xref: /openbmc/linux/drivers/spi/spi-bcm2835aux.c (revision 781095f903f398148cd0b646d3984234a715f29e)
1 /*
2  * Driver for Broadcom BCM2835 auxiliary SPI Controllers
3  *
4  * the driver does not rely on the native chipselects at all
5  * but only uses the gpio type chipselects
6  *
7  * Based on: spi-bcm2835.c
8  *
9  * Copyright (C) 2015 Martin Sperl
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_device.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_irq.h>
35 #include <linux/regmap.h>
36 #include <linux/spi/spi.h>
37 #include <linux/spinlock.h>
38 
39 /*
40  * spi register defines
41  *
42  * note there is garbage in the "official" documentation,
43  * so some data is taken from the file:
44  *   brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
45  * inside of:
46  *   http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
47  */
48 
49 /* SPI register offsets */
50 #define BCM2835_AUX_SPI_CNTL0	0x00
51 #define BCM2835_AUX_SPI_CNTL1	0x04
52 #define BCM2835_AUX_SPI_STAT	0x08
53 #define BCM2835_AUX_SPI_PEEK	0x0C
54 #define BCM2835_AUX_SPI_IO	0x20
55 #define BCM2835_AUX_SPI_TXHOLD	0x30
56 
57 /* Bitfields in CNTL0 */
58 #define BCM2835_AUX_SPI_CNTL0_SPEED	0xFFF00000
59 #define BCM2835_AUX_SPI_CNTL0_SPEED_MAX	0xFFF
60 #define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT	20
61 #define BCM2835_AUX_SPI_CNTL0_CS	0x000E0000
62 #define BCM2835_AUX_SPI_CNTL0_POSTINPUT	0x00010000
63 #define BCM2835_AUX_SPI_CNTL0_VAR_CS	0x00008000
64 #define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH	0x00004000
65 #define BCM2835_AUX_SPI_CNTL0_DOUTHOLD	0x00003000
66 #define BCM2835_AUX_SPI_CNTL0_ENABLE	0x00000800
67 #define BCM2835_AUX_SPI_CNTL0_CPHA_IN	0x00000400
68 #define BCM2835_AUX_SPI_CNTL0_CLEARFIFO	0x00000200
69 #define BCM2835_AUX_SPI_CNTL0_CPHA_OUT	0x00000100
70 #define BCM2835_AUX_SPI_CNTL0_CPOL	0x00000080
71 #define BCM2835_AUX_SPI_CNTL0_MSBF_OUT	0x00000040
72 #define BCM2835_AUX_SPI_CNTL0_SHIFTLEN	0x0000003F
73 
74 /* Bitfields in CNTL1 */
75 #define BCM2835_AUX_SPI_CNTL1_CSHIGH	0x00000700
76 #define BCM2835_AUX_SPI_CNTL1_IDLE	0x00000080
77 #define BCM2835_AUX_SPI_CNTL1_TXEMPTY	0x00000040
78 #define BCM2835_AUX_SPI_CNTL1_MSBF_IN	0x00000002
79 #define BCM2835_AUX_SPI_CNTL1_KEEP_IN	0x00000001
80 
81 /* Bitfields in STAT */
82 #define BCM2835_AUX_SPI_STAT_TX_LVL	0xFF000000
83 #define BCM2835_AUX_SPI_STAT_RX_LVL	0x00FF0000
84 #define BCM2835_AUX_SPI_STAT_TX_FULL	0x00000400
85 #define BCM2835_AUX_SPI_STAT_TX_EMPTY	0x00000200
86 #define BCM2835_AUX_SPI_STAT_RX_FULL	0x00000100
87 #define BCM2835_AUX_SPI_STAT_RX_EMPTY	0x00000080
88 #define BCM2835_AUX_SPI_STAT_BUSY	0x00000040
89 #define BCM2835_AUX_SPI_STAT_BITCOUNT	0x0000003F
90 
91 /* timeout values */
92 #define BCM2835_AUX_SPI_POLLING_LIMIT_US	30
93 #define BCM2835_AUX_SPI_POLLING_JIFFIES		2
94 
95 #define BCM2835_AUX_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
96 				  | SPI_NO_CS)
97 
98 struct bcm2835aux_spi {
99 	void __iomem *regs;
100 	struct clk *clk;
101 	int irq;
102 	u32 cntl[2];
103 	const u8 *tx_buf;
104 	u8 *rx_buf;
105 	int tx_len;
106 	int rx_len;
107 	int pending;
108 };
109 
110 static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned reg)
111 {
112 	return readl(bs->regs + reg);
113 }
114 
115 static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned reg,
116 				 u32 val)
117 {
118 	writel(val, bs->regs + reg);
119 }
120 
121 static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
122 {
123 	u32 data;
124 	int count = min(bs->rx_len, 3);
125 
126 	data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
127 	if (bs->rx_buf) {
128 		switch (count) {
129 		case 4:
130 			*bs->rx_buf++ = (data >> 24) & 0xff;
131 			/* fallthrough */
132 		case 3:
133 			*bs->rx_buf++ = (data >> 16) & 0xff;
134 			/* fallthrough */
135 		case 2:
136 			*bs->rx_buf++ = (data >> 8) & 0xff;
137 			/* fallthrough */
138 		case 1:
139 			*bs->rx_buf++ = (data >> 0) & 0xff;
140 			/* fallthrough - no default */
141 		}
142 	}
143 	bs->rx_len -= count;
144 	bs->pending -= count;
145 }
146 
147 static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
148 {
149 	u32 data;
150 	u8 byte;
151 	int count;
152 	int i;
153 
154 	/* gather up to 3 bytes to write to the FIFO */
155 	count = min(bs->tx_len, 3);
156 	data = 0;
157 	for (i = 0; i < count; i++) {
158 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
159 		data |= byte << (8 * (2 - i));
160 	}
161 
162 	/* and set the variable bit-length */
163 	data |= (count * 8) << 24;
164 
165 	/* and decrement length */
166 	bs->tx_len -= count;
167 	bs->pending += count;
168 
169 	/* write to the correct TX-register */
170 	if (bs->tx_len)
171 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
172 	else
173 		bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
174 }
175 
176 static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
177 {
178 	/* disable spi clearing fifo and interrupts */
179 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
180 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
181 		      BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
182 }
183 
184 static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
185 {
186 	struct spi_master *master = dev_id;
187 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
188 	irqreturn_t ret = IRQ_NONE;
189 
190 	/* check if we have data to read */
191 	while (bs->rx_len &&
192 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
193 		  BCM2835_AUX_SPI_STAT_RX_EMPTY))) {
194 		bcm2835aux_rd_fifo(bs);
195 		ret = IRQ_HANDLED;
196 	}
197 
198 	/* check if we have data to write */
199 	while (bs->tx_len &&
200 	       (bs->pending < 12) &&
201 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
202 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
203 		bcm2835aux_wr_fifo(bs);
204 		ret = IRQ_HANDLED;
205 	}
206 
207 	/* and check if we have reached "done" */
208 	while (bs->rx_len &&
209 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
210 		  BCM2835_AUX_SPI_STAT_BUSY))) {
211 		bcm2835aux_rd_fifo(bs);
212 		ret = IRQ_HANDLED;
213 	}
214 
215 	/* and if rx_len is 0 then wake up completion and disable spi */
216 	if (!bs->rx_len) {
217 		bcm2835aux_spi_reset_hw(bs);
218 		complete(&master->xfer_completion);
219 	}
220 
221 	/* and return */
222 	return ret;
223 }
224 
225 static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
226 					     struct spi_device *spi,
227 					     struct spi_transfer *tfr)
228 {
229 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
230 
231 	/* enable interrupts */
232 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
233 		BCM2835_AUX_SPI_CNTL1_TXEMPTY |
234 		BCM2835_AUX_SPI_CNTL1_IDLE);
235 
236 	/* and wait for finish... */
237 	return 1;
238 }
239 
240 static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
241 					   struct spi_device *spi,
242 					   struct spi_transfer *tfr)
243 {
244 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
245 
246 	/* fill in registers and fifos before enabling interrupts */
247 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
248 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
249 
250 	/* fill in tx fifo with data before enabling interrupts */
251 	while ((bs->tx_len) &&
252 	       (bs->pending < 12) &&
253 	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
254 		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
255 		bcm2835aux_wr_fifo(bs);
256 	}
257 
258 	/* now run the interrupt mode */
259 	return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
260 }
261 
262 static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
263 					    struct spi_device *spi,
264 					struct spi_transfer *tfr)
265 {
266 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
267 	unsigned long timeout;
268 	u32 stat;
269 
270 	/* configure spi */
271 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
272 	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
273 
274 	/* set the timeout */
275 	timeout = jiffies + BCM2835_AUX_SPI_POLLING_JIFFIES;
276 
277 	/* loop until finished the transfer */
278 	while (bs->rx_len) {
279 		/* read status */
280 		stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
281 
282 		/* fill in tx fifo with remaining data */
283 		if ((bs->tx_len) && (!(stat & BCM2835_AUX_SPI_STAT_TX_FULL))) {
284 			bcm2835aux_wr_fifo(bs);
285 			continue;
286 		}
287 
288 		/* read data from fifo for both cases */
289 		if (!(stat & BCM2835_AUX_SPI_STAT_RX_EMPTY)) {
290 			bcm2835aux_rd_fifo(bs);
291 			continue;
292 		}
293 		if (!(stat & BCM2835_AUX_SPI_STAT_BUSY)) {
294 			bcm2835aux_rd_fifo(bs);
295 			continue;
296 		}
297 
298 		/* there is still data pending to read check the timeout */
299 		if (bs->rx_len && time_after(jiffies, timeout)) {
300 			dev_dbg_ratelimited(&spi->dev,
301 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
302 					    jiffies - timeout,
303 					    bs->tx_len, bs->rx_len);
304 			/* forward to interrupt handler */
305 			return __bcm2835aux_spi_transfer_one_irq(master,
306 							       spi, tfr);
307 		}
308 	}
309 
310 	/* Transfer complete - reset SPI HW */
311 	bcm2835aux_spi_reset_hw(bs);
312 
313 	/* and return without waiting for completion */
314 	return 0;
315 }
316 
317 static int bcm2835aux_spi_transfer_one(struct spi_master *master,
318 				       struct spi_device *spi,
319 				       struct spi_transfer *tfr)
320 {
321 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
322 	unsigned long spi_hz, clk_hz, speed;
323 	unsigned long spi_used_hz;
324 	unsigned long long xfer_time_us;
325 
326 	/* calculate the registers to handle
327 	 *
328 	 * note that we use the variable data mode, which
329 	 * is not optimal for longer transfers as we waste registers
330 	 * resulting (potentially) in more interrupts when transferring
331 	 * more than 12 bytes
332 	 */
333 	bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
334 		      BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
335 		      BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
336 	bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
337 
338 	/* set clock */
339 	spi_hz = tfr->speed_hz;
340 	clk_hz = clk_get_rate(bs->clk);
341 
342 	if (spi_hz >= clk_hz / 2) {
343 		speed = 0;
344 	} else if (spi_hz) {
345 		speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
346 		if (speed >  BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
347 			speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
348 	} else { /* the slowest we can go */
349 		speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
350 	}
351 	bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
352 
353 	spi_used_hz = clk_hz / (2 * (speed + 1));
354 
355 	/* handle all the modes */
356 	if (spi->mode & SPI_CPOL)
357 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
358 	if (spi->mode & SPI_CPHA)
359 		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPHA_OUT |
360 			       BCM2835_AUX_SPI_CNTL0_CPHA_IN;
361 
362 	/* set transmit buffers and length */
363 	bs->tx_buf = tfr->tx_buf;
364 	bs->rx_buf = tfr->rx_buf;
365 	bs->tx_len = tfr->len;
366 	bs->rx_len = tfr->len;
367 	bs->pending = 0;
368 
369 	/* calculate the estimated time in us the transfer runs
370 	 * note that there are are 2 idle clocks after each
371 	 * chunk getting transferred - in our case the chunk size
372 	 * is 3 bytes, so we approximate this by 9 bits/byte
373 	 */
374 	xfer_time_us = tfr->len * 9 * 1000000;
375 	do_div(xfer_time_us, spi_used_hz);
376 
377 	/* run in polling mode for short transfers */
378 	if (xfer_time_us < BCM2835_AUX_SPI_POLLING_LIMIT_US)
379 		return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
380 
381 	/* run in interrupt mode for all others */
382 	return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
383 }
384 
385 static void bcm2835aux_spi_handle_err(struct spi_master *master,
386 				      struct spi_message *msg)
387 {
388 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
389 
390 	bcm2835aux_spi_reset_hw(bs);
391 }
392 
393 static int bcm2835aux_spi_probe(struct platform_device *pdev)
394 {
395 	struct spi_master *master;
396 	struct bcm2835aux_spi *bs;
397 	struct resource *res;
398 	unsigned long clk_hz;
399 	int err;
400 
401 	master = spi_alloc_master(&pdev->dev, sizeof(*bs));
402 	if (!master) {
403 		dev_err(&pdev->dev, "spi_alloc_master() failed\n");
404 		return -ENOMEM;
405 	}
406 
407 	platform_set_drvdata(pdev, master);
408 	master->mode_bits = BCM2835_AUX_SPI_MODE_BITS;
409 	master->bits_per_word_mask = SPI_BPW_MASK(8);
410 	master->num_chipselect = -1;
411 	master->transfer_one = bcm2835aux_spi_transfer_one;
412 	master->handle_err = bcm2835aux_spi_handle_err;
413 	master->dev.of_node = pdev->dev.of_node;
414 
415 	bs = spi_master_get_devdata(master);
416 
417 	/* the main area */
418 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
419 	bs->regs = devm_ioremap_resource(&pdev->dev, res);
420 	if (IS_ERR(bs->regs)) {
421 		err = PTR_ERR(bs->regs);
422 		goto out_master_put;
423 	}
424 
425 	bs->clk = devm_clk_get(&pdev->dev, NULL);
426 	if ((!bs->clk) || (IS_ERR(bs->clk))) {
427 		err = PTR_ERR(bs->clk);
428 		dev_err(&pdev->dev, "could not get clk: %d\n", err);
429 		goto out_master_put;
430 	}
431 
432 	bs->irq = platform_get_irq(pdev, 0);
433 	if (bs->irq <= 0) {
434 		dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
435 		err = bs->irq ? bs->irq : -ENODEV;
436 		goto out_master_put;
437 	}
438 
439 	/* this also enables the HW block */
440 	err = clk_prepare_enable(bs->clk);
441 	if (err) {
442 		dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
443 		goto out_master_put;
444 	}
445 
446 	/* just checking if the clock returns a sane value */
447 	clk_hz = clk_get_rate(bs->clk);
448 	if (!clk_hz) {
449 		dev_err(&pdev->dev, "clock returns 0 Hz\n");
450 		err = -ENODEV;
451 		goto out_clk_disable;
452 	}
453 
454 	/* reset SPI-HW block */
455 	bcm2835aux_spi_reset_hw(bs);
456 
457 	err = devm_request_irq(&pdev->dev, bs->irq,
458 			       bcm2835aux_spi_interrupt,
459 			       IRQF_SHARED,
460 			       dev_name(&pdev->dev), master);
461 	if (err) {
462 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
463 		goto out_clk_disable;
464 	}
465 
466 	err = devm_spi_register_master(&pdev->dev, master);
467 	if (err) {
468 		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
469 		goto out_clk_disable;
470 	}
471 
472 	return 0;
473 
474 out_clk_disable:
475 	clk_disable_unprepare(bs->clk);
476 out_master_put:
477 	spi_master_put(master);
478 	return err;
479 }
480 
481 static int bcm2835aux_spi_remove(struct platform_device *pdev)
482 {
483 	struct spi_master *master = platform_get_drvdata(pdev);
484 	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
485 
486 	bcm2835aux_spi_reset_hw(bs);
487 
488 	/* disable the HW block by releasing the clock */
489 	clk_disable_unprepare(bs->clk);
490 
491 	return 0;
492 }
493 
494 static const struct of_device_id bcm2835aux_spi_match[] = {
495 	{ .compatible = "brcm,bcm2835-aux-spi", },
496 	{}
497 };
498 MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
499 
500 static struct platform_driver bcm2835aux_spi_driver = {
501 	.driver		= {
502 		.name		= "spi-bcm2835aux",
503 		.of_match_table	= bcm2835aux_spi_match,
504 	},
505 	.probe		= bcm2835aux_spi_probe,
506 	.remove		= bcm2835aux_spi_remove,
507 };
508 module_platform_driver(bcm2835aux_spi_driver);
509 
510 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
511 MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
512 MODULE_LICENSE("GPL v2");
513