xref: /openbmc/linux/drivers/spi/spi-bcm2835aux.c (revision 8d81cd1a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Broadcom BCM2835 auxiliary SPI Controllers
4  *
5  * the driver does not rely on the native chipselects at all
6  * but only uses the gpio type chipselects
7  *
8  * Based on: spi-bcm2835.c
9  *
10  * Copyright (C) 2015 Martin Sperl
11  */
12 
13 #include <linux/clk.h>
14 #include <linux/completion.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/regmap.h>
25 #include <linux/spi/spi.h>
26 #include <linux/spinlock.h>
27 
28 /* define polling limits */
29 static unsigned int polling_limit_us = 30;
30 module_param(polling_limit_us, uint, 0664);
31 MODULE_PARM_DESC(polling_limit_us,
32 		 "time in us to run a transfer in polling mode - if zero no polling is used\n");
33 
34 /*
35  * spi register defines
36  *
37  * note there is garbage in the "official" documentation,
38  * so some data is taken from the file:
39  *   brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
40  * inside of:
41  *   http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
42  */
43 
44 /* SPI register offsets */
45 #define BCM2835_AUX_SPI_CNTL0	0x00
46 #define BCM2835_AUX_SPI_CNTL1	0x04
47 #define BCM2835_AUX_SPI_STAT	0x08
48 #define BCM2835_AUX_SPI_PEEK	0x0C
49 #define BCM2835_AUX_SPI_IO	0x20
50 #define BCM2835_AUX_SPI_TXHOLD	0x30
51 
52 /* Bitfields in CNTL0 */
53 #define BCM2835_AUX_SPI_CNTL0_SPEED	0xFFF00000
54 #define BCM2835_AUX_SPI_CNTL0_SPEED_MAX	0xFFF
55 #define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT	20
56 #define BCM2835_AUX_SPI_CNTL0_CS	0x000E0000
57 #define BCM2835_AUX_SPI_CNTL0_POSTINPUT	0x00010000
58 #define BCM2835_AUX_SPI_CNTL0_VAR_CS	0x00008000
59 #define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH	0x00004000
60 #define BCM2835_AUX_SPI_CNTL0_DOUTHOLD	0x00003000
61 #define BCM2835_AUX_SPI_CNTL0_ENABLE	0x00000800
62 #define BCM2835_AUX_SPI_CNTL0_IN_RISING	0x00000400
63 #define BCM2835_AUX_SPI_CNTL0_CLEARFIFO	0x00000200
64 #define BCM2835_AUX_SPI_CNTL0_OUT_RISING	0x00000100
65 #define BCM2835_AUX_SPI_CNTL0_CPOL	0x00000080
66 #define BCM2835_AUX_SPI_CNTL0_MSBF_OUT	0x00000040
67 #define BCM2835_AUX_SPI_CNTL0_SHIFTLEN	0x0000003F
68 
69 /* Bitfields in CNTL1 */
70 #define BCM2835_AUX_SPI_CNTL1_CSHIGH	0x00000700
71 #define BCM2835_AUX_SPI_CNTL1_TXEMPTY	0x00000080
72 #define BCM2835_AUX_SPI_CNTL1_IDLE	0x00000040
73 #define BCM2835_AUX_SPI_CNTL1_MSBF_IN	0x00000002
74 #define BCM2835_AUX_SPI_CNTL1_KEEP_IN	0x00000001
75 
76 /* Bitfields in STAT */
77 #define BCM2835_AUX_SPI_STAT_TX_LVL	0xFF000000
78 #define BCM2835_AUX_SPI_STAT_RX_LVL	0x00FF0000
79 #define BCM2835_AUX_SPI_STAT_TX_FULL	0x00000400
80 #define BCM2835_AUX_SPI_STAT_TX_EMPTY	0x00000200
81 #define BCM2835_AUX_SPI_STAT_RX_FULL	0x00000100
82 #define BCM2835_AUX_SPI_STAT_RX_EMPTY	0x00000080
83 #define BCM2835_AUX_SPI_STAT_BUSY	0x00000040
84 #define BCM2835_AUX_SPI_STAT_BITCOUNT	0x0000003F
85 
86 struct bcm2835aux_spi {
87 	void __iomem *regs;
88 	struct clk *clk;
89 	int irq;
90 	u32 cntl[2];
91 	const u8 *tx_buf;
92 	u8 *rx_buf;
93 	int tx_len;
94 	int rx_len;
95 	int pending;
96 
97 	u64 count_transfer_polling;
98 	u64 count_transfer_irq;
99 	u64 count_transfer_irq_after_poll;
100 
101 	struct dentry *debugfs_dir;
102 };
103 
104 #if defined(CONFIG_DEBUG_FS)
105 static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
106 				      const char *dname)
107 {
108 	char name[64];
109 	struct dentry *dir;
110 
111 	/* get full name */
112 	snprintf(name, sizeof(name), "spi-bcm2835aux-%s", dname);
113 
114 	/* the base directory */
115 	dir = debugfs_create_dir(name, NULL);
116 	bs->debugfs_dir = dir;
117 
118 	/* the counters */
119 	debugfs_create_u64("count_transfer_polling", 0444, dir,
120 			   &bs->count_transfer_polling);
121 	debugfs_create_u64("count_transfer_irq", 0444, dir,
122 			   &bs->count_transfer_irq);
123 	debugfs_create_u64("count_transfer_irq_after_poll", 0444, dir,
124 			   &bs->count_transfer_irq_after_poll);
125 }
126 
127 static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
128 {
129 	debugfs_remove_recursive(bs->debugfs_dir);
130 	bs->debugfs_dir = NULL;
131 }
132 #else
133 static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
134 				      const char *dname)
135 {
136 }
137 
138 static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
139 {
140 }
141 #endif /* CONFIG_DEBUG_FS */
142 
143 static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned int reg)
144 {
145 	return readl(bs->regs + reg);
146 }
147 
148 static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned int reg,
149 				 u32 val)
150 {
151 	writel(val, bs->regs + reg);
152 }
153 
154 static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
155 {
156 	u32 data;
157 	int count = min(bs->rx_len, 3);
158 
159 	data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
160 	if (bs->rx_buf) {
161 		switch (count) {
162 		case 3:
163 			*bs->rx_buf++ = (data >> 16) & 0xff;
164 			fallthrough;
165 		case 2:
166 			*bs->rx_buf++ = (data >> 8) & 0xff;
167 			fallthrough;
168 		case 1:
169 			*bs->rx_buf++ = (data >> 0) & 0xff;
170 			/* fallthrough - no default */
171 		}
172 	}
173 	bs->rx_len -= count;
174 	bs->pending -= count;
175 }
176 
177 static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
178 {
179 	u32 data;
180 	u8 byte;
181 	int count;
182 	int i;
183 
184 	/* gather up to 3 bytes to write to the FIFO */
185 	count = min(bs->tx_len, 3);
186 	data = 0;
187 	for (i = 0; i < count; i++) {
188 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
189 		data |= byte << (8 * (2 - i));
190 	}
191 
192 	/* and set the variable bit-length */
193 	data |= (count * 8) << 24;
194 
195 	/* and decrement length */
196 	bs->tx_len -= count;
197 	bs->pending += count;
198 
199 	/* write to the correct TX-register */
200 	if (bs->tx_len)
201 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
202 	else
203 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
204 }
205 
206 static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
207 {
208 	/* disable spi clearing fifo and interrupts */
209 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
210 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
211 		      BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
212 }
213 
214 static void bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi *bs)
215 {
216 	u32 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
217 
218 	/* check if we have data to read */
219 	for (; bs->rx_len && (stat & BCM2835_AUX_SPI_STAT_RX_LVL);
220 	     stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT))
221 		bcm2835aux_rd_fifo(bs);
222 
223 	/* check if we have data to write */
224 	while (bs->tx_len &&
225 	       (bs->pending < 12) &&
226 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
227 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
228 		bcm2835aux_wr_fifo(bs);
229 	}
230 }
231 
232 static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
233 {
234 	struct spi_controller *host = dev_id;
235 	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
236 
237 	/* IRQ may be shared, so return if our interrupts are disabled */
238 	if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) &
239 	      (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE)))
240 		return IRQ_NONE;
241 
242 	/* do common fifo handling */
243 	bcm2835aux_spi_transfer_helper(bs);
244 
245 	if (!bs->tx_len) {
246 		/* disable tx fifo empty interrupt */
247 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
248 			BCM2835_AUX_SPI_CNTL1_IDLE);
249 	}
250 
251 	/* and if rx_len is 0 then disable interrupts and wake up completion */
252 	if (!bs->rx_len) {
253 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
254 		spi_finalize_current_transfer(host);
255 	}
256 
257 	return IRQ_HANDLED;
258 }
259 
260 static int __bcm2835aux_spi_transfer_one_irq(struct spi_controller *host,
261 					     struct spi_device *spi,
262 					     struct spi_transfer *tfr)
263 {
264 	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
265 
266 	/* enable interrupts */
267 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
268 		BCM2835_AUX_SPI_CNTL1_TXEMPTY |
269 		BCM2835_AUX_SPI_CNTL1_IDLE);
270 
271 	/* and wait for finish... */
272 	return 1;
273 }
274 
275 static int bcm2835aux_spi_transfer_one_irq(struct spi_controller *host,
276 					   struct spi_device *spi,
277 					   struct spi_transfer *tfr)
278 {
279 	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
280 
281 	/* update statistics */
282 	bs->count_transfer_irq++;
283 
284 	/* fill in registers and fifos before enabling interrupts */
285 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
286 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
287 
288 	/* fill in tx fifo with data before enabling interrupts */
289 	while ((bs->tx_len) &&
290 	       (bs->pending < 12) &&
291 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
292 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
293 		bcm2835aux_wr_fifo(bs);
294 	}
295 
296 	/* now run the interrupt mode */
297 	return __bcm2835aux_spi_transfer_one_irq(host, spi, tfr);
298 }
299 
300 static int bcm2835aux_spi_transfer_one_poll(struct spi_controller *host,
301 					    struct spi_device *spi,
302 					struct spi_transfer *tfr)
303 {
304 	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
305 	unsigned long timeout;
306 
307 	/* update statistics */
308 	bs->count_transfer_polling++;
309 
310 	/* configure spi */
311 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
312 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
313 
314 	/* set the timeout to at least 2 jiffies */
315 	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
316 
317 	/* loop until finished the transfer */
318 	while (bs->rx_len) {
319 
320 		/* do common fifo handling */
321 		bcm2835aux_spi_transfer_helper(bs);
322 
323 		/* there is still data pending to read check the timeout */
324 		if (bs->rx_len && time_after(jiffies, timeout)) {
325 			dev_dbg_ratelimited(&spi->dev,
326 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
327 					    jiffies - timeout,
328 					    bs->tx_len, bs->rx_len);
329 			/* forward to interrupt handler */
330 			bs->count_transfer_irq_after_poll++;
331 			return __bcm2835aux_spi_transfer_one_irq(host,
332 							       spi, tfr);
333 		}
334 	}
335 
336 	/* and return without waiting for completion */
337 	return 0;
338 }
339 
340 static int bcm2835aux_spi_transfer_one(struct spi_controller *host,
341 				       struct spi_device *spi,
342 				       struct spi_transfer *tfr)
343 {
344 	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
345 	unsigned long spi_hz, clk_hz, speed;
346 	unsigned long hz_per_byte, byte_limit;
347 
348 	/* calculate the registers to handle
349 	 *
350 	 * note that we use the variable data mode, which
351 	 * is not optimal for longer transfers as we waste registers
352 	 * resulting (potentially) in more interrupts when transferring
353 	 * more than 12 bytes
354 	 */
355 
356 	/* set clock */
357 	spi_hz = tfr->speed_hz;
358 	clk_hz = clk_get_rate(bs->clk);
359 
360 	if (spi_hz >= clk_hz / 2) {
361 		speed = 0;
362 	} else if (spi_hz) {
363 		speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
364 		if (speed >  BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
365 			speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
366 	} else { /* the slowest we can go */
367 		speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
368 	}
369 	/* mask out old speed from previous spi_transfer */
370 	bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
371 	/* set the new speed */
372 	bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
373 
374 	tfr->effective_speed_hz = clk_hz / (2 * (speed + 1));
375 
376 	/* set transmit buffers and length */
377 	bs->tx_buf = tfr->tx_buf;
378 	bs->rx_buf = tfr->rx_buf;
379 	bs->tx_len = tfr->len;
380 	bs->rx_len = tfr->len;
381 	bs->pending = 0;
382 
383 	/* Calculate the estimated time in us the transfer runs.  Note that
384 	 * there are 2 idle clocks cycles after each chunk getting
385 	 * transferred - in our case the chunk size is 3 bytes, so we
386 	 * approximate this by 9 cycles/byte.  This is used to find the number
387 	 * of Hz per byte per polling limit.  E.g., we can transfer 1 byte in
388 	 * 30 µs per 300,000 Hz of bus clock.
389 	 */
390 	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
391 	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
392 
393 	/* run in polling mode for short transfers */
394 	if (tfr->len < byte_limit)
395 		return bcm2835aux_spi_transfer_one_poll(host, spi, tfr);
396 
397 	/* run in interrupt mode for all others */
398 	return bcm2835aux_spi_transfer_one_irq(host, spi, tfr);
399 }
400 
401 static int bcm2835aux_spi_prepare_message(struct spi_controller *host,
402 					  struct spi_message *msg)
403 {
404 	struct spi_device *spi = msg->spi;
405 	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
406 
407 	bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
408 		      BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
409 		      BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
410 	bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
411 
412 	/* handle all the modes */
413 	if (spi->mode & SPI_CPOL) {
414 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
415 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
416 	} else {
417 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
418 	}
419 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
420 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
421 
422 	return 0;
423 }
424 
425 static int bcm2835aux_spi_unprepare_message(struct spi_controller *host,
426 					    struct spi_message *msg)
427 {
428 	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
429 
430 	bcm2835aux_spi_reset_hw(bs);
431 
432 	return 0;
433 }
434 
435 static void bcm2835aux_spi_handle_err(struct spi_controller *host,
436 				      struct spi_message *msg)
437 {
438 	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
439 
440 	bcm2835aux_spi_reset_hw(bs);
441 }
442 
443 static int bcm2835aux_spi_setup(struct spi_device *spi)
444 {
445 	/* sanity check for native cs */
446 	if (spi->mode & SPI_NO_CS)
447 		return 0;
448 
449 	if (spi_get_csgpiod(spi, 0))
450 		return 0;
451 
452 	/* for dt-backwards compatibility: only support native on CS0
453 	 * known things not supported with broken native CS:
454 	 * * multiple chip-selects: cs0-cs2 are all
455 	 *     simultaniously asserted whenever there is a transfer
456 	 *     this even includes SPI_NO_CS
457 	 * * SPI_CS_HIGH: cs are always asserted low
458 	 * * cs_change: cs is deasserted after each spi_transfer
459 	 * * cs_delay_usec: cs is always deasserted one SCK cycle
460 	 *     after the last transfer
461 	 * probably more...
462 	 */
463 	dev_warn(&spi->dev,
464 		 "Native CS is not supported - please configure cs-gpio in device-tree\n");
465 
466 	if (spi_get_chipselect(spi, 0) == 0)
467 		return 0;
468 
469 	dev_warn(&spi->dev, "Native CS is not working for cs > 0\n");
470 
471 	return -EINVAL;
472 }
473 
474 static int bcm2835aux_spi_probe(struct platform_device *pdev)
475 {
476 	struct spi_controller *host;
477 	struct bcm2835aux_spi *bs;
478 	unsigned long clk_hz;
479 	int err;
480 
481 	host = devm_spi_alloc_host(&pdev->dev, sizeof(*bs));
482 	if (!host)
483 		return -ENOMEM;
484 
485 	platform_set_drvdata(pdev, host);
486 	host->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
487 	host->bits_per_word_mask = SPI_BPW_MASK(8);
488 	/* even though the driver never officially supported native CS
489 	 * allow a single native CS for legacy DT support purposes when
490 	 * no cs-gpio is configured.
491 	 * Known limitations for native cs are:
492 	 * * multiple chip-selects: cs0-cs2 are all simultaniously asserted
493 	 *     whenever there is a transfer -  this even includes SPI_NO_CS
494 	 * * SPI_CS_HIGH: is ignores - cs are always asserted low
495 	 * * cs_change: cs is deasserted after each spi_transfer
496 	 * * cs_delay_usec: cs is always deasserted one SCK cycle after
497 	 *     a spi_transfer
498 	 */
499 	host->num_chipselect = 1;
500 	host->setup = bcm2835aux_spi_setup;
501 	host->transfer_one = bcm2835aux_spi_transfer_one;
502 	host->handle_err = bcm2835aux_spi_handle_err;
503 	host->prepare_message = bcm2835aux_spi_prepare_message;
504 	host->unprepare_message = bcm2835aux_spi_unprepare_message;
505 	host->dev.of_node = pdev->dev.of_node;
506 	host->use_gpio_descriptors = true;
507 
508 	bs = spi_controller_get_devdata(host);
509 
510 	/* the main area */
511 	bs->regs = devm_platform_ioremap_resource(pdev, 0);
512 	if (IS_ERR(bs->regs))
513 		return PTR_ERR(bs->regs);
514 
515 	bs->clk = devm_clk_get(&pdev->dev, NULL);
516 	if (IS_ERR(bs->clk)) {
517 		err = PTR_ERR(bs->clk);
518 		dev_err(&pdev->dev, "could not get clk: %d\n", err);
519 		return err;
520 	}
521 
522 	bs->irq = platform_get_irq(pdev, 0);
523 	if (bs->irq < 0)
524 		return bs->irq;
525 
526 	/* this also enables the HW block */
527 	err = clk_prepare_enable(bs->clk);
528 	if (err) {
529 		dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
530 		return err;
531 	}
532 
533 	/* just checking if the clock returns a sane value */
534 	clk_hz = clk_get_rate(bs->clk);
535 	if (!clk_hz) {
536 		dev_err(&pdev->dev, "clock returns 0 Hz\n");
537 		err = -ENODEV;
538 		goto out_clk_disable;
539 	}
540 
541 	/* reset SPI-HW block */
542 	bcm2835aux_spi_reset_hw(bs);
543 
544 	err = devm_request_irq(&pdev->dev, bs->irq,
545 			       bcm2835aux_spi_interrupt,
546 			       IRQF_SHARED,
547 			       dev_name(&pdev->dev), host);
548 	if (err) {
549 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
550 		goto out_clk_disable;
551 	}
552 
553 	err = spi_register_controller(host);
554 	if (err) {
555 		dev_err(&pdev->dev, "could not register SPI host: %d\n", err);
556 		goto out_clk_disable;
557 	}
558 
559 	bcm2835aux_debugfs_create(bs, dev_name(&pdev->dev));
560 
561 	return 0;
562 
563 out_clk_disable:
564 	clk_disable_unprepare(bs->clk);
565 	return err;
566 }
567 
568 static void bcm2835aux_spi_remove(struct platform_device *pdev)
569 {
570 	struct spi_controller *host = platform_get_drvdata(pdev);
571 	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
572 
573 	bcm2835aux_debugfs_remove(bs);
574 
575 	spi_unregister_controller(host);
576 
577 	bcm2835aux_spi_reset_hw(bs);
578 
579 	/* disable the HW block by releasing the clock */
580 	clk_disable_unprepare(bs->clk);
581 }
582 
583 static const struct of_device_id bcm2835aux_spi_match[] = {
584 	{ .compatible = "brcm,bcm2835-aux-spi", },
585 	{}
586 };
587 MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
588 
589 static struct platform_driver bcm2835aux_spi_driver = {
590 	.driver		= {
591 		.name		= "spi-bcm2835aux",
592 		.of_match_table	= bcm2835aux_spi_match,
593 	},
594 	.probe		= bcm2835aux_spi_probe,
595 	.remove_new	= bcm2835aux_spi_remove,
596 };
597 module_platform_driver(bcm2835aux_spi_driver);
598 
599 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
600 MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
601 MODULE_LICENSE("GPL");
602