1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Mix this utility code with some glue code to get one of several types of 4 * simple SPI master driver. Two do polled word-at-a-time I/O: 5 * 6 * - GPIO/parport bitbangers. Provide chipselect() and txrx_word[](), 7 * expanding the per-word routines from the inline templates below. 8 * 9 * - Drivers for controllers resembling bare shift registers. Provide 10 * chipselect() and txrx_word[](), with custom setup()/cleanup() methods 11 * that use your controller's clock and chipselect registers. 12 * 13 * Some hardware works well with requests at spi_transfer scope: 14 * 15 * - Drivers leveraging smarter hardware, with fifos or DMA; or for half 16 * duplex (MicroWire) controllers. Provide chipselect() and txrx_bufs(), 17 * and custom setup()/cleanup() methods. 18 */ 19 20 /* 21 * The code that knows what GPIO pins do what should have declared four 22 * functions, ideally as inlines, before including this header: 23 * 24 * void setsck(struct spi_device *, int is_on); 25 * void setmosi(struct spi_device *, int is_on); 26 * int getmiso(struct spi_device *); 27 * void spidelay(unsigned); 28 * 29 * setsck()'s is_on parameter is a zero/nonzero boolean. 30 * 31 * setmosi()'s is_on parameter is a zero/nonzero boolean. 32 * 33 * getmiso() is required to return 0 or 1 only. Any other value is invalid 34 * and will result in improper operation. 35 * 36 * A non-inlined routine would call bitbang_txrx_*() routines. The 37 * main loop could easily compile down to a handful of instructions, 38 * especially if the delay is a NOP (to run at peak speed). 39 * 40 * Since this is software, the timings may not be exactly what your board's 41 * chips need ... there may be several reasons you'd need to tweak timings 42 * in these routines, not just to make it faster or slower to match a 43 * particular CPU clock rate. 44 */ 45 46 static inline u32 47 bitbang_txrx_be_cpha0(struct spi_device *spi, 48 unsigned nsecs, unsigned cpol, unsigned flags, 49 u32 word, u8 bits) 50 { 51 /* if (cpol == 0) this is SPI_MODE_0; else this is SPI_MODE_2 */ 52 53 u32 oldbit = (!(word & (1<<(bits-1)))) << 31; 54 /* clock starts at inactive polarity */ 55 for (word <<= (32 - bits); likely(bits); bits--) { 56 57 /* setup MSB (to slave) on trailing edge */ 58 if ((flags & SPI_MASTER_NO_TX) == 0) { 59 if ((word & (1 << 31)) != oldbit) { 60 setmosi(spi, word & (1 << 31)); 61 oldbit = word & (1 << 31); 62 } 63 } 64 spidelay(nsecs); /* T(setup) */ 65 66 setsck(spi, !cpol); 67 spidelay(nsecs); 68 69 /* sample MSB (from slave) on leading edge */ 70 word <<= 1; 71 if ((flags & SPI_MASTER_NO_RX) == 0) 72 word |= getmiso(spi); 73 setsck(spi, cpol); 74 } 75 return word; 76 } 77 78 static inline u32 79 bitbang_txrx_be_cpha1(struct spi_device *spi, 80 unsigned nsecs, unsigned cpol, unsigned flags, 81 u32 word, u8 bits) 82 { 83 /* if (cpol == 0) this is SPI_MODE_1; else this is SPI_MODE_3 */ 84 85 u32 oldbit = (!(word & (1<<(bits-1)))) << 31; 86 /* clock starts at inactive polarity */ 87 for (word <<= (32 - bits); likely(bits); bits--) { 88 89 /* setup MSB (to slave) on leading edge */ 90 setsck(spi, !cpol); 91 if ((flags & SPI_MASTER_NO_TX) == 0) { 92 if ((word & (1 << 31)) != oldbit) { 93 setmosi(spi, word & (1 << 31)); 94 oldbit = word & (1 << 31); 95 } 96 } 97 spidelay(nsecs); /* T(setup) */ 98 99 setsck(spi, cpol); 100 spidelay(nsecs); 101 102 /* sample MSB (from slave) on trailing edge */ 103 word <<= 1; 104 if ((flags & SPI_MASTER_NO_RX) == 0) 105 word |= getmiso(spi); 106 } 107 return word; 108 } 109