1 /*
2  * Broadcom BCM63XX High Speed SPI Controller driver
3  *
4  * Copyright 2000-2010 Broadcom Corporation
5  * Copyright 2012-2013 Jonas Gorski <jonas.gorski@gmail.com>
6  *
7  * Licensed under the GNU/GPL. See COPYING for details.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/mutex.h>
22 #include <linux/of.h>
23 #include <linux/spi/spi-mem.h>
24 #include <linux/mtd/spi-nor.h>
25 #include <linux/reset.h>
26 #include <linux/pm_runtime.h>
27 
28 #define HSSPI_GLOBAL_CTRL_REG			0x0
29 #define GLOBAL_CTRL_CS_POLARITY_SHIFT		0
30 #define GLOBAL_CTRL_CS_POLARITY_MASK		0x000000ff
31 #define GLOBAL_CTRL_PLL_CLK_CTRL_SHIFT		8
32 #define GLOBAL_CTRL_PLL_CLK_CTRL_MASK		0x0000ff00
33 #define GLOBAL_CTRL_CLK_GATE_SSOFF		BIT(16)
34 #define GLOBAL_CTRL_CLK_POLARITY		BIT(17)
35 #define GLOBAL_CTRL_MOSI_IDLE			BIT(18)
36 
37 #define HSSPI_GLOBAL_EXT_TRIGGER_REG		0x4
38 
39 #define HSSPI_INT_STATUS_REG			0x8
40 #define HSSPI_INT_STATUS_MASKED_REG		0xc
41 #define HSSPI_INT_MASK_REG			0x10
42 
43 #define HSSPI_PINGx_CMD_DONE(i)			BIT((i * 8) + 0)
44 #define HSSPI_PINGx_RX_OVER(i)			BIT((i * 8) + 1)
45 #define HSSPI_PINGx_TX_UNDER(i)			BIT((i * 8) + 2)
46 #define HSSPI_PINGx_POLL_TIMEOUT(i)		BIT((i * 8) + 3)
47 #define HSSPI_PINGx_CTRL_INVAL(i)		BIT((i * 8) + 4)
48 
49 #define HSSPI_INT_CLEAR_ALL			0xff001f1f
50 
51 #define HSSPI_PINGPONG_COMMAND_REG(x)		(0x80 + (x) * 0x40)
52 #define PINGPONG_CMD_COMMAND_MASK		0xf
53 #define PINGPONG_COMMAND_NOOP			0
54 #define PINGPONG_COMMAND_START_NOW		1
55 #define PINGPONG_COMMAND_START_TRIGGER		2
56 #define PINGPONG_COMMAND_HALT			3
57 #define PINGPONG_COMMAND_FLUSH			4
58 #define PINGPONG_CMD_PROFILE_SHIFT		8
59 #define PINGPONG_CMD_SS_SHIFT			12
60 
61 #define HSSPI_PINGPONG_STATUS_REG(x)		(0x84 + (x) * 0x40)
62 #define HSSPI_PINGPONG_STATUS_SRC_BUSY		BIT(1)
63 
64 #define HSSPI_PROFILE_CLK_CTRL_REG(x)		(0x100 + (x) * 0x20)
65 #define CLK_CTRL_FREQ_CTRL_MASK			0x0000ffff
66 #define CLK_CTRL_SPI_CLK_2X_SEL			BIT(14)
67 #define CLK_CTRL_ACCUM_RST_ON_LOOP		BIT(15)
68 
69 #define HSSPI_PROFILE_SIGNAL_CTRL_REG(x)	(0x104 + (x) * 0x20)
70 #define SIGNAL_CTRL_LATCH_RISING		BIT(12)
71 #define SIGNAL_CTRL_LAUNCH_RISING		BIT(13)
72 #define SIGNAL_CTRL_ASYNC_INPUT_PATH		BIT(16)
73 
74 #define HSSPI_PROFILE_MODE_CTRL_REG(x)		(0x108 + (x) * 0x20)
75 #define MODE_CTRL_MULTIDATA_RD_STRT_SHIFT	8
76 #define MODE_CTRL_MULTIDATA_WR_STRT_SHIFT	12
77 #define MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT	16
78 #define MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT	18
79 #define MODE_CTRL_MODE_3WIRE			BIT(20)
80 #define MODE_CTRL_PREPENDBYTE_CNT_SHIFT		24
81 
82 #define HSSPI_FIFO_REG(x)			(0x200 + (x) * 0x200)
83 
84 
85 #define HSSPI_OP_MULTIBIT			BIT(11)
86 #define HSSPI_OP_CODE_SHIFT			13
87 #define HSSPI_OP_SLEEP				(0 << HSSPI_OP_CODE_SHIFT)
88 #define HSSPI_OP_READ_WRITE			(1 << HSSPI_OP_CODE_SHIFT)
89 #define HSSPI_OP_WRITE				(2 << HSSPI_OP_CODE_SHIFT)
90 #define HSSPI_OP_READ				(3 << HSSPI_OP_CODE_SHIFT)
91 #define HSSPI_OP_SETIRQ				(4 << HSSPI_OP_CODE_SHIFT)
92 
93 #define HSSPI_BUFFER_LEN			512
94 #define HSSPI_OPCODE_LEN			2
95 
96 #define HSSPI_MAX_PREPEND_LEN			15
97 
98 /*
99  * Some chip require 30MHz but other require 25MHz. Use smaller value to cover
100  * both cases.
101  */
102 #define HSSPI_MAX_SYNC_CLOCK			25000000
103 
104 #define HSSPI_SPI_MAX_CS			8
105 #define HSSPI_BUS_NUM				1 /* 0 is legacy SPI */
106 #define HSSPI_POLL_STATUS_TIMEOUT_MS	100
107 
108 #define HSSPI_WAIT_MODE_POLLING		0
109 #define HSSPI_WAIT_MODE_INTR		1
110 #define HSSPI_WAIT_MODE_MAX			HSSPI_WAIT_MODE_INTR
111 
112 /*
113  * Default transfer mode is auto. If the msg is prependable, use the prepend
114  * mode.  If not, falls back to use the dummy cs workaround mode but limit the
115  * clock to 25MHz to make sure it works in all board design.
116  */
117 #define HSSPI_XFER_MODE_AUTO		0
118 #define HSSPI_XFER_MODE_PREPEND		1
119 #define HSSPI_XFER_MODE_DUMMYCS		2
120 #define HSSPI_XFER_MODE_MAX			HSSPI_XFER_MODE_DUMMYCS
121 
122 #define bcm63xx_prepend_printk_on_checkfail(bs, fmt, ...)	\
123 do {										\
124 	if (bs->xfer_mode == HSSPI_XFER_MODE_AUTO)				\
125 		dev_dbg(&bs->pdev->dev, fmt, ##__VA_ARGS__);		\
126 	else if (bs->xfer_mode == HSSPI_XFER_MODE_PREPEND)		\
127 		dev_err(&bs->pdev->dev, fmt, ##__VA_ARGS__);		\
128 } while (0)
129 
130 struct bcm63xx_hsspi {
131 	struct completion done;
132 	struct mutex bus_mutex;
133 	struct mutex msg_mutex;
134 	struct platform_device *pdev;
135 	struct clk *clk;
136 	struct clk *pll_clk;
137 	void __iomem *regs;
138 	u8 __iomem *fifo;
139 
140 	u32 speed_hz;
141 	u8 cs_polarity;
142 	u32 wait_mode;
143 	u32 xfer_mode;
144 	u32 prepend_cnt;
145 	u8 *prepend_buf;
146 };
147 
148 static ssize_t wait_mode_show(struct device *dev, struct device_attribute *attr,
149 			 char *buf)
150 {
151 	struct spi_controller *ctrl = dev_get_drvdata(dev);
152 	struct bcm63xx_hsspi *bs = spi_controller_get_devdata(ctrl);
153 
154 	return sprintf(buf, "%d\n", bs->wait_mode);
155 }
156 
157 static ssize_t wait_mode_store(struct device *dev, struct device_attribute *attr,
158 			  const char *buf, size_t count)
159 {
160 	struct spi_controller *ctrl = dev_get_drvdata(dev);
161 	struct bcm63xx_hsspi *bs = spi_controller_get_devdata(ctrl);
162 	u32 val;
163 
164 	if (kstrtou32(buf, 10, &val))
165 		return -EINVAL;
166 
167 	if (val > HSSPI_WAIT_MODE_MAX) {
168 		dev_warn(dev, "invalid wait mode %u\n", val);
169 		return -EINVAL;
170 	}
171 
172 	mutex_lock(&bs->msg_mutex);
173 	bs->wait_mode = val;
174 	/* clear interrupt status to avoid spurious int on next transfer */
175 	if (val == HSSPI_WAIT_MODE_INTR)
176 		__raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG);
177 	mutex_unlock(&bs->msg_mutex);
178 
179 	return count;
180 }
181 
182 static DEVICE_ATTR_RW(wait_mode);
183 
184 static ssize_t xfer_mode_show(struct device *dev, struct device_attribute *attr,
185 			 char *buf)
186 {
187 	struct spi_controller *ctrl = dev_get_drvdata(dev);
188 	struct bcm63xx_hsspi *bs = spi_controller_get_devdata(ctrl);
189 
190 	return sprintf(buf, "%d\n", bs->xfer_mode);
191 }
192 
193 static ssize_t xfer_mode_store(struct device *dev, struct device_attribute *attr,
194 			  const char *buf, size_t count)
195 {
196 	struct spi_controller *ctrl = dev_get_drvdata(dev);
197 	struct bcm63xx_hsspi *bs = spi_controller_get_devdata(ctrl);
198 	u32 val;
199 
200 	if (kstrtou32(buf, 10, &val))
201 		return -EINVAL;
202 
203 	if (val > HSSPI_XFER_MODE_MAX) {
204 		dev_warn(dev, "invalid xfer mode %u\n", val);
205 		return -EINVAL;
206 	}
207 
208 	mutex_lock(&bs->msg_mutex);
209 	bs->xfer_mode = val;
210 	mutex_unlock(&bs->msg_mutex);
211 
212 	return count;
213 }
214 
215 static DEVICE_ATTR_RW(xfer_mode);
216 
217 static struct attribute *bcm63xx_hsspi_attrs[] = {
218 	&dev_attr_wait_mode.attr,
219 	&dev_attr_xfer_mode.attr,
220 	NULL,
221 };
222 
223 static const struct attribute_group bcm63xx_hsspi_group = {
224 	.attrs = bcm63xx_hsspi_attrs,
225 };
226 
227 static void bcm63xx_hsspi_set_clk(struct bcm63xx_hsspi *bs,
228 				  struct spi_device *spi, int hz);
229 
230 static size_t bcm63xx_hsspi_max_message_size(struct spi_device *spi)
231 {
232 	return HSSPI_BUFFER_LEN - HSSPI_OPCODE_LEN;
233 }
234 
235 static int bcm63xx_hsspi_wait_cmd(struct bcm63xx_hsspi *bs)
236 {
237 	unsigned long limit;
238 	u32 reg = 0;
239 	int rc = 0;
240 
241 	if (bs->wait_mode == HSSPI_WAIT_MODE_INTR) {
242 		if (wait_for_completion_timeout(&bs->done, HZ) == 0)
243 			rc = 1;
244 	} else {
245 		/* polling mode checks for status busy bit */
246 		limit = jiffies + msecs_to_jiffies(HSSPI_POLL_STATUS_TIMEOUT_MS);
247 
248 		while (!time_after(jiffies, limit)) {
249 			reg = __raw_readl(bs->regs + HSSPI_PINGPONG_STATUS_REG(0));
250 			if (reg & HSSPI_PINGPONG_STATUS_SRC_BUSY)
251 				cpu_relax();
252 			else
253 				break;
254 		}
255 		if (reg & HSSPI_PINGPONG_STATUS_SRC_BUSY)
256 			rc = 1;
257 	}
258 
259 	if (rc)
260 		dev_err(&bs->pdev->dev, "transfer timed out!\n");
261 
262 	return rc;
263 }
264 
265 static bool bcm63xx_prepare_prepend_transfer(struct spi_controller *host,
266 					  struct spi_message *msg,
267 					  struct spi_transfer *t_prepend)
268 {
269 
270 	struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host);
271 	bool tx_only = false;
272 	struct spi_transfer *t;
273 
274 	/*
275 	 * Multiple transfers within a message may be combined into one transfer
276 	 * to the controller using its prepend feature. A SPI message is prependable
277 	 * only if the following are all true:
278 	 *   1. One or more half duplex write transfer in single bit mode
279 	 *   2. Optional full duplex read/write at the end
280 	 *   3. No delay and cs_change between transfers
281 	 */
282 	bs->prepend_cnt = 0;
283 	list_for_each_entry(t, &msg->transfers, transfer_list) {
284 		if ((spi_delay_to_ns(&t->delay, t) > 0) || t->cs_change) {
285 			bcm63xx_prepend_printk_on_checkfail(bs,
286 				 "Delay or cs change not supported in prepend mode!\n");
287 			return false;
288 		}
289 
290 		tx_only = false;
291 		if (t->tx_buf && !t->rx_buf) {
292 			tx_only = true;
293 			if (bs->prepend_cnt + t->len >
294 				(HSSPI_BUFFER_LEN - HSSPI_OPCODE_LEN)) {
295 				bcm63xx_prepend_printk_on_checkfail(bs,
296 					 "exceed max buf len, abort prepending transfers!\n");
297 				return false;
298 			}
299 
300 			if (t->tx_nbits > SPI_NBITS_SINGLE &&
301 				!list_is_last(&t->transfer_list, &msg->transfers)) {
302 				bcm63xx_prepend_printk_on_checkfail(bs,
303 					 "multi-bit prepend buf not supported!\n");
304 				return false;
305 			}
306 
307 			if (t->tx_nbits == SPI_NBITS_SINGLE) {
308 				memcpy(bs->prepend_buf + bs->prepend_cnt, t->tx_buf, t->len);
309 				bs->prepend_cnt += t->len;
310 			}
311 		} else {
312 			if (!list_is_last(&t->transfer_list, &msg->transfers)) {
313 				bcm63xx_prepend_printk_on_checkfail(bs,
314 					 "rx/tx_rx transfer not supported when it is not last one!\n");
315 				return false;
316 			}
317 		}
318 
319 		if (list_is_last(&t->transfer_list, &msg->transfers)) {
320 			memcpy(t_prepend, t, sizeof(struct spi_transfer));
321 
322 			if (tx_only && t->tx_nbits == SPI_NBITS_SINGLE) {
323 				/*
324 				 * if the last one is also a single bit tx only transfer, merge
325 				 * all of them into one single tx transfer
326 				 */
327 				t_prepend->len = bs->prepend_cnt;
328 				t_prepend->tx_buf = bs->prepend_buf;
329 				bs->prepend_cnt = 0;
330 			} else {
331 				/*
332 				 * if the last one is not a tx only transfer or dual tx xfer, all
333 				 * the previous transfers are sent through prepend bytes and
334 				 * make sure it does not exceed the max prepend len
335 				 */
336 				if (bs->prepend_cnt > HSSPI_MAX_PREPEND_LEN) {
337 					bcm63xx_prepend_printk_on_checkfail(bs,
338 						"exceed max prepend len, abort prepending transfers!\n");
339 					return false;
340 				}
341 			}
342 		}
343 	}
344 
345 	return true;
346 }
347 
348 static int bcm63xx_hsspi_do_prepend_txrx(struct spi_device *spi,
349 					 struct spi_transfer *t)
350 {
351 	struct bcm63xx_hsspi *bs = spi_controller_get_devdata(spi->controller);
352 	unsigned int chip_select = spi_get_chipselect(spi, 0);
353 	u16 opcode = 0, val;
354 	const u8 *tx = t->tx_buf;
355 	u8 *rx = t->rx_buf;
356 	u32 reg = 0;
357 
358 	/*
359 	 * shouldn't happen as we set the max_message_size in the probe.
360 	 * but check it again in case some driver does not honor the max size
361 	 */
362 	if (t->len + bs->prepend_cnt > (HSSPI_BUFFER_LEN - HSSPI_OPCODE_LEN)) {
363 		dev_warn(&bs->pdev->dev,
364 			 "Prepend message large than fifo size len %d prepend %d\n",
365 			 t->len, bs->prepend_cnt);
366 		return -EINVAL;
367 	}
368 
369 	bcm63xx_hsspi_set_clk(bs, spi, t->speed_hz);
370 
371 	if (tx && rx)
372 		opcode = HSSPI_OP_READ_WRITE;
373 	else if (tx)
374 		opcode = HSSPI_OP_WRITE;
375 	else if (rx)
376 		opcode = HSSPI_OP_READ;
377 
378 	if ((opcode == HSSPI_OP_READ && t->rx_nbits == SPI_NBITS_DUAL) ||
379 	    (opcode == HSSPI_OP_WRITE && t->tx_nbits == SPI_NBITS_DUAL)) {
380 		opcode |= HSSPI_OP_MULTIBIT;
381 
382 		if (t->rx_nbits == SPI_NBITS_DUAL) {
383 			reg |= 1 << MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT;
384 			reg |= bs->prepend_cnt << MODE_CTRL_MULTIDATA_RD_STRT_SHIFT;
385 		}
386 		if (t->tx_nbits == SPI_NBITS_DUAL) {
387 			reg |= 1 << MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT;
388 			reg |= bs->prepend_cnt << MODE_CTRL_MULTIDATA_WR_STRT_SHIFT;
389 		}
390 	}
391 
392 	reg |= bs->prepend_cnt << MODE_CTRL_PREPENDBYTE_CNT_SHIFT;
393 	__raw_writel(reg | 0xff,
394 		     bs->regs + HSSPI_PROFILE_MODE_CTRL_REG(chip_select));
395 
396 	reinit_completion(&bs->done);
397 	if (bs->prepend_cnt)
398 		memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN, bs->prepend_buf,
399 			    bs->prepend_cnt);
400 	if (tx)
401 		memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN + bs->prepend_cnt, tx,
402 			    t->len);
403 
404 	*(__be16 *)(&val) = cpu_to_be16(opcode | t->len);
405 	__raw_writew(val, bs->fifo);
406 	/* enable interrupt */
407 	if (bs->wait_mode == HSSPI_WAIT_MODE_INTR)
408 		__raw_writel(HSSPI_PINGx_CMD_DONE(0), bs->regs + HSSPI_INT_MASK_REG);
409 
410 	/* start the transfer */
411 	reg = chip_select << PINGPONG_CMD_SS_SHIFT |
412 	    chip_select << PINGPONG_CMD_PROFILE_SHIFT |
413 	    PINGPONG_COMMAND_START_NOW;
414 	__raw_writel(reg, bs->regs + HSSPI_PINGPONG_COMMAND_REG(0));
415 
416 	if (bcm63xx_hsspi_wait_cmd(bs))
417 		return -ETIMEDOUT;
418 
419 	if (rx)
420 		memcpy_fromio(rx, bs->fifo, t->len);
421 
422 	return 0;
423 }
424 
425 static void bcm63xx_hsspi_set_cs(struct bcm63xx_hsspi *bs, unsigned int cs,
426 				 bool active)
427 {
428 	u32 reg;
429 
430 	mutex_lock(&bs->bus_mutex);
431 	reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
432 
433 	reg &= ~BIT(cs);
434 	if (active == !(bs->cs_polarity & BIT(cs)))
435 		reg |= BIT(cs);
436 
437 	__raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG);
438 	mutex_unlock(&bs->bus_mutex);
439 }
440 
441 static void bcm63xx_hsspi_set_clk(struct bcm63xx_hsspi *bs,
442 				  struct spi_device *spi, int hz)
443 {
444 	unsigned int profile = spi_get_chipselect(spi, 0);
445 	u32 reg;
446 
447 	reg = DIV_ROUND_UP(2048, DIV_ROUND_UP(bs->speed_hz, hz));
448 	__raw_writel(CLK_CTRL_ACCUM_RST_ON_LOOP | reg,
449 		     bs->regs + HSSPI_PROFILE_CLK_CTRL_REG(profile));
450 
451 	reg = __raw_readl(bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(profile));
452 	if (hz > HSSPI_MAX_SYNC_CLOCK)
453 		reg |= SIGNAL_CTRL_ASYNC_INPUT_PATH;
454 	else
455 		reg &= ~SIGNAL_CTRL_ASYNC_INPUT_PATH;
456 	__raw_writel(reg, bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(profile));
457 
458 	mutex_lock(&bs->bus_mutex);
459 	/* setup clock polarity */
460 	reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
461 	reg &= ~GLOBAL_CTRL_CLK_POLARITY;
462 	if (spi->mode & SPI_CPOL)
463 		reg |= GLOBAL_CTRL_CLK_POLARITY;
464 	__raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG);
465 	mutex_unlock(&bs->bus_mutex);
466 }
467 
468 static int bcm63xx_hsspi_do_txrx(struct spi_device *spi, struct spi_transfer *t)
469 {
470 	struct bcm63xx_hsspi *bs = spi_controller_get_devdata(spi->controller);
471 	unsigned int chip_select = spi_get_chipselect(spi, 0);
472 	u16 opcode = 0, val;
473 	int pending = t->len;
474 	int step_size = HSSPI_BUFFER_LEN;
475 	const u8 *tx = t->tx_buf;
476 	u8 *rx = t->rx_buf;
477 	u32 reg = 0;
478 
479 	bcm63xx_hsspi_set_clk(bs, spi, t->speed_hz);
480 	if (!t->cs_off)
481 		bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), true);
482 
483 	if (tx && rx)
484 		opcode = HSSPI_OP_READ_WRITE;
485 	else if (tx)
486 		opcode = HSSPI_OP_WRITE;
487 	else if (rx)
488 		opcode = HSSPI_OP_READ;
489 
490 	if (opcode != HSSPI_OP_READ)
491 		step_size -= HSSPI_OPCODE_LEN;
492 
493 	if ((opcode == HSSPI_OP_READ && t->rx_nbits == SPI_NBITS_DUAL) ||
494 	    (opcode == HSSPI_OP_WRITE && t->tx_nbits == SPI_NBITS_DUAL)) {
495 		opcode |= HSSPI_OP_MULTIBIT;
496 
497 		if (t->rx_nbits == SPI_NBITS_DUAL)
498 			reg |= 1 << MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT;
499 		if (t->tx_nbits == SPI_NBITS_DUAL)
500 			reg |= 1 << MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT;
501 	}
502 
503 	__raw_writel(reg | 0xff,
504 		     bs->regs + HSSPI_PROFILE_MODE_CTRL_REG(chip_select));
505 
506 	while (pending > 0) {
507 		int curr_step = min_t(int, step_size, pending);
508 
509 		reinit_completion(&bs->done);
510 		if (tx) {
511 			memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN, tx, curr_step);
512 			tx += curr_step;
513 		}
514 
515 		*(__be16 *)(&val) = cpu_to_be16(opcode | curr_step);
516 		__raw_writew(val, bs->fifo);
517 
518 		/* enable interrupt */
519 		if (bs->wait_mode == HSSPI_WAIT_MODE_INTR)
520 			__raw_writel(HSSPI_PINGx_CMD_DONE(0),
521 				     bs->regs + HSSPI_INT_MASK_REG);
522 
523 		reg =  !chip_select << PINGPONG_CMD_SS_SHIFT |
524 			    chip_select << PINGPONG_CMD_PROFILE_SHIFT |
525 			    PINGPONG_COMMAND_START_NOW;
526 		__raw_writel(reg, bs->regs + HSSPI_PINGPONG_COMMAND_REG(0));
527 
528 		if (bcm63xx_hsspi_wait_cmd(bs))
529 			return -ETIMEDOUT;
530 
531 		if (rx) {
532 			memcpy_fromio(rx, bs->fifo, curr_step);
533 			rx += curr_step;
534 		}
535 
536 		pending -= curr_step;
537 	}
538 
539 	return 0;
540 }
541 
542 static int bcm63xx_hsspi_setup(struct spi_device *spi)
543 {
544 	struct bcm63xx_hsspi *bs = spi_controller_get_devdata(spi->controller);
545 	u32 reg;
546 
547 	reg = __raw_readl(bs->regs +
548 			  HSSPI_PROFILE_SIGNAL_CTRL_REG(spi_get_chipselect(spi, 0)));
549 	reg &= ~(SIGNAL_CTRL_LAUNCH_RISING | SIGNAL_CTRL_LATCH_RISING);
550 	if (spi->mode & SPI_CPHA)
551 		reg |= SIGNAL_CTRL_LAUNCH_RISING;
552 	else
553 		reg |= SIGNAL_CTRL_LATCH_RISING;
554 	__raw_writel(reg, bs->regs +
555 		     HSSPI_PROFILE_SIGNAL_CTRL_REG(spi_get_chipselect(spi, 0)));
556 
557 	mutex_lock(&bs->bus_mutex);
558 	reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
559 
560 	/* only change actual polarities if there is no transfer */
561 	if ((reg & GLOBAL_CTRL_CS_POLARITY_MASK) == bs->cs_polarity) {
562 		if (spi->mode & SPI_CS_HIGH)
563 			reg |= BIT(spi_get_chipselect(spi, 0));
564 		else
565 			reg &= ~BIT(spi_get_chipselect(spi, 0));
566 		__raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG);
567 	}
568 
569 	if (spi->mode & SPI_CS_HIGH)
570 		bs->cs_polarity |= BIT(spi_get_chipselect(spi, 0));
571 	else
572 		bs->cs_polarity &= ~BIT(spi_get_chipselect(spi, 0));
573 
574 	mutex_unlock(&bs->bus_mutex);
575 
576 	return 0;
577 }
578 
579 static int bcm63xx_hsspi_do_dummy_cs_txrx(struct spi_device *spi,
580 				      struct spi_message *msg)
581 {
582 	struct bcm63xx_hsspi *bs = spi_controller_get_devdata(spi->controller);
583 	int status = -EINVAL;
584 	int dummy_cs;
585 	bool keep_cs = false;
586 	struct spi_transfer *t;
587 
588 	/*
589 	 * This controller does not support keeping CS active during idle.
590 	 * To work around this, we use the following ugly hack:
591 	 *
592 	 * a. Invert the target chip select's polarity so it will be active.
593 	 * b. Select a "dummy" chip select to use as the hardware target.
594 	 * c. Invert the dummy chip select's polarity so it will be inactive
595 	 *    during the actual transfers.
596 	 * d. Tell the hardware to send to the dummy chip select. Thanks to
597 	 *    the multiplexed nature of SPI the actual target will receive
598 	 *    the transfer and we see its response.
599 	 *
600 	 * e. At the end restore the polarities again to their default values.
601 	 */
602 
603 	dummy_cs = !spi_get_chipselect(spi, 0);
604 	bcm63xx_hsspi_set_cs(bs, dummy_cs, true);
605 
606 	list_for_each_entry(t, &msg->transfers, transfer_list) {
607 		/*
608 		 * We are here because one of reasons below:
609 		 * a. Message is not prependable and in default auto xfer mode. This mean
610 		 *    we fallback to dummy cs mode at maximum 25MHz safe clock rate.
611 		 * b. User set to use the dummy cs mode.
612 		 */
613 		if (bs->xfer_mode == HSSPI_XFER_MODE_AUTO) {
614 			if (t->speed_hz > HSSPI_MAX_SYNC_CLOCK) {
615 				t->speed_hz = HSSPI_MAX_SYNC_CLOCK;
616 				dev_warn_once(&bs->pdev->dev,
617 					"Force to dummy cs mode. Reduce the speed to %dHz",
618 					t->speed_hz);
619 			}
620 		}
621 
622 		status = bcm63xx_hsspi_do_txrx(spi, t);
623 		if (status)
624 			break;
625 
626 		msg->actual_length += t->len;
627 
628 		spi_transfer_delay_exec(t);
629 
630 		/* use existing cs change logic from spi_transfer_one_message */
631 		if (t->cs_change) {
632 			if (list_is_last(&t->transfer_list, &msg->transfers)) {
633 				keep_cs = true;
634 			} else {
635 				if (!t->cs_off)
636 					bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), false);
637 
638 				spi_transfer_cs_change_delay_exec(msg, t);
639 
640 				if (!list_next_entry(t, transfer_list)->cs_off)
641 					bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), true);
642 			}
643 		} else if (!list_is_last(&t->transfer_list, &msg->transfers) &&
644 			   t->cs_off != list_next_entry(t, transfer_list)->cs_off) {
645 			bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), t->cs_off);
646 		}
647 	}
648 
649 	bcm63xx_hsspi_set_cs(bs, dummy_cs, false);
650 	if (status || !keep_cs)
651 		bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), false);
652 
653 	return status;
654 }
655 
656 static int bcm63xx_hsspi_transfer_one(struct spi_controller *host,
657 				      struct spi_message *msg)
658 {
659 	struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host);
660 	struct spi_device *spi = msg->spi;
661 	int status = -EINVAL;
662 	bool prependable = false;
663 	struct spi_transfer t_prepend;
664 
665 	mutex_lock(&bs->msg_mutex);
666 
667 	if (bs->xfer_mode != HSSPI_XFER_MODE_DUMMYCS)
668 		prependable = bcm63xx_prepare_prepend_transfer(host, msg, &t_prepend);
669 
670 	if (prependable) {
671 		status = bcm63xx_hsspi_do_prepend_txrx(spi, &t_prepend);
672 		msg->actual_length = (t_prepend.len + bs->prepend_cnt);
673 	} else {
674 		if (bs->xfer_mode == HSSPI_XFER_MODE_PREPEND) {
675 			dev_err(&bs->pdev->dev,
676 				"User sets prepend mode but msg not prependable! Abort transfer\n");
677 			status = -EINVAL;
678 		} else
679 			status = bcm63xx_hsspi_do_dummy_cs_txrx(spi, msg);
680 	}
681 
682 	mutex_unlock(&bs->msg_mutex);
683 	msg->status = status;
684 	spi_finalize_current_message(host);
685 
686 	return 0;
687 }
688 
689 static bool bcm63xx_hsspi_mem_supports_op(struct spi_mem *mem,
690 			    const struct spi_mem_op *op)
691 {
692 	if (!spi_mem_default_supports_op(mem, op))
693 		return false;
694 
695 	/* Controller doesn't support spi mem dual io mode */
696 	if ((op->cmd.opcode == SPINOR_OP_READ_1_2_2) ||
697 		(op->cmd.opcode == SPINOR_OP_READ_1_2_2_4B) ||
698 		(op->cmd.opcode == SPINOR_OP_READ_1_2_2_DTR) ||
699 		(op->cmd.opcode == SPINOR_OP_READ_1_2_2_DTR_4B))
700 		return false;
701 
702 	return true;
703 }
704 
705 static const struct spi_controller_mem_ops bcm63xx_hsspi_mem_ops = {
706 	.supports_op = bcm63xx_hsspi_mem_supports_op,
707 };
708 
709 static irqreturn_t bcm63xx_hsspi_interrupt(int irq, void *dev_id)
710 {
711 	struct bcm63xx_hsspi *bs = (struct bcm63xx_hsspi *)dev_id;
712 
713 	if (__raw_readl(bs->regs + HSSPI_INT_STATUS_MASKED_REG) == 0)
714 		return IRQ_NONE;
715 
716 	__raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG);
717 	__raw_writel(0, bs->regs + HSSPI_INT_MASK_REG);
718 
719 	complete(&bs->done);
720 
721 	return IRQ_HANDLED;
722 }
723 
724 static int bcm63xx_hsspi_probe(struct platform_device *pdev)
725 {
726 	struct spi_controller *host;
727 	struct bcm63xx_hsspi *bs;
728 	void __iomem *regs;
729 	struct device *dev = &pdev->dev;
730 	struct clk *clk, *pll_clk = NULL;
731 	int irq, ret;
732 	u32 reg, rate, num_cs = HSSPI_SPI_MAX_CS;
733 	struct reset_control *reset;
734 
735 	irq = platform_get_irq(pdev, 0);
736 	if (irq < 0)
737 		return irq;
738 
739 	regs = devm_platform_ioremap_resource(pdev, 0);
740 	if (IS_ERR(regs))
741 		return PTR_ERR(regs);
742 
743 	clk = devm_clk_get(dev, "hsspi");
744 
745 	if (IS_ERR(clk))
746 		return PTR_ERR(clk);
747 
748 	reset = devm_reset_control_get_optional_exclusive(dev, NULL);
749 	if (IS_ERR(reset))
750 		return PTR_ERR(reset);
751 
752 	ret = clk_prepare_enable(clk);
753 	if (ret)
754 		return ret;
755 
756 	ret = reset_control_reset(reset);
757 	if (ret) {
758 		dev_err(dev, "unable to reset device: %d\n", ret);
759 		goto out_disable_clk;
760 	}
761 
762 	rate = clk_get_rate(clk);
763 	if (!rate) {
764 		pll_clk = devm_clk_get(dev, "pll");
765 
766 		if (IS_ERR(pll_clk)) {
767 			ret = PTR_ERR(pll_clk);
768 			goto out_disable_clk;
769 		}
770 
771 		ret = clk_prepare_enable(pll_clk);
772 		if (ret)
773 			goto out_disable_clk;
774 
775 		rate = clk_get_rate(pll_clk);
776 		if (!rate) {
777 			ret = -EINVAL;
778 			goto out_disable_pll_clk;
779 		}
780 	}
781 
782 	host = spi_alloc_host(&pdev->dev, sizeof(*bs));
783 	if (!host) {
784 		ret = -ENOMEM;
785 		goto out_disable_pll_clk;
786 	}
787 
788 	bs = spi_controller_get_devdata(host);
789 	bs->pdev = pdev;
790 	bs->clk = clk;
791 	bs->pll_clk = pll_clk;
792 	bs->regs = regs;
793 	bs->speed_hz = rate;
794 	bs->fifo = (u8 __iomem *)(bs->regs + HSSPI_FIFO_REG(0));
795 	bs->wait_mode = HSSPI_WAIT_MODE_POLLING;
796 	bs->prepend_buf = devm_kzalloc(dev, HSSPI_BUFFER_LEN, GFP_KERNEL);
797 	if (!bs->prepend_buf) {
798 		ret = -ENOMEM;
799 		goto out_put_host;
800 	}
801 
802 	mutex_init(&bs->bus_mutex);
803 	mutex_init(&bs->msg_mutex);
804 	init_completion(&bs->done);
805 
806 	host->mem_ops = &bcm63xx_hsspi_mem_ops;
807 	host->dev.of_node = dev->of_node;
808 	if (!dev->of_node)
809 		host->bus_num = HSSPI_BUS_NUM;
810 
811 	of_property_read_u32(dev->of_node, "num-cs", &num_cs);
812 	if (num_cs > 8) {
813 		dev_warn(dev, "unsupported number of cs (%i), reducing to 8\n",
814 			 num_cs);
815 		num_cs = HSSPI_SPI_MAX_CS;
816 	}
817 	host->num_chipselect = num_cs;
818 	host->setup = bcm63xx_hsspi_setup;
819 	host->transfer_one_message = bcm63xx_hsspi_transfer_one;
820 	host->max_transfer_size = bcm63xx_hsspi_max_message_size;
821 	host->max_message_size = bcm63xx_hsspi_max_message_size;
822 
823 	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
824 			    SPI_RX_DUAL | SPI_TX_DUAL;
825 	host->bits_per_word_mask = SPI_BPW_MASK(8);
826 	host->auto_runtime_pm = true;
827 
828 	platform_set_drvdata(pdev, host);
829 
830 	/* Initialize the hardware */
831 	__raw_writel(0, bs->regs + HSSPI_INT_MASK_REG);
832 
833 	/* clean up any pending interrupts */
834 	__raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG);
835 
836 	/* read out default CS polarities */
837 	reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG);
838 	bs->cs_polarity = reg & GLOBAL_CTRL_CS_POLARITY_MASK;
839 	__raw_writel(reg | GLOBAL_CTRL_CLK_GATE_SSOFF,
840 		     bs->regs + HSSPI_GLOBAL_CTRL_REG);
841 
842 	if (irq > 0) {
843 		ret = devm_request_irq(dev, irq, bcm63xx_hsspi_interrupt, IRQF_SHARED,
844 				       pdev->name, bs);
845 
846 		if (ret)
847 			goto out_put_host;
848 	}
849 
850 	pm_runtime_enable(&pdev->dev);
851 
852 	ret = sysfs_create_group(&pdev->dev.kobj, &bcm63xx_hsspi_group);
853 	if (ret) {
854 		dev_err(&pdev->dev, "couldn't register sysfs group\n");
855 		goto out_pm_disable;
856 	}
857 
858 	/* register and we are done */
859 	ret = devm_spi_register_controller(dev, host);
860 	if (ret)
861 		goto out_sysgroup_disable;
862 
863 	dev_info(dev, "Broadcom 63XX High Speed SPI Controller driver");
864 
865 	return 0;
866 
867 out_sysgroup_disable:
868 	sysfs_remove_group(&pdev->dev.kobj, &bcm63xx_hsspi_group);
869 out_pm_disable:
870 	pm_runtime_disable(&pdev->dev);
871 out_put_host:
872 	spi_controller_put(host);
873 out_disable_pll_clk:
874 	clk_disable_unprepare(pll_clk);
875 out_disable_clk:
876 	clk_disable_unprepare(clk);
877 	return ret;
878 }
879 
880 
881 static void bcm63xx_hsspi_remove(struct platform_device *pdev)
882 {
883 	struct spi_controller *host = platform_get_drvdata(pdev);
884 	struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host);
885 
886 	/* reset the hardware and block queue progress */
887 	__raw_writel(0, bs->regs + HSSPI_INT_MASK_REG);
888 	clk_disable_unprepare(bs->pll_clk);
889 	clk_disable_unprepare(bs->clk);
890 	sysfs_remove_group(&pdev->dev.kobj, &bcm63xx_hsspi_group);
891 }
892 
893 #ifdef CONFIG_PM_SLEEP
894 static int bcm63xx_hsspi_suspend(struct device *dev)
895 {
896 	struct spi_controller *host = dev_get_drvdata(dev);
897 	struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host);
898 
899 	spi_controller_suspend(host);
900 	clk_disable_unprepare(bs->pll_clk);
901 	clk_disable_unprepare(bs->clk);
902 
903 	return 0;
904 }
905 
906 static int bcm63xx_hsspi_resume(struct device *dev)
907 {
908 	struct spi_controller *host = dev_get_drvdata(dev);
909 	struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host);
910 	int ret;
911 
912 	ret = clk_prepare_enable(bs->clk);
913 	if (ret)
914 		return ret;
915 
916 	if (bs->pll_clk) {
917 		ret = clk_prepare_enable(bs->pll_clk);
918 		if (ret) {
919 			clk_disable_unprepare(bs->clk);
920 			return ret;
921 		}
922 	}
923 
924 	spi_controller_resume(host);
925 
926 	return 0;
927 }
928 #endif
929 
930 static SIMPLE_DEV_PM_OPS(bcm63xx_hsspi_pm_ops, bcm63xx_hsspi_suspend,
931 			 bcm63xx_hsspi_resume);
932 
933 static const struct of_device_id bcm63xx_hsspi_of_match[] = {
934 	{ .compatible = "brcm,bcm6328-hsspi", },
935 	{ .compatible = "brcm,bcmbca-hsspi-v1.0", },
936 	{ },
937 };
938 MODULE_DEVICE_TABLE(of, bcm63xx_hsspi_of_match);
939 
940 static struct platform_driver bcm63xx_hsspi_driver = {
941 	.driver = {
942 		.name	= "bcm63xx-hsspi",
943 		.pm	= &bcm63xx_hsspi_pm_ops,
944 		.of_match_table = bcm63xx_hsspi_of_match,
945 	},
946 	.probe		= bcm63xx_hsspi_probe,
947 	.remove_new	= bcm63xx_hsspi_remove,
948 };
949 
950 module_platform_driver(bcm63xx_hsspi_driver);
951 
952 MODULE_ALIAS("platform:bcm63xx_hsspi");
953 MODULE_DESCRIPTION("Broadcom BCM63xx High Speed SPI Controller driver");
954 MODULE_AUTHOR("Jonas Gorski <jogo@openwrt.org>");
955 MODULE_LICENSE("GPL");
956