xref: /openbmc/linux/drivers/spi/spi-bcm2835.c (revision f9834f18)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Broadcom BCM2835 SPI Controllers
4  *
5  * Copyright (C) 2012 Chris Boot
6  * Copyright (C) 2013 Stephen Warren
7  * Copyright (C) 2015 Martin Sperl
8  *
9  * This driver is inspired by:
10  * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11  * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/debugfs.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_device.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/gpio/machine.h> /* FIXME: using chip internals */
30 #include <linux/gpio/driver.h> /* FIXME: using chip internals */
31 #include <linux/of_irq.h>
32 #include <linux/spi/spi.h>
33 
34 /* SPI register offsets */
35 #define BCM2835_SPI_CS			0x00
36 #define BCM2835_SPI_FIFO		0x04
37 #define BCM2835_SPI_CLK			0x08
38 #define BCM2835_SPI_DLEN		0x0c
39 #define BCM2835_SPI_LTOH		0x10
40 #define BCM2835_SPI_DC			0x14
41 
42 /* Bitfields in CS */
43 #define BCM2835_SPI_CS_LEN_LONG		0x02000000
44 #define BCM2835_SPI_CS_DMA_LEN		0x01000000
45 #define BCM2835_SPI_CS_CSPOL2		0x00800000
46 #define BCM2835_SPI_CS_CSPOL1		0x00400000
47 #define BCM2835_SPI_CS_CSPOL0		0x00200000
48 #define BCM2835_SPI_CS_RXF		0x00100000
49 #define BCM2835_SPI_CS_RXR		0x00080000
50 #define BCM2835_SPI_CS_TXD		0x00040000
51 #define BCM2835_SPI_CS_RXD		0x00020000
52 #define BCM2835_SPI_CS_DONE		0x00010000
53 #define BCM2835_SPI_CS_LEN		0x00002000
54 #define BCM2835_SPI_CS_REN		0x00001000
55 #define BCM2835_SPI_CS_ADCS		0x00000800
56 #define BCM2835_SPI_CS_INTR		0x00000400
57 #define BCM2835_SPI_CS_INTD		0x00000200
58 #define BCM2835_SPI_CS_DMAEN		0x00000100
59 #define BCM2835_SPI_CS_TA		0x00000080
60 #define BCM2835_SPI_CS_CSPOL		0x00000040
61 #define BCM2835_SPI_CS_CLEAR_RX		0x00000020
62 #define BCM2835_SPI_CS_CLEAR_TX		0x00000010
63 #define BCM2835_SPI_CS_CPOL		0x00000008
64 #define BCM2835_SPI_CS_CPHA		0x00000004
65 #define BCM2835_SPI_CS_CS_10		0x00000002
66 #define BCM2835_SPI_CS_CS_01		0x00000001
67 
68 #define BCM2835_SPI_FIFO_SIZE		64
69 #define BCM2835_SPI_FIFO_SIZE_3_4	48
70 #define BCM2835_SPI_DMA_MIN_LENGTH	96
71 #define BCM2835_SPI_NUM_CS		4   /* raise as necessary */
72 #define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
73 				| SPI_NO_CS | SPI_3WIRE)
74 
75 #define DRV_NAME	"spi-bcm2835"
76 
77 /* define polling limits */
78 unsigned int polling_limit_us = 30;
79 module_param(polling_limit_us, uint, 0664);
80 MODULE_PARM_DESC(polling_limit_us,
81 		 "time in us to run a transfer in polling mode\n");
82 
83 /**
84  * struct bcm2835_spi - BCM2835 SPI controller
85  * @regs: base address of register map
86  * @clk: core clock, divided to calculate serial clock
87  * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
88  * @tfr: SPI transfer currently processed
89  * @tx_buf: pointer whence next transmitted byte is read
90  * @rx_buf: pointer where next received byte is written
91  * @tx_len: remaining bytes to transmit
92  * @rx_len: remaining bytes to receive
93  * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
94  *	length is not a multiple of 4 (to overcome hardware limitation)
95  * @rx_prologue: bytes received without DMA if first RX sglist entry's
96  *	length is not a multiple of 4 (to overcome hardware limitation)
97  * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
98  * @prepare_cs: precalculated CS register value for ->prepare_message()
99  *	(uses slave-specific clock polarity and phase settings)
100  * @debugfs_dir: the debugfs directory - neede to remove debugfs when
101  *      unloading the module
102  * @count_transfer_polling: count of how often polling mode is used
103  * @count_transfer_irq: count of how often interrupt mode is used
104  * @count_transfer_irq_after_polling: count of how often we fall back to
105  *      interrupt mode after starting in polling mode.
106  *      These are counted as well in @count_transfer_polling and
107  *      @count_transfer_irq
108  * @count_transfer_dma: count how often dma mode is used
109  * @chip_select: SPI slave currently selected
110  *	(used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
111  * @tx_dma_active: whether a TX DMA descriptor is in progress
112  * @rx_dma_active: whether a RX DMA descriptor is in progress
113  *	(used by bcm2835_spi_dma_tx_done() to handle a race)
114  * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
115  *	(cyclically copies from zero page to TX FIFO)
116  * @fill_tx_addr: bus address of zero page
117  * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
118  *	(cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
119  * @clear_rx_addr: bus address of @clear_rx_cs
120  * @clear_rx_cs: precalculated CS register value to clear RX FIFO
121  *	(uses slave-specific clock polarity and phase settings)
122  */
123 struct bcm2835_spi {
124 	void __iomem *regs;
125 	struct clk *clk;
126 	int irq;
127 	struct spi_transfer *tfr;
128 	const u8 *tx_buf;
129 	u8 *rx_buf;
130 	int tx_len;
131 	int rx_len;
132 	int tx_prologue;
133 	int rx_prologue;
134 	unsigned int tx_spillover;
135 	u32 prepare_cs[BCM2835_SPI_NUM_CS];
136 
137 	struct dentry *debugfs_dir;
138 	u64 count_transfer_polling;
139 	u64 count_transfer_irq;
140 	u64 count_transfer_irq_after_polling;
141 	u64 count_transfer_dma;
142 
143 	u8 chip_select;
144 	unsigned int tx_dma_active;
145 	unsigned int rx_dma_active;
146 	struct dma_async_tx_descriptor *fill_tx_desc;
147 	dma_addr_t fill_tx_addr;
148 	struct dma_async_tx_descriptor *clear_rx_desc[BCM2835_SPI_NUM_CS];
149 	dma_addr_t clear_rx_addr;
150 	u32 clear_rx_cs[BCM2835_SPI_NUM_CS] ____cacheline_aligned;
151 };
152 
153 #if defined(CONFIG_DEBUG_FS)
154 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
155 				   const char *dname)
156 {
157 	char name[64];
158 	struct dentry *dir;
159 
160 	/* get full name */
161 	snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
162 
163 	/* the base directory */
164 	dir = debugfs_create_dir(name, NULL);
165 	bs->debugfs_dir = dir;
166 
167 	/* the counters */
168 	debugfs_create_u64("count_transfer_polling", 0444, dir,
169 			   &bs->count_transfer_polling);
170 	debugfs_create_u64("count_transfer_irq", 0444, dir,
171 			   &bs->count_transfer_irq);
172 	debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
173 			   &bs->count_transfer_irq_after_polling);
174 	debugfs_create_u64("count_transfer_dma", 0444, dir,
175 			   &bs->count_transfer_dma);
176 }
177 
178 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
179 {
180 	debugfs_remove_recursive(bs->debugfs_dir);
181 	bs->debugfs_dir = NULL;
182 }
183 #else
184 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
185 				   const char *dname)
186 {
187 }
188 
189 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
190 {
191 }
192 #endif /* CONFIG_DEBUG_FS */
193 
194 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg)
195 {
196 	return readl(bs->regs + reg);
197 }
198 
199 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val)
200 {
201 	writel(val, bs->regs + reg);
202 }
203 
204 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
205 {
206 	u8 byte;
207 
208 	while ((bs->rx_len) &&
209 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
210 		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
211 		if (bs->rx_buf)
212 			*bs->rx_buf++ = byte;
213 		bs->rx_len--;
214 	}
215 }
216 
217 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
218 {
219 	u8 byte;
220 
221 	while ((bs->tx_len) &&
222 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
223 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
224 		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
225 		bs->tx_len--;
226 	}
227 }
228 
229 /**
230  * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
231  * @bs: BCM2835 SPI controller
232  * @count: bytes to read from RX FIFO
233  *
234  * The caller must ensure that @bs->rx_len is greater than or equal to @count,
235  * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
236  * in the CS register is set (such that a read from the FIFO register receives
237  * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
238  */
239 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
240 {
241 	u32 val;
242 	int len;
243 
244 	bs->rx_len -= count;
245 
246 	while (count > 0) {
247 		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
248 		len = min(count, 4);
249 		memcpy(bs->rx_buf, &val, len);
250 		bs->rx_buf += len;
251 		count -= 4;
252 	}
253 }
254 
255 /**
256  * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
257  * @bs: BCM2835 SPI controller
258  * @count: bytes to write to TX FIFO
259  *
260  * The caller must ensure that @bs->tx_len is greater than or equal to @count,
261  * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
262  * in the CS register is set (such that a write to the FIFO register transmits
263  * 32-bit instead of just 8-bit).
264  */
265 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
266 {
267 	u32 val;
268 	int len;
269 
270 	bs->tx_len -= count;
271 
272 	while (count > 0) {
273 		if (bs->tx_buf) {
274 			len = min(count, 4);
275 			memcpy(&val, bs->tx_buf, len);
276 			bs->tx_buf += len;
277 		} else {
278 			val = 0;
279 		}
280 		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
281 		count -= 4;
282 	}
283 }
284 
285 /**
286  * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
287  * @bs: BCM2835 SPI controller
288  *
289  * The caller must ensure that the RX FIFO can accommodate as many bytes
290  * as have been written to the TX FIFO:  Transmission is halted once the
291  * RX FIFO is full, causing this function to spin forever.
292  */
293 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
294 {
295 	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
296 		cpu_relax();
297 }
298 
299 /**
300  * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
301  * @bs: BCM2835 SPI controller
302  * @count: bytes available for reading in RX FIFO
303  */
304 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
305 {
306 	u8 val;
307 
308 	count = min(count, bs->rx_len);
309 	bs->rx_len -= count;
310 
311 	while (count) {
312 		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
313 		if (bs->rx_buf)
314 			*bs->rx_buf++ = val;
315 		count--;
316 	}
317 }
318 
319 /**
320  * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
321  * @bs: BCM2835 SPI controller
322  * @count: bytes available for writing in TX FIFO
323  */
324 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
325 {
326 	u8 val;
327 
328 	count = min(count, bs->tx_len);
329 	bs->tx_len -= count;
330 
331 	while (count) {
332 		val = bs->tx_buf ? *bs->tx_buf++ : 0;
333 		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
334 		count--;
335 	}
336 }
337 
338 static void bcm2835_spi_reset_hw(struct spi_controller *ctlr)
339 {
340 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
341 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
342 
343 	/* Disable SPI interrupts and transfer */
344 	cs &= ~(BCM2835_SPI_CS_INTR |
345 		BCM2835_SPI_CS_INTD |
346 		BCM2835_SPI_CS_DMAEN |
347 		BCM2835_SPI_CS_TA);
348 	/*
349 	 * Transmission sometimes breaks unless the DONE bit is written at the
350 	 * end of every transfer.  The spec says it's a RO bit.  Either the
351 	 * spec is wrong and the bit is actually of type RW1C, or it's a
352 	 * hardware erratum.
353 	 */
354 	cs |= BCM2835_SPI_CS_DONE;
355 	/* and reset RX/TX FIFOS */
356 	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
357 
358 	/* and reset the SPI_HW */
359 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
360 	/* as well as DLEN */
361 	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
362 }
363 
364 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
365 {
366 	struct spi_controller *ctlr = dev_id;
367 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
368 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
369 
370 	/*
371 	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
372 	 * or if RXR is set (RX FIFO >= ¾ full).
373 	 */
374 	if (cs & BCM2835_SPI_CS_RXF)
375 		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
376 	else if (cs & BCM2835_SPI_CS_RXR)
377 		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
378 
379 	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
380 		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
381 
382 	/* Read as many bytes as possible from FIFO */
383 	bcm2835_rd_fifo(bs);
384 	/* Write as many bytes as possible to FIFO */
385 	bcm2835_wr_fifo(bs);
386 
387 	if (!bs->rx_len) {
388 		/* Transfer complete - reset SPI HW */
389 		bcm2835_spi_reset_hw(ctlr);
390 		/* wake up the framework */
391 		complete(&ctlr->xfer_completion);
392 	}
393 
394 	return IRQ_HANDLED;
395 }
396 
397 static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
398 					struct spi_device *spi,
399 					struct spi_transfer *tfr,
400 					u32 cs, bool fifo_empty)
401 {
402 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
403 
404 	/* update usage statistics */
405 	bs->count_transfer_irq++;
406 
407 	/*
408 	 * Enable HW block, but with interrupts still disabled.
409 	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
410 	 */
411 	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
412 
413 	/* fill TX FIFO as much as possible */
414 	if (fifo_empty)
415 		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
416 	bcm2835_wr_fifo(bs);
417 
418 	/* enable interrupts */
419 	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
420 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
421 
422 	/* signal that we need to wait for completion */
423 	return 1;
424 }
425 
426 /**
427  * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
428  * @ctlr: SPI master controller
429  * @tfr: SPI transfer
430  * @bs: BCM2835 SPI controller
431  * @cs: CS register
432  *
433  * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
434  * Only the final write access is permitted to transmit less than 4 bytes, the
435  * SPI controller deduces its intended size from the DLEN register.
436  *
437  * If a TX or RX sglist contains multiple entries, one per page, and the first
438  * entry starts in the middle of a page, that first entry's length may not be
439  * a multiple of 4.  Subsequent entries are fine because they span an entire
440  * page, hence do have a length that's a multiple of 4.
441  *
442  * This cannot happen with kmalloc'ed buffers (which is what most clients use)
443  * because they are contiguous in physical memory and therefore not split on
444  * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
445  * buffers.
446  *
447  * The DMA engine is incapable of combining sglist entries into a continuous
448  * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
449  * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
450  * entry is rounded up by throwing away received bytes.
451  *
452  * Overcome this limitation by transferring the first few bytes without DMA:
453  * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
454  * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
455  * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
456  * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
457  *
458  * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
459  * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
460  * Caution, the additional 4 bytes spill over to the second TX sglist entry
461  * if the length of the first is *exactly* 1.
462  *
463  * At most 6 bytes are written and at most 3 bytes read.  Do we know the
464  * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
465  *
466  * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
467  * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
468  * the width but also garbles the FIFO's contents.  The prologue must therefore
469  * be transmitted in 32-bit width to ensure that the following DMA transfer can
470  * pick up the residue in the RX FIFO in ungarbled form.
471  */
472 static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
473 					  struct spi_transfer *tfr,
474 					  struct bcm2835_spi *bs,
475 					  u32 cs)
476 {
477 	int tx_remaining;
478 
479 	bs->tfr		 = tfr;
480 	bs->tx_prologue  = 0;
481 	bs->rx_prologue  = 0;
482 	bs->tx_spillover = false;
483 
484 	if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
485 		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
486 
487 	if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
488 		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
489 
490 		if (bs->rx_prologue > bs->tx_prologue) {
491 			if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
492 				bs->tx_prologue  = bs->rx_prologue;
493 			} else {
494 				bs->tx_prologue += 4;
495 				bs->tx_spillover =
496 					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
497 			}
498 		}
499 	}
500 
501 	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
502 	if (!bs->tx_prologue)
503 		return;
504 
505 	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
506 	if (bs->rx_prologue) {
507 		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
508 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
509 						  | BCM2835_SPI_CS_DMAEN);
510 		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
511 		bcm2835_wait_tx_fifo_empty(bs);
512 		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
513 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
514 						  | BCM2835_SPI_CS_CLEAR_TX
515 						  | BCM2835_SPI_CS_DONE);
516 
517 		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
518 					   sg_dma_address(&tfr->rx_sg.sgl[0]),
519 					   bs->rx_prologue, DMA_FROM_DEVICE);
520 
521 		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
522 		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
523 	}
524 
525 	if (!bs->tx_buf)
526 		return;
527 
528 	/*
529 	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
530 	 * Also adjust second entry if prologue spills over to it.
531 	 */
532 	tx_remaining = bs->tx_prologue - bs->rx_prologue;
533 	if (tx_remaining) {
534 		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
535 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
536 						  | BCM2835_SPI_CS_DMAEN);
537 		bcm2835_wr_fifo_count(bs, tx_remaining);
538 		bcm2835_wait_tx_fifo_empty(bs);
539 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
540 						  | BCM2835_SPI_CS_DONE);
541 	}
542 
543 	if (likely(!bs->tx_spillover)) {
544 		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
545 		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
546 	} else {
547 		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
548 		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
549 		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
550 	}
551 }
552 
553 /**
554  * bcm2835_spi_undo_prologue() - reconstruct original sglist state
555  * @bs: BCM2835 SPI controller
556  *
557  * Undo changes which were made to an SPI transfer's sglist when transmitting
558  * the prologue.  This is necessary to ensure the same memory ranges are
559  * unmapped that were originally mapped.
560  */
561 static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
562 {
563 	struct spi_transfer *tfr = bs->tfr;
564 
565 	if (!bs->tx_prologue)
566 		return;
567 
568 	if (bs->rx_prologue) {
569 		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
570 		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
571 	}
572 
573 	if (!bs->tx_buf)
574 		goto out;
575 
576 	if (likely(!bs->tx_spillover)) {
577 		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
578 		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
579 	} else {
580 		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
581 		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
582 		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
583 	}
584 out:
585 	bs->tx_prologue = 0;
586 }
587 
588 /**
589  * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
590  * @data: SPI master controller
591  *
592  * Used for bidirectional and RX-only transfers.
593  */
594 static void bcm2835_spi_dma_rx_done(void *data)
595 {
596 	struct spi_controller *ctlr = data;
597 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
598 
599 	/* terminate tx-dma as we do not have an irq for it
600 	 * because when the rx dma will terminate and this callback
601 	 * is called the tx-dma must have finished - can't get to this
602 	 * situation otherwise...
603 	 */
604 	dmaengine_terminate_async(ctlr->dma_tx);
605 	bs->tx_dma_active = false;
606 	bs->rx_dma_active = false;
607 	bcm2835_spi_undo_prologue(bs);
608 
609 	/* reset fifo and HW */
610 	bcm2835_spi_reset_hw(ctlr);
611 
612 	/* and mark as completed */;
613 	complete(&ctlr->xfer_completion);
614 }
615 
616 /**
617  * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
618  * @data: SPI master controller
619  *
620  * Used for TX-only transfers.
621  */
622 static void bcm2835_spi_dma_tx_done(void *data)
623 {
624 	struct spi_controller *ctlr = data;
625 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
626 
627 	/* busy-wait for TX FIFO to empty */
628 	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
629 		bcm2835_wr(bs, BCM2835_SPI_CS,
630 			   bs->clear_rx_cs[bs->chip_select]);
631 
632 	bs->tx_dma_active = false;
633 	smp_wmb();
634 
635 	/*
636 	 * In case of a very short transfer, RX DMA may not have been
637 	 * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
638 	 * to terminate it immediately after issuing.
639 	 */
640 	if (cmpxchg(&bs->rx_dma_active, true, false))
641 		dmaengine_terminate_async(ctlr->dma_rx);
642 
643 	bcm2835_spi_undo_prologue(bs);
644 	bcm2835_spi_reset_hw(ctlr);
645 	complete(&ctlr->xfer_completion);
646 }
647 
648 /**
649  * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
650  * @ctlr: SPI master controller
651  * @spi: SPI slave
652  * @tfr: SPI transfer
653  * @bs: BCM2835 SPI controller
654  * @is_tx: whether to submit DMA descriptor for TX or RX sglist
655  *
656  * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
657  * Return 0 on success or a negative error number.
658  */
659 static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
660 				  struct spi_device *spi,
661 				  struct spi_transfer *tfr,
662 				  struct bcm2835_spi *bs,
663 				  bool is_tx)
664 {
665 	struct dma_chan *chan;
666 	struct scatterlist *sgl;
667 	unsigned int nents;
668 	enum dma_transfer_direction dir;
669 	unsigned long flags;
670 
671 	struct dma_async_tx_descriptor *desc;
672 	dma_cookie_t cookie;
673 
674 	if (is_tx) {
675 		dir   = DMA_MEM_TO_DEV;
676 		chan  = ctlr->dma_tx;
677 		nents = tfr->tx_sg.nents;
678 		sgl   = tfr->tx_sg.sgl;
679 		flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
680 	} else {
681 		dir   = DMA_DEV_TO_MEM;
682 		chan  = ctlr->dma_rx;
683 		nents = tfr->rx_sg.nents;
684 		sgl   = tfr->rx_sg.sgl;
685 		flags = DMA_PREP_INTERRUPT;
686 	}
687 	/* prepare the channel */
688 	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
689 	if (!desc)
690 		return -EINVAL;
691 
692 	/*
693 	 * Completion is signaled by the RX channel for bidirectional and
694 	 * RX-only transfers; else by the TX channel for TX-only transfers.
695 	 */
696 	if (!is_tx) {
697 		desc->callback = bcm2835_spi_dma_rx_done;
698 		desc->callback_param = ctlr;
699 	} else if (!tfr->rx_buf) {
700 		desc->callback = bcm2835_spi_dma_tx_done;
701 		desc->callback_param = ctlr;
702 		bs->chip_select = spi->chip_select;
703 	}
704 
705 	/* submit it to DMA-engine */
706 	cookie = dmaengine_submit(desc);
707 
708 	return dma_submit_error(cookie);
709 }
710 
711 /**
712  * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
713  * @ctlr: SPI master controller
714  * @spi: SPI slave
715  * @tfr: SPI transfer
716  * @cs: CS register
717  *
718  * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
719  * the TX and RX DMA channel to copy between memory and FIFO register.
720  *
721  * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
722  * memory is pointless.  However not reading the RX FIFO isn't an option either
723  * because transmission is halted once it's full.  As a workaround, cyclically
724  * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
725  *
726  * The CS register value is precalculated in bcm2835_spi_setup().  Normally
727  * this is called only once, on slave registration.  A DMA descriptor to write
728  * this value is preallocated in bcm2835_dma_init().  All that's left to do
729  * when performing a TX-only transfer is to submit this descriptor to the RX
730  * DMA channel.  Latency is thereby minimized.  The descriptor does not
731  * generate any interrupts while running.  It must be terminated once the
732  * TX DMA channel is done.
733  *
734  * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
735  * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
736  * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
737  * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
738  * reduction in bus traffic and thus energy consumption is achieved.
739  *
740  * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
741  * copying from the zero page.  The DMA descriptor to do this is preallocated
742  * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
743  * done and can then be reused.
744  *
745  * The BCM2835 DMA driver autodetects when a transaction copies from the zero
746  * page and utilizes the DMA controller's ability to synthesize zeroes instead
747  * of copying them from memory.  This reduces traffic on the memory bus.  The
748  * feature is not available on so-called "lite" channels, but normally TX DMA
749  * is backed by a full-featured channel.
750  *
751  * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
752  * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
753  * has been counted down to zero (hardware erratum).  Thus, when the transfer
754  * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
755  * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
756  * performed at the end of an RX-only transfer.
757  */
758 static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
759 					struct spi_device *spi,
760 					struct spi_transfer *tfr,
761 					u32 cs)
762 {
763 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
764 	dma_cookie_t cookie;
765 	int ret;
766 
767 	/* update usage statistics */
768 	bs->count_transfer_dma++;
769 
770 	/*
771 	 * Transfer first few bytes without DMA if length of first TX or RX
772 	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
773 	 */
774 	bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
775 
776 	/* setup tx-DMA */
777 	if (bs->tx_buf) {
778 		ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, true);
779 	} else {
780 		cookie = dmaengine_submit(bs->fill_tx_desc);
781 		ret = dma_submit_error(cookie);
782 	}
783 	if (ret)
784 		goto err_reset_hw;
785 
786 	/* set the DMA length */
787 	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
788 
789 	/* start the HW */
790 	bcm2835_wr(bs, BCM2835_SPI_CS,
791 		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
792 
793 	bs->tx_dma_active = true;
794 	smp_wmb();
795 
796 	/* start TX early */
797 	dma_async_issue_pending(ctlr->dma_tx);
798 
799 	/* setup rx-DMA late - to run transfers while
800 	 * mapping of the rx buffers still takes place
801 	 * this saves 10us or more.
802 	 */
803 	if (bs->rx_buf) {
804 		ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, false);
805 	} else {
806 		cookie = dmaengine_submit(bs->clear_rx_desc[spi->chip_select]);
807 		ret = dma_submit_error(cookie);
808 	}
809 	if (ret) {
810 		/* need to reset on errors */
811 		dmaengine_terminate_sync(ctlr->dma_tx);
812 		bs->tx_dma_active = false;
813 		goto err_reset_hw;
814 	}
815 
816 	/* start rx dma late */
817 	dma_async_issue_pending(ctlr->dma_rx);
818 	bs->rx_dma_active = true;
819 	smp_mb();
820 
821 	/*
822 	 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
823 	 * may run before RX DMA is issued.  Terminate RX DMA if so.
824 	 */
825 	if (!bs->rx_buf && !bs->tx_dma_active &&
826 	    cmpxchg(&bs->rx_dma_active, true, false)) {
827 		dmaengine_terminate_async(ctlr->dma_rx);
828 		bcm2835_spi_reset_hw(ctlr);
829 	}
830 
831 	/* wait for wakeup in framework */
832 	return 1;
833 
834 err_reset_hw:
835 	bcm2835_spi_reset_hw(ctlr);
836 	bcm2835_spi_undo_prologue(bs);
837 	return ret;
838 }
839 
840 static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
841 				struct spi_device *spi,
842 				struct spi_transfer *tfr)
843 {
844 	/* we start DMA efforts only on bigger transfers */
845 	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
846 		return false;
847 
848 	/* return OK */
849 	return true;
850 }
851 
852 static void bcm2835_dma_release(struct spi_controller *ctlr,
853 				struct bcm2835_spi *bs)
854 {
855 	int i;
856 
857 	if (ctlr->dma_tx) {
858 		dmaengine_terminate_sync(ctlr->dma_tx);
859 
860 		if (bs->fill_tx_desc)
861 			dmaengine_desc_free(bs->fill_tx_desc);
862 
863 		if (bs->fill_tx_addr)
864 			dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
865 					     bs->fill_tx_addr, sizeof(u32),
866 					     DMA_TO_DEVICE,
867 					     DMA_ATTR_SKIP_CPU_SYNC);
868 
869 		dma_release_channel(ctlr->dma_tx);
870 		ctlr->dma_tx = NULL;
871 	}
872 
873 	if (ctlr->dma_rx) {
874 		dmaengine_terminate_sync(ctlr->dma_rx);
875 
876 		for (i = 0; i < BCM2835_SPI_NUM_CS; i++)
877 			if (bs->clear_rx_desc[i])
878 				dmaengine_desc_free(bs->clear_rx_desc[i]);
879 
880 		if (bs->clear_rx_addr)
881 			dma_unmap_single(ctlr->dma_rx->device->dev,
882 					 bs->clear_rx_addr,
883 					 sizeof(bs->clear_rx_cs),
884 					 DMA_TO_DEVICE);
885 
886 		dma_release_channel(ctlr->dma_rx);
887 		ctlr->dma_rx = NULL;
888 	}
889 }
890 
891 static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
892 			    struct bcm2835_spi *bs)
893 {
894 	struct dma_slave_config slave_config;
895 	const __be32 *addr;
896 	dma_addr_t dma_reg_base;
897 	int ret, i;
898 
899 	/* base address in dma-space */
900 	addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
901 	if (!addr) {
902 		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
903 		/* Fall back to interrupt mode */
904 		return 0;
905 	}
906 	dma_reg_base = be32_to_cpup(addr);
907 
908 	/* get tx/rx dma */
909 	ctlr->dma_tx = dma_request_chan(dev, "tx");
910 	if (IS_ERR(ctlr->dma_tx)) {
911 		dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
912 		ret = PTR_ERR(ctlr->dma_tx);
913 		ctlr->dma_tx = NULL;
914 		goto err;
915 	}
916 	ctlr->dma_rx = dma_request_chan(dev, "rx");
917 	if (IS_ERR(ctlr->dma_rx)) {
918 		dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
919 		ret = PTR_ERR(ctlr->dma_rx);
920 		ctlr->dma_rx = NULL;
921 		goto err_release;
922 	}
923 
924 	/*
925 	 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
926 	 * or, in case of an RX-only transfer, cyclically copies from the zero
927 	 * page to the FIFO using a preallocated, reusable descriptor.
928 	 */
929 	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
930 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
931 
932 	ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
933 	if (ret)
934 		goto err_config;
935 
936 	bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
937 					      ZERO_PAGE(0), 0, sizeof(u32),
938 					      DMA_TO_DEVICE,
939 					      DMA_ATTR_SKIP_CPU_SYNC);
940 	if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
941 		dev_err(dev, "cannot map zero page - not using DMA mode\n");
942 		bs->fill_tx_addr = 0;
943 		goto err_release;
944 	}
945 
946 	bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
947 						     bs->fill_tx_addr,
948 						     sizeof(u32), 0,
949 						     DMA_MEM_TO_DEV, 0);
950 	if (!bs->fill_tx_desc) {
951 		dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
952 		goto err_release;
953 	}
954 
955 	ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
956 	if (ret) {
957 		dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
958 		goto err_release;
959 	}
960 
961 	/*
962 	 * The RX DMA channel is used bidirectionally:  It either reads the
963 	 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
964 	 * precalculated value to the CS register to clear the RX FIFO.
965 	 */
966 	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
967 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
968 	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
969 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
970 
971 	ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
972 	if (ret)
973 		goto err_config;
974 
975 	bs->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
976 					   bs->clear_rx_cs,
977 					   sizeof(bs->clear_rx_cs),
978 					   DMA_TO_DEVICE);
979 	if (dma_mapping_error(ctlr->dma_rx->device->dev, bs->clear_rx_addr)) {
980 		dev_err(dev, "cannot map clear_rx_cs - not using DMA mode\n");
981 		bs->clear_rx_addr = 0;
982 		goto err_release;
983 	}
984 
985 	for (i = 0; i < BCM2835_SPI_NUM_CS; i++) {
986 		bs->clear_rx_desc[i] = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
987 					   bs->clear_rx_addr + i * sizeof(u32),
988 					   sizeof(u32), 0,
989 					   DMA_MEM_TO_DEV, 0);
990 		if (!bs->clear_rx_desc[i]) {
991 			dev_err(dev, "cannot prepare clear_rx_desc - not using DMA mode\n");
992 			goto err_release;
993 		}
994 
995 		ret = dmaengine_desc_set_reuse(bs->clear_rx_desc[i]);
996 		if (ret) {
997 			dev_err(dev, "cannot reuse clear_rx_desc - not using DMA mode\n");
998 			goto err_release;
999 		}
1000 	}
1001 
1002 	/* all went well, so set can_dma */
1003 	ctlr->can_dma = bcm2835_spi_can_dma;
1004 
1005 	return 0;
1006 
1007 err_config:
1008 	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
1009 		ret);
1010 err_release:
1011 	bcm2835_dma_release(ctlr, bs);
1012 err:
1013 	/*
1014 	 * Only report error for deferred probing, otherwise fall back to
1015 	 * interrupt mode
1016 	 */
1017 	if (ret != -EPROBE_DEFER)
1018 		ret = 0;
1019 
1020 	return ret;
1021 }
1022 
1023 static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
1024 					 struct spi_device *spi,
1025 					 struct spi_transfer *tfr,
1026 					 u32 cs)
1027 {
1028 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1029 	unsigned long timeout;
1030 
1031 	/* update usage statistics */
1032 	bs->count_transfer_polling++;
1033 
1034 	/* enable HW block without interrupts */
1035 	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1036 
1037 	/* fill in the fifo before timeout calculations
1038 	 * if we are interrupted here, then the data is
1039 	 * getting transferred by the HW while we are interrupted
1040 	 */
1041 	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1042 
1043 	/* set the timeout to at least 2 jiffies */
1044 	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1045 
1046 	/* loop until finished the transfer */
1047 	while (bs->rx_len) {
1048 		/* fill in tx fifo with remaining data */
1049 		bcm2835_wr_fifo(bs);
1050 
1051 		/* read from fifo as much as possible */
1052 		bcm2835_rd_fifo(bs);
1053 
1054 		/* if there is still data pending to read
1055 		 * then check the timeout
1056 		 */
1057 		if (bs->rx_len && time_after(jiffies, timeout)) {
1058 			dev_dbg_ratelimited(&spi->dev,
1059 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1060 					    jiffies - timeout,
1061 					    bs->tx_len, bs->rx_len);
1062 			/* fall back to interrupt mode */
1063 
1064 			/* update usage statistics */
1065 			bs->count_transfer_irq_after_polling++;
1066 
1067 			return bcm2835_spi_transfer_one_irq(ctlr, spi,
1068 							    tfr, cs, false);
1069 		}
1070 	}
1071 
1072 	/* Transfer complete - reset SPI HW */
1073 	bcm2835_spi_reset_hw(ctlr);
1074 	/* and return without waiting for completion */
1075 	return 0;
1076 }
1077 
1078 static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1079 				    struct spi_device *spi,
1080 				    struct spi_transfer *tfr)
1081 {
1082 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1083 	unsigned long spi_hz, clk_hz, cdiv, spi_used_hz;
1084 	unsigned long hz_per_byte, byte_limit;
1085 	u32 cs = bs->prepare_cs[spi->chip_select];
1086 
1087 	/* set clock */
1088 	spi_hz = tfr->speed_hz;
1089 	clk_hz = clk_get_rate(bs->clk);
1090 
1091 	if (spi_hz >= clk_hz / 2) {
1092 		cdiv = 2; /* clk_hz/2 is the fastest we can go */
1093 	} else if (spi_hz) {
1094 		/* CDIV must be a multiple of two */
1095 		cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
1096 		cdiv += (cdiv % 2);
1097 
1098 		if (cdiv >= 65536)
1099 			cdiv = 0; /* 0 is the slowest we can go */
1100 	} else {
1101 		cdiv = 0; /* 0 is the slowest we can go */
1102 	}
1103 	spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
1104 	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1105 
1106 	/* handle all the 3-wire mode */
1107 	if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1108 		cs |= BCM2835_SPI_CS_REN;
1109 
1110 	/* set transmit buffers and length */
1111 	bs->tx_buf = tfr->tx_buf;
1112 	bs->rx_buf = tfr->rx_buf;
1113 	bs->tx_len = tfr->len;
1114 	bs->rx_len = tfr->len;
1115 
1116 	/* Calculate the estimated time in us the transfer runs.  Note that
1117 	 * there is 1 idle clocks cycles after each byte getting transferred
1118 	 * so we have 9 cycles/byte.  This is used to find the number of Hz
1119 	 * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
1120 	 * per 300,000 Hz of bus clock.
1121 	 */
1122 	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1123 	byte_limit = hz_per_byte ? spi_used_hz / hz_per_byte : 1;
1124 
1125 	/* run in polling mode for short transfers */
1126 	if (tfr->len < byte_limit)
1127 		return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1128 
1129 	/* run in dma mode if conditions are right
1130 	 * Note that unlike poll or interrupt mode DMA mode does not have
1131 	 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1132 	 */
1133 	if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1134 		return bcm2835_spi_transfer_one_dma(ctlr, spi, tfr, cs);
1135 
1136 	/* run in interrupt-mode */
1137 	return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1138 }
1139 
1140 static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1141 				       struct spi_message *msg)
1142 {
1143 	struct spi_device *spi = msg->spi;
1144 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1145 	int ret;
1146 
1147 	if (ctlr->can_dma) {
1148 		/*
1149 		 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1150 		 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1151 		 * aligned) if the limit is exceeded.
1152 		 */
1153 		ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
1154 						  GFP_KERNEL | GFP_DMA);
1155 		if (ret)
1156 			return ret;
1157 	}
1158 
1159 	/*
1160 	 * Set up clock polarity before spi_transfer_one_message() asserts
1161 	 * chip select to avoid a gratuitous clock signal edge.
1162 	 */
1163 	bcm2835_wr(bs, BCM2835_SPI_CS, bs->prepare_cs[spi->chip_select]);
1164 
1165 	return 0;
1166 }
1167 
1168 static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1169 				   struct spi_message *msg)
1170 {
1171 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1172 
1173 	/* if an error occurred and we have an active dma, then terminate */
1174 	dmaengine_terminate_sync(ctlr->dma_tx);
1175 	bs->tx_dma_active = false;
1176 	dmaengine_terminate_sync(ctlr->dma_rx);
1177 	bs->rx_dma_active = false;
1178 	bcm2835_spi_undo_prologue(bs);
1179 
1180 	/* and reset */
1181 	bcm2835_spi_reset_hw(ctlr);
1182 }
1183 
1184 static int chip_match_name(struct gpio_chip *chip, void *data)
1185 {
1186 	return !strcmp(chip->label, data);
1187 }
1188 
1189 static int bcm2835_spi_setup(struct spi_device *spi)
1190 {
1191 	struct spi_controller *ctlr = spi->controller;
1192 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1193 	struct gpio_chip *chip;
1194 	enum gpio_lookup_flags lflags;
1195 	u32 cs;
1196 
1197 	/*
1198 	 * Precalculate SPI slave's CS register value for ->prepare_message():
1199 	 * The driver always uses software-controlled GPIO chip select, hence
1200 	 * set the hardware-controlled native chip select to an invalid value
1201 	 * to prevent it from interfering.
1202 	 */
1203 	cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1204 	if (spi->mode & SPI_CPOL)
1205 		cs |= BCM2835_SPI_CS_CPOL;
1206 	if (spi->mode & SPI_CPHA)
1207 		cs |= BCM2835_SPI_CS_CPHA;
1208 	bs->prepare_cs[spi->chip_select] = cs;
1209 
1210 	/*
1211 	 * Precalculate SPI slave's CS register value to clear RX FIFO
1212 	 * in case of a TX-only DMA transfer.
1213 	 */
1214 	if (ctlr->dma_rx) {
1215 		bs->clear_rx_cs[spi->chip_select] = cs |
1216 						    BCM2835_SPI_CS_TA |
1217 						    BCM2835_SPI_CS_DMAEN |
1218 						    BCM2835_SPI_CS_CLEAR_RX;
1219 		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1220 					   bs->clear_rx_addr,
1221 					   sizeof(bs->clear_rx_cs),
1222 					   DMA_TO_DEVICE);
1223 	}
1224 
1225 	/*
1226 	 * sanity checking the native-chipselects
1227 	 */
1228 	if (spi->mode & SPI_NO_CS)
1229 		return 0;
1230 	/*
1231 	 * The SPI core has successfully requested the CS GPIO line from the
1232 	 * device tree, so we are done.
1233 	 */
1234 	if (spi->cs_gpiod)
1235 		return 0;
1236 	if (spi->chip_select > 1) {
1237 		/* error in the case of native CS requested with CS > 1
1238 		 * officially there is a CS2, but it is not documented
1239 		 * which GPIO is connected with that...
1240 		 */
1241 		dev_err(&spi->dev,
1242 			"setup: only two native chip-selects are supported\n");
1243 		return -EINVAL;
1244 	}
1245 
1246 	/*
1247 	 * Translate native CS to GPIO
1248 	 *
1249 	 * FIXME: poking around in the gpiolib internals like this is
1250 	 * not very good practice. Find a way to locate the real problem
1251 	 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
1252 	 * sometimes not assigned correctly? Erroneous device trees?
1253 	 */
1254 
1255 	/* get the gpio chip for the base */
1256 	chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
1257 	if (!chip)
1258 		return 0;
1259 
1260 	/*
1261 	 * Retrieve the corresponding GPIO line used for CS.
1262 	 * The inversion semantics will be handled by the GPIO core
1263 	 * code, so we pass GPIOD_OUT_LOW for "unasserted" and
1264 	 * the correct flag for inversion semantics. The SPI_CS_HIGH
1265 	 * on spi->mode cannot be checked for polarity in this case
1266 	 * as the flag use_gpio_descriptors enforces SPI_CS_HIGH.
1267 	 */
1268 	if (of_property_read_bool(spi->dev.of_node, "spi-cs-high"))
1269 		lflags = GPIO_ACTIVE_HIGH;
1270 	else
1271 		lflags = GPIO_ACTIVE_LOW;
1272 	spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select,
1273 						  DRV_NAME,
1274 						  lflags,
1275 						  GPIOD_OUT_LOW);
1276 	if (IS_ERR(spi->cs_gpiod))
1277 		return PTR_ERR(spi->cs_gpiod);
1278 
1279 	/* and set up the "mode" and level */
1280 	dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1281 		 spi->chip_select);
1282 
1283 	return 0;
1284 }
1285 
1286 static int bcm2835_spi_probe(struct platform_device *pdev)
1287 {
1288 	struct spi_controller *ctlr;
1289 	struct bcm2835_spi *bs;
1290 	int err;
1291 
1292 	ctlr = spi_alloc_master(&pdev->dev, ALIGN(sizeof(*bs),
1293 						  dma_get_cache_alignment()));
1294 	if (!ctlr)
1295 		return -ENOMEM;
1296 
1297 	platform_set_drvdata(pdev, ctlr);
1298 
1299 	ctlr->use_gpio_descriptors = true;
1300 	ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1301 	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1302 	ctlr->num_chipselect = BCM2835_SPI_NUM_CS;
1303 	ctlr->setup = bcm2835_spi_setup;
1304 	ctlr->transfer_one = bcm2835_spi_transfer_one;
1305 	ctlr->handle_err = bcm2835_spi_handle_err;
1306 	ctlr->prepare_message = bcm2835_spi_prepare_message;
1307 	ctlr->dev.of_node = pdev->dev.of_node;
1308 
1309 	bs = spi_controller_get_devdata(ctlr);
1310 
1311 	bs->regs = devm_platform_ioremap_resource(pdev, 0);
1312 	if (IS_ERR(bs->regs)) {
1313 		err = PTR_ERR(bs->regs);
1314 		goto out_controller_put;
1315 	}
1316 
1317 	bs->clk = devm_clk_get(&pdev->dev, NULL);
1318 	if (IS_ERR(bs->clk)) {
1319 		err = PTR_ERR(bs->clk);
1320 		if (err == -EPROBE_DEFER)
1321 			dev_dbg(&pdev->dev, "could not get clk: %d\n", err);
1322 		else
1323 			dev_err(&pdev->dev, "could not get clk: %d\n", err);
1324 		goto out_controller_put;
1325 	}
1326 
1327 	bs->irq = platform_get_irq(pdev, 0);
1328 	if (bs->irq <= 0) {
1329 		err = bs->irq ? bs->irq : -ENODEV;
1330 		goto out_controller_put;
1331 	}
1332 
1333 	clk_prepare_enable(bs->clk);
1334 
1335 	err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1336 	if (err)
1337 		goto out_clk_disable;
1338 
1339 	/* initialise the hardware with the default polarities */
1340 	bcm2835_wr(bs, BCM2835_SPI_CS,
1341 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1342 
1343 	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
1344 			       dev_name(&pdev->dev), ctlr);
1345 	if (err) {
1346 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1347 		goto out_dma_release;
1348 	}
1349 
1350 	err = devm_spi_register_controller(&pdev->dev, ctlr);
1351 	if (err) {
1352 		dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1353 			err);
1354 		goto out_dma_release;
1355 	}
1356 
1357 	bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1358 
1359 	return 0;
1360 
1361 out_dma_release:
1362 	bcm2835_dma_release(ctlr, bs);
1363 out_clk_disable:
1364 	clk_disable_unprepare(bs->clk);
1365 out_controller_put:
1366 	spi_controller_put(ctlr);
1367 	return err;
1368 }
1369 
1370 static int bcm2835_spi_remove(struct platform_device *pdev)
1371 {
1372 	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1373 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1374 
1375 	bcm2835_debugfs_remove(bs);
1376 
1377 	/* Clear FIFOs, and disable the HW block */
1378 	bcm2835_wr(bs, BCM2835_SPI_CS,
1379 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1380 
1381 	clk_disable_unprepare(bs->clk);
1382 
1383 	bcm2835_dma_release(ctlr, bs);
1384 
1385 	return 0;
1386 }
1387 
1388 static const struct of_device_id bcm2835_spi_match[] = {
1389 	{ .compatible = "brcm,bcm2835-spi", },
1390 	{}
1391 };
1392 MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1393 
1394 static struct platform_driver bcm2835_spi_driver = {
1395 	.driver		= {
1396 		.name		= DRV_NAME,
1397 		.of_match_table	= bcm2835_spi_match,
1398 	},
1399 	.probe		= bcm2835_spi_probe,
1400 	.remove		= bcm2835_spi_remove,
1401 };
1402 module_platform_driver(bcm2835_spi_driver);
1403 
1404 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1405 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1406 MODULE_LICENSE("GPL");
1407