xref: /openbmc/linux/drivers/spi/spi-bcm2835aux.c (revision ec32c0c4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Broadcom BCM2835 auxiliary SPI Controllers
4  *
5  * the driver does not rely on the native chipselects at all
6  * but only uses the gpio type chipselects
7  *
8  * Based on: spi-bcm2835.c
9  *
10  * Copyright (C) 2015 Martin Sperl
11  */
12 
13 #include <linux/clk.h>
14 #include <linux/completion.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_address.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/regmap.h>
27 #include <linux/spi/spi.h>
28 #include <linux/spinlock.h>
29 
30 /* define polling limits */
31 static unsigned int polling_limit_us = 30;
32 module_param(polling_limit_us, uint, 0664);
33 MODULE_PARM_DESC(polling_limit_us,
34 		 "time in us to run a transfer in polling mode - if zero no polling is used\n");
35 
36 /*
37  * spi register defines
38  *
39  * note there is garbage in the "official" documentation,
40  * so some data is taken from the file:
41  *   brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
42  * inside of:
43  *   http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
44  */
45 
46 /* SPI register offsets */
47 #define BCM2835_AUX_SPI_CNTL0	0x00
48 #define BCM2835_AUX_SPI_CNTL1	0x04
49 #define BCM2835_AUX_SPI_STAT	0x08
50 #define BCM2835_AUX_SPI_PEEK	0x0C
51 #define BCM2835_AUX_SPI_IO	0x20
52 #define BCM2835_AUX_SPI_TXHOLD	0x30
53 
54 /* Bitfields in CNTL0 */
55 #define BCM2835_AUX_SPI_CNTL0_SPEED	0xFFF00000
56 #define BCM2835_AUX_SPI_CNTL0_SPEED_MAX	0xFFF
57 #define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT	20
58 #define BCM2835_AUX_SPI_CNTL0_CS	0x000E0000
59 #define BCM2835_AUX_SPI_CNTL0_POSTINPUT	0x00010000
60 #define BCM2835_AUX_SPI_CNTL0_VAR_CS	0x00008000
61 #define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH	0x00004000
62 #define BCM2835_AUX_SPI_CNTL0_DOUTHOLD	0x00003000
63 #define BCM2835_AUX_SPI_CNTL0_ENABLE	0x00000800
64 #define BCM2835_AUX_SPI_CNTL0_IN_RISING	0x00000400
65 #define BCM2835_AUX_SPI_CNTL0_CLEARFIFO	0x00000200
66 #define BCM2835_AUX_SPI_CNTL0_OUT_RISING	0x00000100
67 #define BCM2835_AUX_SPI_CNTL0_CPOL	0x00000080
68 #define BCM2835_AUX_SPI_CNTL0_MSBF_OUT	0x00000040
69 #define BCM2835_AUX_SPI_CNTL0_SHIFTLEN	0x0000003F
70 
71 /* Bitfields in CNTL1 */
72 #define BCM2835_AUX_SPI_CNTL1_CSHIGH	0x00000700
73 #define BCM2835_AUX_SPI_CNTL1_TXEMPTY	0x00000080
74 #define BCM2835_AUX_SPI_CNTL1_IDLE	0x00000040
75 #define BCM2835_AUX_SPI_CNTL1_MSBF_IN	0x00000002
76 #define BCM2835_AUX_SPI_CNTL1_KEEP_IN	0x00000001
77 
78 /* Bitfields in STAT */
79 #define BCM2835_AUX_SPI_STAT_TX_LVL	0xFF000000
80 #define BCM2835_AUX_SPI_STAT_RX_LVL	0x00FF0000
81 #define BCM2835_AUX_SPI_STAT_TX_FULL	0x00000400
82 #define BCM2835_AUX_SPI_STAT_TX_EMPTY	0x00000200
83 #define BCM2835_AUX_SPI_STAT_RX_FULL	0x00000100
84 #define BCM2835_AUX_SPI_STAT_RX_EMPTY	0x00000080
85 #define BCM2835_AUX_SPI_STAT_BUSY	0x00000040
86 #define BCM2835_AUX_SPI_STAT_BITCOUNT	0x0000003F
87 
88 struct bcm2835aux_spi {
89 	void __iomem *regs;
90 	struct clk *clk;
91 	int irq;
92 	u32 cntl[2];
93 	const u8 *tx_buf;
94 	u8 *rx_buf;
95 	int tx_len;
96 	int rx_len;
97 	int pending;
98 
99 	u64 count_transfer_polling;
100 	u64 count_transfer_irq;
101 	u64 count_transfer_irq_after_poll;
102 
103 	struct dentry *debugfs_dir;
104 };
105 
106 #if defined(CONFIG_DEBUG_FS)
107 static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
108 				      const char *dname)
109 {
110 	char name[64];
111 	struct dentry *dir;
112 
113 	/* get full name */
114 	snprintf(name, sizeof(name), "spi-bcm2835aux-%s", dname);
115 
116 	/* the base directory */
117 	dir = debugfs_create_dir(name, NULL);
118 	bs->debugfs_dir = dir;
119 
120 	/* the counters */
121 	debugfs_create_u64("count_transfer_polling", 0444, dir,
122 			   &bs->count_transfer_polling);
123 	debugfs_create_u64("count_transfer_irq", 0444, dir,
124 			   &bs->count_transfer_irq);
125 	debugfs_create_u64("count_transfer_irq_after_poll", 0444, dir,
126 			   &bs->count_transfer_irq_after_poll);
127 }
128 
129 static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
130 {
131 	debugfs_remove_recursive(bs->debugfs_dir);
132 	bs->debugfs_dir = NULL;
133 }
134 #else
135 static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
136 				      const char *dname)
137 {
138 }
139 
140 static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
141 {
142 }
143 #endif /* CONFIG_DEBUG_FS */
144 
145 static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned int reg)
146 {
147 	return readl(bs->regs + reg);
148 }
149 
150 static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned int reg,
151 				 u32 val)
152 {
153 	writel(val, bs->regs + reg);
154 }
155 
156 static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
157 {
158 	u32 data;
159 	int count = min(bs->rx_len, 3);
160 
161 	data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
162 	if (bs->rx_buf) {
163 		switch (count) {
164 		case 3:
165 			*bs->rx_buf++ = (data >> 16) & 0xff;
166 			fallthrough;
167 		case 2:
168 			*bs->rx_buf++ = (data >> 8) & 0xff;
169 			fallthrough;
170 		case 1:
171 			*bs->rx_buf++ = (data >> 0) & 0xff;
172 			/* fallthrough - no default */
173 		}
174 	}
175 	bs->rx_len -= count;
176 	bs->pending -= count;
177 }
178 
179 static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
180 {
181 	u32 data;
182 	u8 byte;
183 	int count;
184 	int i;
185 
186 	/* gather up to 3 bytes to write to the FIFO */
187 	count = min(bs->tx_len, 3);
188 	data = 0;
189 	for (i = 0; i < count; i++) {
190 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
191 		data |= byte << (8 * (2 - i));
192 	}
193 
194 	/* and set the variable bit-length */
195 	data |= (count * 8) << 24;
196 
197 	/* and decrement length */
198 	bs->tx_len -= count;
199 	bs->pending += count;
200 
201 	/* write to the correct TX-register */
202 	if (bs->tx_len)
203 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
204 	else
205 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
206 }
207 
208 static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
209 {
210 	/* disable spi clearing fifo and interrupts */
211 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
212 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
213 		      BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
214 }
215 
216 static void bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi *bs)
217 {
218 	u32 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
219 
220 	/* check if we have data to read */
221 	for (; bs->rx_len && (stat & BCM2835_AUX_SPI_STAT_RX_LVL);
222 	     stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT))
223 		bcm2835aux_rd_fifo(bs);
224 
225 	/* check if we have data to write */
226 	while (bs->tx_len &&
227 	       (bs->pending < 12) &&
228 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
229 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
230 		bcm2835aux_wr_fifo(bs);
231 	}
232 }
233 
234 static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
235 {
236 	struct spi_master *master = dev_id;
237 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
238 
239 	/* IRQ may be shared, so return if our interrupts are disabled */
240 	if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) &
241 	      (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE)))
242 		return IRQ_NONE;
243 
244 	/* do common fifo handling */
245 	bcm2835aux_spi_transfer_helper(bs);
246 
247 	if (!bs->tx_len) {
248 		/* disable tx fifo empty interrupt */
249 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
250 			BCM2835_AUX_SPI_CNTL1_IDLE);
251 	}
252 
253 	/* and if rx_len is 0 then disable interrupts and wake up completion */
254 	if (!bs->rx_len) {
255 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
256 		spi_finalize_current_transfer(master);
257 	}
258 
259 	return IRQ_HANDLED;
260 }
261 
262 static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
263 					     struct spi_device *spi,
264 					     struct spi_transfer *tfr)
265 {
266 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
267 
268 	/* enable interrupts */
269 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
270 		BCM2835_AUX_SPI_CNTL1_TXEMPTY |
271 		BCM2835_AUX_SPI_CNTL1_IDLE);
272 
273 	/* and wait for finish... */
274 	return 1;
275 }
276 
277 static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
278 					   struct spi_device *spi,
279 					   struct spi_transfer *tfr)
280 {
281 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
282 
283 	/* update statistics */
284 	bs->count_transfer_irq++;
285 
286 	/* fill in registers and fifos before enabling interrupts */
287 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
288 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
289 
290 	/* fill in tx fifo with data before enabling interrupts */
291 	while ((bs->tx_len) &&
292 	       (bs->pending < 12) &&
293 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
294 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
295 		bcm2835aux_wr_fifo(bs);
296 	}
297 
298 	/* now run the interrupt mode */
299 	return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
300 }
301 
302 static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
303 					    struct spi_device *spi,
304 					struct spi_transfer *tfr)
305 {
306 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
307 	unsigned long timeout;
308 
309 	/* update statistics */
310 	bs->count_transfer_polling++;
311 
312 	/* configure spi */
313 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
314 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
315 
316 	/* set the timeout to at least 2 jiffies */
317 	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
318 
319 	/* loop until finished the transfer */
320 	while (bs->rx_len) {
321 
322 		/* do common fifo handling */
323 		bcm2835aux_spi_transfer_helper(bs);
324 
325 		/* there is still data pending to read check the timeout */
326 		if (bs->rx_len && time_after(jiffies, timeout)) {
327 			dev_dbg_ratelimited(&spi->dev,
328 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
329 					    jiffies - timeout,
330 					    bs->tx_len, bs->rx_len);
331 			/* forward to interrupt handler */
332 			bs->count_transfer_irq_after_poll++;
333 			return __bcm2835aux_spi_transfer_one_irq(master,
334 							       spi, tfr);
335 		}
336 	}
337 
338 	/* and return without waiting for completion */
339 	return 0;
340 }
341 
342 static int bcm2835aux_spi_transfer_one(struct spi_master *master,
343 				       struct spi_device *spi,
344 				       struct spi_transfer *tfr)
345 {
346 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
347 	unsigned long spi_hz, clk_hz, speed;
348 	unsigned long hz_per_byte, byte_limit;
349 
350 	/* calculate the registers to handle
351 	 *
352 	 * note that we use the variable data mode, which
353 	 * is not optimal for longer transfers as we waste registers
354 	 * resulting (potentially) in more interrupts when transferring
355 	 * more than 12 bytes
356 	 */
357 
358 	/* set clock */
359 	spi_hz = tfr->speed_hz;
360 	clk_hz = clk_get_rate(bs->clk);
361 
362 	if (spi_hz >= clk_hz / 2) {
363 		speed = 0;
364 	} else if (spi_hz) {
365 		speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
366 		if (speed >  BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
367 			speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
368 	} else { /* the slowest we can go */
369 		speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
370 	}
371 	/* mask out old speed from previous spi_transfer */
372 	bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
373 	/* set the new speed */
374 	bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
375 
376 	tfr->effective_speed_hz = clk_hz / (2 * (speed + 1));
377 
378 	/* set transmit buffers and length */
379 	bs->tx_buf = tfr->tx_buf;
380 	bs->rx_buf = tfr->rx_buf;
381 	bs->tx_len = tfr->len;
382 	bs->rx_len = tfr->len;
383 	bs->pending = 0;
384 
385 	/* Calculate the estimated time in us the transfer runs.  Note that
386 	 * there are 2 idle clocks cycles after each chunk getting
387 	 * transferred - in our case the chunk size is 3 bytes, so we
388 	 * approximate this by 9 cycles/byte.  This is used to find the number
389 	 * of Hz per byte per polling limit.  E.g., we can transfer 1 byte in
390 	 * 30 µs per 300,000 Hz of bus clock.
391 	 */
392 	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
393 	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
394 
395 	/* run in polling mode for short transfers */
396 	if (tfr->len < byte_limit)
397 		return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
398 
399 	/* run in interrupt mode for all others */
400 	return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
401 }
402 
403 static int bcm2835aux_spi_prepare_message(struct spi_master *master,
404 					  struct spi_message *msg)
405 {
406 	struct spi_device *spi = msg->spi;
407 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
408 
409 	bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
410 		      BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
411 		      BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
412 	bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
413 
414 	/* handle all the modes */
415 	if (spi->mode & SPI_CPOL) {
416 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
417 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
418 	} else {
419 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
420 	}
421 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
422 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
423 
424 	return 0;
425 }
426 
427 static int bcm2835aux_spi_unprepare_message(struct spi_master *master,
428 					    struct spi_message *msg)
429 {
430 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
431 
432 	bcm2835aux_spi_reset_hw(bs);
433 
434 	return 0;
435 }
436 
437 static void bcm2835aux_spi_handle_err(struct spi_master *master,
438 				      struct spi_message *msg)
439 {
440 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
441 
442 	bcm2835aux_spi_reset_hw(bs);
443 }
444 
445 static int bcm2835aux_spi_setup(struct spi_device *spi)
446 {
447 	/* sanity check for native cs */
448 	if (spi->mode & SPI_NO_CS)
449 		return 0;
450 
451 	if (spi->cs_gpiod)
452 		return 0;
453 
454 	/* for dt-backwards compatibility: only support native on CS0
455 	 * known things not supported with broken native CS:
456 	 * * multiple chip-selects: cs0-cs2 are all
457 	 *     simultaniously asserted whenever there is a transfer
458 	 *     this even includes SPI_NO_CS
459 	 * * SPI_CS_HIGH: cs are always asserted low
460 	 * * cs_change: cs is deasserted after each spi_transfer
461 	 * * cs_delay_usec: cs is always deasserted one SCK cycle
462 	 *     after the last transfer
463 	 * probably more...
464 	 */
465 	dev_warn(&spi->dev,
466 		 "Native CS is not supported - please configure cs-gpio in device-tree\n");
467 
468 	if (spi->chip_select == 0)
469 		return 0;
470 
471 	dev_warn(&spi->dev, "Native CS is not working for cs > 0\n");
472 
473 	return -EINVAL;
474 }
475 
476 static int bcm2835aux_spi_probe(struct platform_device *pdev)
477 {
478 	struct spi_master *master;
479 	struct bcm2835aux_spi *bs;
480 	unsigned long clk_hz;
481 	int err;
482 
483 	master = devm_spi_alloc_master(&pdev->dev, sizeof(*bs));
484 	if (!master)
485 		return -ENOMEM;
486 
487 	platform_set_drvdata(pdev, master);
488 	master->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
489 	master->bits_per_word_mask = SPI_BPW_MASK(8);
490 	/* even though the driver never officially supported native CS
491 	 * allow a single native CS for legacy DT support purposes when
492 	 * no cs-gpio is configured.
493 	 * Known limitations for native cs are:
494 	 * * multiple chip-selects: cs0-cs2 are all simultaniously asserted
495 	 *     whenever there is a transfer -  this even includes SPI_NO_CS
496 	 * * SPI_CS_HIGH: is ignores - cs are always asserted low
497 	 * * cs_change: cs is deasserted after each spi_transfer
498 	 * * cs_delay_usec: cs is always deasserted one SCK cycle after
499 	 *     a spi_transfer
500 	 */
501 	master->num_chipselect = 1;
502 	master->setup = bcm2835aux_spi_setup;
503 	master->transfer_one = bcm2835aux_spi_transfer_one;
504 	master->handle_err = bcm2835aux_spi_handle_err;
505 	master->prepare_message = bcm2835aux_spi_prepare_message;
506 	master->unprepare_message = bcm2835aux_spi_unprepare_message;
507 	master->dev.of_node = pdev->dev.of_node;
508 	master->use_gpio_descriptors = true;
509 
510 	bs = spi_master_get_devdata(master);
511 
512 	/* the main area */
513 	bs->regs = devm_platform_ioremap_resource(pdev, 0);
514 	if (IS_ERR(bs->regs))
515 		return PTR_ERR(bs->regs);
516 
517 	bs->clk = devm_clk_get(&pdev->dev, NULL);
518 	if (IS_ERR(bs->clk)) {
519 		err = PTR_ERR(bs->clk);
520 		dev_err(&pdev->dev, "could not get clk: %d\n", err);
521 		return err;
522 	}
523 
524 	bs->irq = platform_get_irq(pdev, 0);
525 	if (bs->irq <= 0)
526 		return bs->irq ? bs->irq : -ENODEV;
527 
528 	/* this also enables the HW block */
529 	err = clk_prepare_enable(bs->clk);
530 	if (err) {
531 		dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
532 		return err;
533 	}
534 
535 	/* just checking if the clock returns a sane value */
536 	clk_hz = clk_get_rate(bs->clk);
537 	if (!clk_hz) {
538 		dev_err(&pdev->dev, "clock returns 0 Hz\n");
539 		err = -ENODEV;
540 		goto out_clk_disable;
541 	}
542 
543 	/* reset SPI-HW block */
544 	bcm2835aux_spi_reset_hw(bs);
545 
546 	err = devm_request_irq(&pdev->dev, bs->irq,
547 			       bcm2835aux_spi_interrupt,
548 			       IRQF_SHARED,
549 			       dev_name(&pdev->dev), master);
550 	if (err) {
551 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
552 		goto out_clk_disable;
553 	}
554 
555 	err = spi_register_master(master);
556 	if (err) {
557 		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
558 		goto out_clk_disable;
559 	}
560 
561 	bcm2835aux_debugfs_create(bs, dev_name(&pdev->dev));
562 
563 	return 0;
564 
565 out_clk_disable:
566 	clk_disable_unprepare(bs->clk);
567 	return err;
568 }
569 
570 static int bcm2835aux_spi_remove(struct platform_device *pdev)
571 {
572 	struct spi_master *master = platform_get_drvdata(pdev);
573 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
574 
575 	bcm2835aux_debugfs_remove(bs);
576 
577 	spi_unregister_master(master);
578 
579 	bcm2835aux_spi_reset_hw(bs);
580 
581 	/* disable the HW block by releasing the clock */
582 	clk_disable_unprepare(bs->clk);
583 
584 	return 0;
585 }
586 
587 static const struct of_device_id bcm2835aux_spi_match[] = {
588 	{ .compatible = "brcm,bcm2835-aux-spi", },
589 	{}
590 };
591 MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
592 
593 static struct platform_driver bcm2835aux_spi_driver = {
594 	.driver		= {
595 		.name		= "spi-bcm2835aux",
596 		.of_match_table	= bcm2835aux_spi_match,
597 	},
598 	.probe		= bcm2835aux_spi_probe,
599 	.remove		= bcm2835aux_spi_remove,
600 };
601 module_platform_driver(bcm2835aux_spi_driver);
602 
603 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
604 MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
605 MODULE_LICENSE("GPL");
606