits_per_word = t->bits_per_word;
155 		hz = t->speed_hz;
156 	} else {
157 		bits_per_word = 0;
158 		hz = 0;
159 	}
160 
161 	/* spi_transfer level calls that work per-word */
162 	if (!bits_per_word)
163 		bits_per_word = spi->bits_per_word;
164 	if (bits_per_word <= 8)
165 		cs->txrx_bufs = bitbang_txrx_8;
166 	else if (bits_per_word <= 16)
167 		cs->txrx_bufs = bitbang_txrx_16;
168 	else if (bits_per_word <= 32)
169 		cs->txrx_bufs = bitbang_txrx_32;
170 	else
171 		return -EINVAL;
172 
173 	/* nsecs = (clock period)/2 */
174 	if (!hz)
175 		hz = spi->max_speed_hz;
176 	if (hz) {
177 		cs->nsecs = (1000000000/2) / hz;
178 		if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
179 			return -EINVAL;
180 	}
181 
182 	return 0;
183 }
184 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
185 
186 /**
187  * spi_bitbang_setup - default setup for per-word I/O loops
188  */
189 int spi_bitbang_setup(struct spi_device *spi)
190 {
191 	struct spi_bitbang_cs	*cs = spi->controller_state;
192 	struct spi_bitbang	*bitbang;
193 
194 	bitbang = spi_master_get_devdata(spi->master);
195 
196 	if (!cs) {
197 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
198 		if (!cs)
199 			return -ENOMEM;
200 		spi->controller_state = cs;
201 	}
202 
203 	/* per-word shift register access, in hardware or bitbanging */
204 	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
205 	if (!cs->txrx_word)
206 		return -EINVAL;
207 
208 	if (bitbang->setup_transfer) {
209 		int retval = bitbang->setup_transfer(spi, NULL);
210 		if (retval < 0)
211 			return retval;
212 	}
213 
214 	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
215 
216 	return 0;
217 }
218 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
219 
220 /**
221  * spi_bitbang_cleanup - default cleanup for per-word I/O loops
222  */
223 void spi_bitbang_cleanup(struct spi_device *spi)
224 {
225 	kfree(spi->controller_state);
226 }
227 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
228 
229 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
230 {
231 	struct spi_bitbang_cs	*cs = spi->controller_state;
232 	unsigned		nsecs = cs->nsecs;
233 	struct spi_bitbang	*bitbang;
234 
235 	bitbang = spi_master_get_devdata(spi->master);
236 	if (bitbang->set_line_direction) {
237 		int err;
238 
239 		err = bitbang->set_line_direction(spi, !!(t->tx_buf));
240 		if (err < 0)
241 			return err;
242 	}
243 
244 	if (spi->mode & SPI_3WIRE) {
245 		unsigned flags;
246 
247 		flags = t->tx_buf ? SPI_MASTER_NO_RX : SPI_MASTER_NO_TX;
248 		return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, flags);
249 	}
250 	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, 0);
251 }
252 
253 /*----------------------------------------------------------------------*/
254 
255 /*
256  * SECOND PART ... simple transfer queue runner.
257  *
258  * This costs a task context per controller, running the queue by
259  * performing each transfer in sequence.  Smarter hardware can queue
260  * several DMA transfers at once, and process several controller queues
261  * in parallel; this driver doesn't match such hardware very well.
262  *
263  * Drivers can provide word-at-a-time i/o primitives, or provide
264  * transfer-at-a-time ones to leverage dma or fifo hardware.
265  */
266 
267 static int spi_bitbang_prepare_hardware(struct spi_master *spi)
268 {
269 	struct spi_bitbang	*bitbang;
270 
271 	bitbang = spi_master_get_devdata(spi);
272 
273 	mutex_lock(&bitbang->lock);
274 	bitbang->busy = 1;
275 	mutex_unlock(&bitbang->lock);
276 
277 	return 0;
278 }
279 
280 static int spi_bitbang_transfer_one(struct spi_master *master,
281 				    struct spi_device *spi,
282 				    struct spi_transfer *transfer)
283 {
284 	struct spi_bitbang *bitbang = spi_master_get_devdata(master);
285 	int status = 0;
286 
287 	if (bitbang->setup_transfer) {
288 		status = bitbang->setup_transfer(spi, transfer);
289 		if (status < 0)
290 			goto out;
291 	}
292 
293 	if (transfer->len)
294 		status = bitbang->txrx_bufs(spi, transfer);
295 
296 	if (status == transfer->len)
297 		status = 0;
298 	else if (status >= 0)
299 		status = -EREMOTEIO;
300 
301 out:
302 	spi_finalize_current_transfer(master);
303 
304 	return status;
305 }
306 
307 static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
308 {
309 	struct spi_bitbang	*bitbang;
310 
311 	bitbang = spi_master_get_devdata(spi);
312 
313 	mutex_lock(&bitbang->lock);
314 	bitbang->busy = 0;
315 	mutex_unlock(&bitbang->lock);
316 
317 	return 0;
318 }
319 
320 static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
321 {
322 	struct spi_bitbang *bitbang = spi_master_get_devdata(spi->master);
323 
324 	/* SPI core provides CS high / low, but bitbang driver
325 	 * expects CS active
326 	 * spi device driver takes care of handling SPI_CS_HIGH
327 	 */
328 	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
329 
330 	ndelay(SPI_BITBANG_CS_DELAY);
331 	bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
332 			    BITBANG_CS_INACTIVE);
333 	ndelay(SPI_BITBANG_CS_DELAY);
334 }
335 
336 /*----------------------------------------------------------------------*/
337 
338 /**
339  * spi_bitbang_start - start up a polled/bitbanging SPI master driver
340  * @bitbang: driver handle
341  *
342  * Caller should have zero-initialized all parts of the structure, and then
343  * provided callbacks for chip selection and I/O loops.  If the master has
344  * a transfer method, its final step should call spi_bitbang_transfer; or,
345  * that's the default if the transfer routine is not initialized.  It should
346  * also set up the bus number and number of chipselects.
347  *
348  * For i/o loops, provide callbacks either per-word (for bitbanging, or for
349  * hardware that basically exposes a shift register) or per-spi_transfer
350  * (which takes better advantage of hardware like fifos or DMA engines).
351  *
352  * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
353  * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
354  * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
355  * routine isn't initialized.
356  *
357  * This routine registers the spi_master, which will process requests in a
358  * dedicated task, keeping IRQs unblocked most of the time.  To stop
359  * processing those requests, call spi_bitbang_stop().
360  *
361  * On success, this routine will take a reference to master. The caller is
362  * responsible for calling spi_bitbang_stop() to decrement the reference and
363  * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
364  * leak.
365  */
366 int spi_bitbang_start(struct spi_bitbang *bitbang)
367 {
368 	struct spi_master *master = bitbang->master;
369 	int ret;
370 
371 	if (!master || !bitbang->chipselect)
372 		return -EINVAL;
373 
374 	mutex_init(&bitbang->lock);
375 
376 	if (!master->mode_bits)
377 		master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
378 
379 	if (master->transfer || master->transfer_one_message)
380 		return -EINVAL;
381 
382 	master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
383 	master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
384 	master->transfer_one = spi_bitbang_transfer_one;
385 	master->set_cs = spi_bitbang_set_cs;
386 
387 	if (!bitbang->txrx_bufs) {
388 		bitbang->use_dma = 0;
389 		bitbang->txrx_bufs = spi_bitbang_bufs;
390 		if (!master->setup) {
391 			if (!bitbang->setup_transfer)
392 				bitbang->setup_transfer =
393 					 spi_bitbang_setup_transfer;
394 			master->setup = spi_bitbang_setup;
395 			master->cleanup = spi_bitbang_cleanup;
396 		}
397 	}
398 
399 	/* driver may get busy before register() returns, especially
400 	 * if someone registered boardinfo for devices
401 	 */
402 	ret = spi_register_master(spi_master_get(master));
403 	if (ret)
404 		spi_master_put(master);
405 
406 	return 0;
407 }
408 EXPORT_SYMBOL_GPL(spi_bitbang_start);
409 
410 /**
411  * spi_bitbang_stop - stops the task providing spi communication
412  */
413 void spi_bitbang_stop(struct spi_bitbang *bitbang)
414 {
415 	spi_unregister_master(bitbang->master);
416 }
417 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
418 
419 MODULE_LICENSE("GPL");
420 
421