xref: /openbmc/linux/drivers/spi/spi-bcm2835aux.c (revision d0e22329)
1 /*
2  * Driver for Broadcom BCM2835 auxiliary SPI Controllers
3  *
4  * the driver does not rely on the native chipselects at all
5  * but only uses the gpio type chipselects
6  *
7  * Based on: spi-bcm2835.c
8  *
9  * Copyright (C) 2015 Martin Sperl
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_device.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_irq.h>
35 #include <linux/regmap.h>
36 #include <linux/spi/spi.h>
37 #include <linux/spinlock.h>
38 
39 /*
40  * spi register defines
41  *
42  * note there is garbage in the "official" documentation,
43  * so some data is taken from the file:
44  *   brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
45  * inside of:
46  *   http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
47  */
48 
49 /* SPI register offsets */
50 #define BCM2835_AUX_SPI_CNTL0	0x00
51 #define BCM2835_AUX_SPI_CNTL1	0x04
52 #define BCM2835_AUX_SPI_STAT	0x08
53 #define BCM2835_AUX_SPI_PEEK	0x0C
54 #define BCM2835_AUX_SPI_IO	0x20
55 #define BCM2835_AUX_SPI_TXHOLD	0x30
56 
57 /* Bitfields in CNTL0 */
58 #define BCM2835_AUX_SPI_CNTL0_SPEED	0xFFF00000
59 #define BCM2835_AUX_SPI_CNTL0_SPEED_MAX	0xFFF
60 #define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT	20
61 #define BCM2835_AUX_SPI_CNTL0_CS	0x000E0000
62 #define BCM2835_AUX_SPI_CNTL0_POSTINPUT	0x00010000
63 #define BCM2835_AUX_SPI_CNTL0_VAR_CS	0x00008000
64 #define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH	0x00004000
65 #define BCM2835_AUX_SPI_CNTL0_DOUTHOLD	0x00003000
66 #define BCM2835_AUX_SPI_CNTL0_ENABLE	0x00000800
67 #define BCM2835_AUX_SPI_CNTL0_IN_RISING	0x00000400
68 #define BCM2835_AUX_SPI_CNTL0_CLEARFIFO	0x00000200
69 #define BCM2835_AUX_SPI_CNTL0_OUT_RISING	0x00000100
70 #define BCM2835_AUX_SPI_CNTL0_CPOL	0x00000080
71 #define BCM2835_AUX_SPI_CNTL0_MSBF_OUT	0x00000040
72 #define BCM2835_AUX_SPI_CNTL0_SHIFTLEN	0x0000003F
73 
74 /* Bitfields in CNTL1 */
75 #define BCM2835_AUX_SPI_CNTL1_CSHIGH	0x00000700
76 #define BCM2835_AUX_SPI_CNTL1_TXEMPTY	0x00000080
77 #define BCM2835_AUX_SPI_CNTL1_IDLE	0x00000040
78 #define BCM2835_AUX_SPI_CNTL1_MSBF_IN	0x00000002
79 #define BCM2835_AUX_SPI_CNTL1_KEEP_IN	0x00000001
80 
81 /* Bitfields in STAT */
82 #define BCM2835_AUX_SPI_STAT_TX_LVL	0xFF000000
83 #define BCM2835_AUX_SPI_STAT_RX_LVL	0x00FF0000
84 #define BCM2835_AUX_SPI_STAT_TX_FULL	0x00000400
85 #define BCM2835_AUX_SPI_STAT_TX_EMPTY	0x00000200
86 #define BCM2835_AUX_SPI_STAT_RX_FULL	0x00000100
87 #define BCM2835_AUX_SPI_STAT_RX_EMPTY	0x00000080
88 #define BCM2835_AUX_SPI_STAT_BUSY	0x00000040
89 #define BCM2835_AUX_SPI_STAT_BITCOUNT	0x0000003F
90 
91 /* timeout values */
92 #define BCM2835_AUX_SPI_POLLING_LIMIT_US	30
93 #define BCM2835_AUX_SPI_POLLING_JIFFIES		2
94 
95 struct bcm2835aux_spi {
96 	void __iomem *regs;
97 	struct clk *clk;
98 	int irq;
99 	u32 cntl[2];
100 	const u8 *tx_buf;
101 	u8 *rx_buf;
102 	int tx_len;
103 	int rx_len;
104 	int pending;
105 };
106 
107 static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned reg)
108 {
109 	return readl(bs->regs + reg);
110 }
111 
112 static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned reg,
113 				 u32 val)
114 {
115 	writel(val, bs->regs + reg);
116 }
117 
118 static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
119 {
120 	u32 data;
121 	int count = min(bs->rx_len, 3);
122 
123 	data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
124 	if (bs->rx_buf) {
125 		switch (count) {
126 		case 4:
127 			*bs->rx_buf++ = (data >> 24) & 0xff;
128 			/* fallthrough */
129 		case 3:
130 			*bs->rx_buf++ = (data >> 16) & 0xff;
131 			/* fallthrough */
132 		case 2:
133 			*bs->rx_buf++ = (data >> 8) & 0xff;
134 			/* fallthrough */
135 		case 1:
136 			*bs->rx_buf++ = (data >> 0) & 0xff;
137 			/* fallthrough - no default */
138 		}
139 	}
140 	bs->rx_len -= count;
141 	bs->pending -= count;
142 }
143 
144 static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
145 {
146 	u32 data;
147 	u8 byte;
148 	int count;
149 	int i;
150 
151 	/* gather up to 3 bytes to write to the FIFO */
152 	count = min(bs->tx_len, 3);
153 	data = 0;
154 	for (i = 0; i < count; i++) {
155 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
156 		data |= byte << (8 * (2 - i));
157 	}
158 
159 	/* and set the variable bit-length */
160 	data |= (count * 8) << 24;
161 
162 	/* and decrement length */
163 	bs->tx_len -= count;
164 	bs->pending += count;
165 
166 	/* write to the correct TX-register */
167 	if (bs->tx_len)
168 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
169 	else
170 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
171 }
172 
173 static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
174 {
175 	/* disable spi clearing fifo and interrupts */
176 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
177 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
178 		      BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
179 }
180 
181 static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
182 {
183 	struct spi_master *master = dev_id;
184 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
185 	irqreturn_t ret = IRQ_NONE;
186 
187 	/* IRQ may be shared, so return if our interrupts are disabled */
188 	if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) &
189 	      (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE)))
190 		return ret;
191 
192 	/* check if we have data to read */
193 	while (bs->rx_len &&
194 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
195 		  BCM2835_AUX_SPI_STAT_RX_EMPTY))) {
196 		bcm2835aux_rd_fifo(bs);
197 		ret = IRQ_HANDLED;
198 	}
199 
200 	/* check if we have data to write */
201 	while (bs->tx_len &&
202 	       (bs->pending < 12) &&
203 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
204 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
205 		bcm2835aux_wr_fifo(bs);
206 		ret = IRQ_HANDLED;
207 	}
208 
209 	/* and check if we have reached "done" */
210 	while (bs->rx_len &&
211 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
212 		  BCM2835_AUX_SPI_STAT_BUSY))) {
213 		bcm2835aux_rd_fifo(bs);
214 		ret = IRQ_HANDLED;
215 	}
216 
217 	if (!bs->tx_len) {
218 		/* disable tx fifo empty interrupt */
219 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
220 			BCM2835_AUX_SPI_CNTL1_IDLE);
221 	}
222 
223 	/* and if rx_len is 0 then disable interrupts and wake up completion */
224 	if (!bs->rx_len) {
225 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
226 		complete(&master->xfer_completion);
227 	}
228 
229 	/* and return */
230 	return ret;
231 }
232 
233 static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
234 					     struct spi_device *spi,
235 					     struct spi_transfer *tfr)
236 {
237 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
238 
239 	/* enable interrupts */
240 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
241 		BCM2835_AUX_SPI_CNTL1_TXEMPTY |
242 		BCM2835_AUX_SPI_CNTL1_IDLE);
243 
244 	/* and wait for finish... */
245 	return 1;
246 }
247 
248 static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
249 					   struct spi_device *spi,
250 					   struct spi_transfer *tfr)
251 {
252 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
253 
254 	/* fill in registers and fifos before enabling interrupts */
255 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
256 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
257 
258 	/* fill in tx fifo with data before enabling interrupts */
259 	while ((bs->tx_len) &&
260 	       (bs->pending < 12) &&
261 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
262 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
263 		bcm2835aux_wr_fifo(bs);
264 	}
265 
266 	/* now run the interrupt mode */
267 	return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
268 }
269 
270 static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
271 					    struct spi_device *spi,
272 					struct spi_transfer *tfr)
273 {
274 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
275 	unsigned long timeout;
276 	u32 stat;
277 
278 	/* configure spi */
279 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
280 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
281 
282 	/* set the timeout */
283 	timeout = jiffies + BCM2835_AUX_SPI_POLLING_JIFFIES;
284 
285 	/* loop until finished the transfer */
286 	while (bs->rx_len) {
287 		/* read status */
288 		stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
289 
290 		/* fill in tx fifo with remaining data */
291 		if ((bs->tx_len) && (!(stat & BCM2835_AUX_SPI_STAT_TX_FULL))) {
292 			bcm2835aux_wr_fifo(bs);
293 			continue;
294 		}
295 
296 		/* read data from fifo for both cases */
297 		if (!(stat & BCM2835_AUX_SPI_STAT_RX_EMPTY)) {
298 			bcm2835aux_rd_fifo(bs);
299 			continue;
300 		}
301 		if (!(stat & BCM2835_AUX_SPI_STAT_BUSY)) {
302 			bcm2835aux_rd_fifo(bs);
303 			continue;
304 		}
305 
306 		/* there is still data pending to read check the timeout */
307 		if (bs->rx_len && time_after(jiffies, timeout)) {
308 			dev_dbg_ratelimited(&spi->dev,
309 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
310 					    jiffies - timeout,
311 					    bs->tx_len, bs->rx_len);
312 			/* forward to interrupt handler */
313 			return __bcm2835aux_spi_transfer_one_irq(master,
314 							       spi, tfr);
315 		}
316 	}
317 
318 	/* and return without waiting for completion */
319 	return 0;
320 }
321 
322 static int bcm2835aux_spi_transfer_one(struct spi_master *master,
323 				       struct spi_device *spi,
324 				       struct spi_transfer *tfr)
325 {
326 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
327 	unsigned long spi_hz, clk_hz, speed;
328 	unsigned long spi_used_hz;
329 
330 	/* calculate the registers to handle
331 	 *
332 	 * note that we use the variable data mode, which
333 	 * is not optimal for longer transfers as we waste registers
334 	 * resulting (potentially) in more interrupts when transferring
335 	 * more than 12 bytes
336 	 */
337 
338 	/* set clock */
339 	spi_hz = tfr->speed_hz;
340 	clk_hz = clk_get_rate(bs->clk);
341 
342 	if (spi_hz >= clk_hz / 2) {
343 		speed = 0;
344 	} else if (spi_hz) {
345 		speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
346 		if (speed >  BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
347 			speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
348 	} else { /* the slowest we can go */
349 		speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
350 	}
351 	/* mask out old speed from previous spi_transfer */
352 	bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
353 	/* set the new speed */
354 	bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
355 
356 	spi_used_hz = clk_hz / (2 * (speed + 1));
357 
358 	/* set transmit buffers and length */
359 	bs->tx_buf = tfr->tx_buf;
360 	bs->rx_buf = tfr->rx_buf;
361 	bs->tx_len = tfr->len;
362 	bs->rx_len = tfr->len;
363 	bs->pending = 0;
364 
365 	/* Calculate the estimated time in us the transfer runs.  Note that
366 	 * there are are 2 idle clocks cycles after each chunk getting
367 	 * transferred - in our case the chunk size is 3 bytes, so we
368 	 * approximate this by 9 cycles/byte.  This is used to find the number
369 	 * of Hz per byte per polling limit.  E.g., we can transfer 1 byte in
370 	 * 30 µs per 300,000 Hz of bus clock.
371 	 */
372 #define HZ_PER_BYTE ((9 * 1000000) / BCM2835_AUX_SPI_POLLING_LIMIT_US)
373 	/* run in polling mode for short transfers */
374 	if (tfr->len < spi_used_hz / HZ_PER_BYTE)
375 		return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
376 
377 	/* run in interrupt mode for all others */
378 	return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
379 #undef HZ_PER_BYTE
380 }
381 
382 static int bcm2835aux_spi_prepare_message(struct spi_master *master,
383 					  struct spi_message *msg)
384 {
385 	struct spi_device *spi = msg->spi;
386 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
387 
388 	bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
389 		      BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
390 		      BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
391 	bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
392 
393 	/* handle all the modes */
394 	if (spi->mode & SPI_CPOL) {
395 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
396 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
397 	} else {
398 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
399 	}
400 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
401 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
402 
403 	return 0;
404 }
405 
406 static int bcm2835aux_spi_unprepare_message(struct spi_master *master,
407 					    struct spi_message *msg)
408 {
409 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
410 
411 	bcm2835aux_spi_reset_hw(bs);
412 
413 	return 0;
414 }
415 
416 static void bcm2835aux_spi_handle_err(struct spi_master *master,
417 				      struct spi_message *msg)
418 {
419 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
420 
421 	bcm2835aux_spi_reset_hw(bs);
422 }
423 
424 static int bcm2835aux_spi_probe(struct platform_device *pdev)
425 {
426 	struct spi_master *master;
427 	struct bcm2835aux_spi *bs;
428 	struct resource *res;
429 	unsigned long clk_hz;
430 	int err;
431 
432 	master = spi_alloc_master(&pdev->dev, sizeof(*bs));
433 	if (!master) {
434 		dev_err(&pdev->dev, "spi_alloc_master() failed\n");
435 		return -ENOMEM;
436 	}
437 
438 	platform_set_drvdata(pdev, master);
439 	master->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
440 	master->bits_per_word_mask = SPI_BPW_MASK(8);
441 	master->num_chipselect = -1;
442 	master->transfer_one = bcm2835aux_spi_transfer_one;
443 	master->handle_err = bcm2835aux_spi_handle_err;
444 	master->prepare_message = bcm2835aux_spi_prepare_message;
445 	master->unprepare_message = bcm2835aux_spi_unprepare_message;
446 	master->dev.of_node = pdev->dev.of_node;
447 
448 	bs = spi_master_get_devdata(master);
449 
450 	/* the main area */
451 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
452 	bs->regs = devm_ioremap_resource(&pdev->dev, res);
453 	if (IS_ERR(bs->regs)) {
454 		err = PTR_ERR(bs->regs);
455 		goto out_master_put;
456 	}
457 
458 	bs->clk = devm_clk_get(&pdev->dev, NULL);
459 	if ((!bs->clk) || (IS_ERR(bs->clk))) {
460 		err = PTR_ERR(bs->clk);
461 		dev_err(&pdev->dev, "could not get clk: %d\n", err);
462 		goto out_master_put;
463 	}
464 
465 	bs->irq = platform_get_irq(pdev, 0);
466 	if (bs->irq <= 0) {
467 		dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
468 		err = bs->irq ? bs->irq : -ENODEV;
469 		goto out_master_put;
470 	}
471 
472 	/* this also enables the HW block */
473 	err = clk_prepare_enable(bs->clk);
474 	if (err) {
475 		dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
476 		goto out_master_put;
477 	}
478 
479 	/* just checking if the clock returns a sane value */
480 	clk_hz = clk_get_rate(bs->clk);
481 	if (!clk_hz) {
482 		dev_err(&pdev->dev, "clock returns 0 Hz\n");
483 		err = -ENODEV;
484 		goto out_clk_disable;
485 	}
486 
487 	/* reset SPI-HW block */
488 	bcm2835aux_spi_reset_hw(bs);
489 
490 	err = devm_request_irq(&pdev->dev, bs->irq,
491 			       bcm2835aux_spi_interrupt,
492 			       IRQF_SHARED,
493 			       dev_name(&pdev->dev), master);
494 	if (err) {
495 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
496 		goto out_clk_disable;
497 	}
498 
499 	err = devm_spi_register_master(&pdev->dev, master);
500 	if (err) {
501 		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
502 		goto out_clk_disable;
503 	}
504 
505 	return 0;
506 
507 out_clk_disable:
508 	clk_disable_unprepare(bs->clk);
509 out_master_put:
510 	spi_master_put(master);
511 	return err;
512 }
513 
514 static int bcm2835aux_spi_remove(struct platform_device *pdev)
515 {
516 	struct spi_master *master = platform_get_drvdata(pdev);
517 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
518 
519 	bcm2835aux_spi_reset_hw(bs);
520 
521 	/* disable the HW block by releasing the clock */
522 	clk_disable_unprepare(bs->clk);
523 
524 	return 0;
525 }
526 
527 static const struct of_device_id bcm2835aux_spi_match[] = {
528 	{ .compatible = "brcm,bcm2835-aux-spi", },
529 	{}
530 };
531 MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
532 
533 static struct platform_driver bcm2835aux_spi_driver = {
534 	.driver		= {
535 		.name		= "spi-bcm2835aux",
536 		.of_match_table	= bcm2835aux_spi_match,
537 	},
538 	.probe		= bcm2835aux_spi_probe,
539 	.remove		= bcm2835aux_spi_remove,
540 };
541 module_platform_driver(bcm2835aux_spi_driver);
542 
543 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
544 MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
545 MODULE_LICENSE("GPL");
546