xref: /openbmc/linux/drivers/spi/spi-bcm2835.c (revision f66501dc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Broadcom BCM2835 SPI Controllers
4  *
5  * Copyright (C) 2012 Chris Boot
6  * Copyright (C) 2013 Stephen Warren
7  * Copyright (C) 2015 Martin Sperl
8  *
9  * This driver is inspired by:
10  * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11  * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_device.h>
27 #include <linux/of_gpio.h>
28 #include <linux/of_irq.h>
29 #include <linux/spi/spi.h>
30 
31 /* SPI register offsets */
32 #define BCM2835_SPI_CS			0x00
33 #define BCM2835_SPI_FIFO		0x04
34 #define BCM2835_SPI_CLK			0x08
35 #define BCM2835_SPI_DLEN		0x0c
36 #define BCM2835_SPI_LTOH		0x10
37 #define BCM2835_SPI_DC			0x14
38 
39 /* Bitfields in CS */
40 #define BCM2835_SPI_CS_LEN_LONG		0x02000000
41 #define BCM2835_SPI_CS_DMA_LEN		0x01000000
42 #define BCM2835_SPI_CS_CSPOL2		0x00800000
43 #define BCM2835_SPI_CS_CSPOL1		0x00400000
44 #define BCM2835_SPI_CS_CSPOL0		0x00200000
45 #define BCM2835_SPI_CS_RXF		0x00100000
46 #define BCM2835_SPI_CS_RXR		0x00080000
47 #define BCM2835_SPI_CS_TXD		0x00040000
48 #define BCM2835_SPI_CS_RXD		0x00020000
49 #define BCM2835_SPI_CS_DONE		0x00010000
50 #define BCM2835_SPI_CS_LEN		0x00002000
51 #define BCM2835_SPI_CS_REN		0x00001000
52 #define BCM2835_SPI_CS_ADCS		0x00000800
53 #define BCM2835_SPI_CS_INTR		0x00000400
54 #define BCM2835_SPI_CS_INTD		0x00000200
55 #define BCM2835_SPI_CS_DMAEN		0x00000100
56 #define BCM2835_SPI_CS_TA		0x00000080
57 #define BCM2835_SPI_CS_CSPOL		0x00000040
58 #define BCM2835_SPI_CS_CLEAR_RX		0x00000020
59 #define BCM2835_SPI_CS_CLEAR_TX		0x00000010
60 #define BCM2835_SPI_CS_CPOL		0x00000008
61 #define BCM2835_SPI_CS_CPHA		0x00000004
62 #define BCM2835_SPI_CS_CS_10		0x00000002
63 #define BCM2835_SPI_CS_CS_01		0x00000001
64 
65 #define BCM2835_SPI_FIFO_SIZE		64
66 #define BCM2835_SPI_FIFO_SIZE_3_4	48
67 #define BCM2835_SPI_POLLING_LIMIT_US	30
68 #define BCM2835_SPI_POLLING_JIFFIES	2
69 #define BCM2835_SPI_DMA_MIN_LENGTH	96
70 #define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
71 				| SPI_NO_CS | SPI_3WIRE)
72 
73 #define DRV_NAME	"spi-bcm2835"
74 
75 /**
76  * struct bcm2835_spi - BCM2835 SPI controller
77  * @regs: base address of register map
78  * @clk: core clock, divided to calculate serial clock
79  * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
80  * @tfr: SPI transfer currently processed
81  * @tx_buf: pointer whence next transmitted byte is read
82  * @rx_buf: pointer where next received byte is written
83  * @tx_len: remaining bytes to transmit
84  * @rx_len: remaining bytes to receive
85  * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
86  *	length is not a multiple of 4 (to overcome hardware limitation)
87  * @rx_prologue: bytes received without DMA if first RX sglist entry's
88  *	length is not a multiple of 4 (to overcome hardware limitation)
89  * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
90  * @dma_pending: whether a DMA transfer is in progress
91  */
92 struct bcm2835_spi {
93 	void __iomem *regs;
94 	struct clk *clk;
95 	int irq;
96 	struct spi_transfer *tfr;
97 	const u8 *tx_buf;
98 	u8 *rx_buf;
99 	int tx_len;
100 	int rx_len;
101 	int tx_prologue;
102 	int rx_prologue;
103 	unsigned int tx_spillover;
104 	unsigned int dma_pending;
105 };
106 
107 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg)
108 {
109 	return readl(bs->regs + reg);
110 }
111 
112 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val)
113 {
114 	writel(val, bs->regs + reg);
115 }
116 
117 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
118 {
119 	u8 byte;
120 
121 	while ((bs->rx_len) &&
122 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
123 		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
124 		if (bs->rx_buf)
125 			*bs->rx_buf++ = byte;
126 		bs->rx_len--;
127 	}
128 }
129 
130 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
131 {
132 	u8 byte;
133 
134 	while ((bs->tx_len) &&
135 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
136 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
137 		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
138 		bs->tx_len--;
139 	}
140 }
141 
142 /**
143  * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
144  * @bs: BCM2835 SPI controller
145  * @count: bytes to read from RX FIFO
146  *
147  * The caller must ensure that @bs->rx_len is greater than or equal to @count,
148  * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
149  * in the CS register is set (such that a read from the FIFO register receives
150  * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
151  */
152 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
153 {
154 	u32 val;
155 	int len;
156 
157 	bs->rx_len -= count;
158 
159 	while (count > 0) {
160 		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
161 		len = min(count, 4);
162 		memcpy(bs->rx_buf, &val, len);
163 		bs->rx_buf += len;
164 		count -= 4;
165 	}
166 }
167 
168 /**
169  * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
170  * @bs: BCM2835 SPI controller
171  * @count: bytes to write to TX FIFO
172  *
173  * The caller must ensure that @bs->tx_len is greater than or equal to @count,
174  * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
175  * in the CS register is set (such that a write to the FIFO register transmits
176  * 32-bit instead of just 8-bit).
177  */
178 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
179 {
180 	u32 val;
181 	int len;
182 
183 	bs->tx_len -= count;
184 
185 	while (count > 0) {
186 		if (bs->tx_buf) {
187 			len = min(count, 4);
188 			memcpy(&val, bs->tx_buf, len);
189 			bs->tx_buf += len;
190 		} else {
191 			val = 0;
192 		}
193 		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
194 		count -= 4;
195 	}
196 }
197 
198 /**
199  * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
200  * @bs: BCM2835 SPI controller
201  *
202  * The caller must ensure that the RX FIFO can accommodate as many bytes
203  * as have been written to the TX FIFO:  Transmission is halted once the
204  * RX FIFO is full, causing this function to spin forever.
205  */
206 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
207 {
208 	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
209 		cpu_relax();
210 }
211 
212 /**
213  * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
214  * @bs: BCM2835 SPI controller
215  * @count: bytes available for reading in RX FIFO
216  */
217 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
218 {
219 	u8 val;
220 
221 	count = min(count, bs->rx_len);
222 	bs->rx_len -= count;
223 
224 	while (count) {
225 		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
226 		if (bs->rx_buf)
227 			*bs->rx_buf++ = val;
228 		count--;
229 	}
230 }
231 
232 /**
233  * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
234  * @bs: BCM2835 SPI controller
235  * @count: bytes available for writing in TX FIFO
236  */
237 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
238 {
239 	u8 val;
240 
241 	count = min(count, bs->tx_len);
242 	bs->tx_len -= count;
243 
244 	while (count) {
245 		val = bs->tx_buf ? *bs->tx_buf++ : 0;
246 		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
247 		count--;
248 	}
249 }
250 
251 static void bcm2835_spi_reset_hw(struct spi_master *master)
252 {
253 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
254 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
255 
256 	/* Disable SPI interrupts and transfer */
257 	cs &= ~(BCM2835_SPI_CS_INTR |
258 		BCM2835_SPI_CS_INTD |
259 		BCM2835_SPI_CS_DMAEN |
260 		BCM2835_SPI_CS_TA);
261 	/* and reset RX/TX FIFOS */
262 	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
263 
264 	/* and reset the SPI_HW */
265 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
266 	/* as well as DLEN */
267 	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
268 }
269 
270 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
271 {
272 	struct spi_master *master = dev_id;
273 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
274 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
275 
276 	/*
277 	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
278 	 * or if RXR is set (RX FIFO >= ¾ full).
279 	 */
280 	if (cs & BCM2835_SPI_CS_RXF)
281 		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
282 	else if (cs & BCM2835_SPI_CS_RXR)
283 		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
284 
285 	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
286 		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
287 
288 	/* Read as many bytes as possible from FIFO */
289 	bcm2835_rd_fifo(bs);
290 	/* Write as many bytes as possible to FIFO */
291 	bcm2835_wr_fifo(bs);
292 
293 	if (!bs->rx_len) {
294 		/* Transfer complete - reset SPI HW */
295 		bcm2835_spi_reset_hw(master);
296 		/* wake up the framework */
297 		complete(&master->xfer_completion);
298 	}
299 
300 	return IRQ_HANDLED;
301 }
302 
303 static int bcm2835_spi_transfer_one_irq(struct spi_master *master,
304 					struct spi_device *spi,
305 					struct spi_transfer *tfr,
306 					u32 cs, bool fifo_empty)
307 {
308 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
309 
310 	/*
311 	 * Enable HW block, but with interrupts still disabled.
312 	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
313 	 */
314 	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
315 
316 	/* fill TX FIFO as much as possible */
317 	if (fifo_empty)
318 		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
319 	bcm2835_wr_fifo(bs);
320 
321 	/* enable interrupts */
322 	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
323 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
324 
325 	/* signal that we need to wait for completion */
326 	return 1;
327 }
328 
329 /**
330  * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
331  * @master: SPI master
332  * @tfr: SPI transfer
333  * @bs: BCM2835 SPI controller
334  * @cs: CS register
335  *
336  * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
337  * Only the final write access is permitted to transmit less than 4 bytes, the
338  * SPI controller deduces its intended size from the DLEN register.
339  *
340  * If a TX or RX sglist contains multiple entries, one per page, and the first
341  * entry starts in the middle of a page, that first entry's length may not be
342  * a multiple of 4.  Subsequent entries are fine because they span an entire
343  * page, hence do have a length that's a multiple of 4.
344  *
345  * This cannot happen with kmalloc'ed buffers (which is what most clients use)
346  * because they are contiguous in physical memory and therefore not split on
347  * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
348  * buffers.
349  *
350  * The DMA engine is incapable of combining sglist entries into a continuous
351  * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
352  * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
353  * entry is rounded up by throwing away received bytes.
354  *
355  * Overcome this limitation by transferring the first few bytes without DMA:
356  * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
357  * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
358  * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
359  * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
360  *
361  * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
362  * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
363  * Caution, the additional 4 bytes spill over to the second TX sglist entry
364  * if the length of the first is *exactly* 1.
365  *
366  * At most 6 bytes are written and at most 3 bytes read.  Do we know the
367  * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
368  *
369  * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
370  * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
371  * the width but also garbles the FIFO's contents.  The prologue must therefore
372  * be transmitted in 32-bit width to ensure that the following DMA transfer can
373  * pick up the residue in the RX FIFO in ungarbled form.
374  */
375 static void bcm2835_spi_transfer_prologue(struct spi_master *master,
376 					  struct spi_transfer *tfr,
377 					  struct bcm2835_spi *bs,
378 					  u32 cs)
379 {
380 	int tx_remaining;
381 
382 	bs->tfr		 = tfr;
383 	bs->tx_prologue  = 0;
384 	bs->rx_prologue  = 0;
385 	bs->tx_spillover = false;
386 
387 	if (!sg_is_last(&tfr->tx_sg.sgl[0]))
388 		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
389 
390 	if (!sg_is_last(&tfr->rx_sg.sgl[0])) {
391 		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
392 
393 		if (bs->rx_prologue > bs->tx_prologue) {
394 			if (sg_is_last(&tfr->tx_sg.sgl[0])) {
395 				bs->tx_prologue  = bs->rx_prologue;
396 			} else {
397 				bs->tx_prologue += 4;
398 				bs->tx_spillover =
399 					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
400 			}
401 		}
402 	}
403 
404 	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
405 	if (!bs->tx_prologue)
406 		return;
407 
408 	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
409 	if (bs->rx_prologue) {
410 		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
411 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
412 						  | BCM2835_SPI_CS_DMAEN);
413 		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
414 		bcm2835_wait_tx_fifo_empty(bs);
415 		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
416 		bcm2835_spi_reset_hw(master);
417 
418 		dma_sync_single_for_device(master->dma_rx->device->dev,
419 					   sg_dma_address(&tfr->rx_sg.sgl[0]),
420 					   bs->rx_prologue, DMA_FROM_DEVICE);
421 
422 		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
423 		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
424 	}
425 
426 	/*
427 	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
428 	 * Also adjust second entry if prologue spills over to it.
429 	 */
430 	tx_remaining = bs->tx_prologue - bs->rx_prologue;
431 	if (tx_remaining) {
432 		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
433 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
434 						  | BCM2835_SPI_CS_DMAEN);
435 		bcm2835_wr_fifo_count(bs, tx_remaining);
436 		bcm2835_wait_tx_fifo_empty(bs);
437 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX);
438 	}
439 
440 	if (likely(!bs->tx_spillover)) {
441 		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
442 		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
443 	} else {
444 		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
445 		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
446 		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
447 	}
448 }
449 
450 /**
451  * bcm2835_spi_undo_prologue() - reconstruct original sglist state
452  * @bs: BCM2835 SPI controller
453  *
454  * Undo changes which were made to an SPI transfer's sglist when transmitting
455  * the prologue.  This is necessary to ensure the same memory ranges are
456  * unmapped that were originally mapped.
457  */
458 static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
459 {
460 	struct spi_transfer *tfr = bs->tfr;
461 
462 	if (!bs->tx_prologue)
463 		return;
464 
465 	if (bs->rx_prologue) {
466 		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
467 		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
468 	}
469 
470 	if (likely(!bs->tx_spillover)) {
471 		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
472 		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
473 	} else {
474 		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
475 		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
476 		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
477 	}
478 }
479 
480 static void bcm2835_spi_dma_done(void *data)
481 {
482 	struct spi_master *master = data;
483 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
484 
485 	/* reset fifo and HW */
486 	bcm2835_spi_reset_hw(master);
487 
488 	/* and terminate tx-dma as we do not have an irq for it
489 	 * because when the rx dma will terminate and this callback
490 	 * is called the tx-dma must have finished - can't get to this
491 	 * situation otherwise...
492 	 */
493 	if (cmpxchg(&bs->dma_pending, true, false)) {
494 		dmaengine_terminate_async(master->dma_tx);
495 		bcm2835_spi_undo_prologue(bs);
496 	}
497 
498 	/* and mark as completed */;
499 	complete(&master->xfer_completion);
500 }
501 
502 static int bcm2835_spi_prepare_sg(struct spi_master *master,
503 				  struct spi_transfer *tfr,
504 				  bool is_tx)
505 {
506 	struct dma_chan *chan;
507 	struct scatterlist *sgl;
508 	unsigned int nents;
509 	enum dma_transfer_direction dir;
510 	unsigned long flags;
511 
512 	struct dma_async_tx_descriptor *desc;
513 	dma_cookie_t cookie;
514 
515 	if (is_tx) {
516 		dir   = DMA_MEM_TO_DEV;
517 		chan  = master->dma_tx;
518 		nents = tfr->tx_sg.nents;
519 		sgl   = tfr->tx_sg.sgl;
520 		flags = 0 /* no  tx interrupt */;
521 
522 	} else {
523 		dir   = DMA_DEV_TO_MEM;
524 		chan  = master->dma_rx;
525 		nents = tfr->rx_sg.nents;
526 		sgl   = tfr->rx_sg.sgl;
527 		flags = DMA_PREP_INTERRUPT;
528 	}
529 	/* prepare the channel */
530 	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
531 	if (!desc)
532 		return -EINVAL;
533 
534 	/* set callback for rx */
535 	if (!is_tx) {
536 		desc->callback = bcm2835_spi_dma_done;
537 		desc->callback_param = master;
538 	}
539 
540 	/* submit it to DMA-engine */
541 	cookie = dmaengine_submit(desc);
542 
543 	return dma_submit_error(cookie);
544 }
545 
546 static int bcm2835_spi_transfer_one_dma(struct spi_master *master,
547 					struct spi_device *spi,
548 					struct spi_transfer *tfr,
549 					u32 cs)
550 {
551 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
552 	int ret;
553 
554 	/*
555 	 * Transfer first few bytes without DMA if length of first TX or RX
556 	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
557 	 */
558 	bcm2835_spi_transfer_prologue(master, tfr, bs, cs);
559 
560 	/* setup tx-DMA */
561 	ret = bcm2835_spi_prepare_sg(master, tfr, true);
562 	if (ret)
563 		goto err_reset_hw;
564 
565 	/* start TX early */
566 	dma_async_issue_pending(master->dma_tx);
567 
568 	/* mark as dma pending */
569 	bs->dma_pending = 1;
570 
571 	/* set the DMA length */
572 	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
573 
574 	/* start the HW */
575 	bcm2835_wr(bs, BCM2835_SPI_CS,
576 		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
577 
578 	/* setup rx-DMA late - to run transfers while
579 	 * mapping of the rx buffers still takes place
580 	 * this saves 10us or more.
581 	 */
582 	ret = bcm2835_spi_prepare_sg(master, tfr, false);
583 	if (ret) {
584 		/* need to reset on errors */
585 		dmaengine_terminate_sync(master->dma_tx);
586 		bs->dma_pending = false;
587 		goto err_reset_hw;
588 	}
589 
590 	/* start rx dma late */
591 	dma_async_issue_pending(master->dma_rx);
592 
593 	/* wait for wakeup in framework */
594 	return 1;
595 
596 err_reset_hw:
597 	bcm2835_spi_reset_hw(master);
598 	bcm2835_spi_undo_prologue(bs);
599 	return ret;
600 }
601 
602 static bool bcm2835_spi_can_dma(struct spi_master *master,
603 				struct spi_device *spi,
604 				struct spi_transfer *tfr)
605 {
606 	/* we start DMA efforts only on bigger transfers */
607 	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
608 		return false;
609 
610 	/* return OK */
611 	return true;
612 }
613 
614 static void bcm2835_dma_release(struct spi_master *master)
615 {
616 	if (master->dma_tx) {
617 		dmaengine_terminate_sync(master->dma_tx);
618 		dma_release_channel(master->dma_tx);
619 		master->dma_tx = NULL;
620 	}
621 	if (master->dma_rx) {
622 		dmaengine_terminate_sync(master->dma_rx);
623 		dma_release_channel(master->dma_rx);
624 		master->dma_rx = NULL;
625 	}
626 }
627 
628 static void bcm2835_dma_init(struct spi_master *master, struct device *dev)
629 {
630 	struct dma_slave_config slave_config;
631 	const __be32 *addr;
632 	dma_addr_t dma_reg_base;
633 	int ret;
634 
635 	/* base address in dma-space */
636 	addr = of_get_address(master->dev.of_node, 0, NULL, NULL);
637 	if (!addr) {
638 		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
639 		goto err;
640 	}
641 	dma_reg_base = be32_to_cpup(addr);
642 
643 	/* get tx/rx dma */
644 	master->dma_tx = dma_request_slave_channel(dev, "tx");
645 	if (!master->dma_tx) {
646 		dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
647 		goto err;
648 	}
649 	master->dma_rx = dma_request_slave_channel(dev, "rx");
650 	if (!master->dma_rx) {
651 		dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
652 		goto err_release;
653 	}
654 
655 	/* configure DMAs */
656 	slave_config.direction = DMA_MEM_TO_DEV;
657 	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
658 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
659 
660 	ret = dmaengine_slave_config(master->dma_tx, &slave_config);
661 	if (ret)
662 		goto err_config;
663 
664 	slave_config.direction = DMA_DEV_TO_MEM;
665 	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
666 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
667 
668 	ret = dmaengine_slave_config(master->dma_rx, &slave_config);
669 	if (ret)
670 		goto err_config;
671 
672 	/* all went well, so set can_dma */
673 	master->can_dma = bcm2835_spi_can_dma;
674 	/* need to do TX AND RX DMA, so we need dummy buffers */
675 	master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
676 
677 	return;
678 
679 err_config:
680 	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
681 		ret);
682 err_release:
683 	bcm2835_dma_release(master);
684 err:
685 	return;
686 }
687 
688 static int bcm2835_spi_transfer_one_poll(struct spi_master *master,
689 					 struct spi_device *spi,
690 					 struct spi_transfer *tfr,
691 					 u32 cs,
692 					 unsigned long long xfer_time_us)
693 {
694 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
695 	unsigned long timeout;
696 
697 	/* enable HW block without interrupts */
698 	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
699 
700 	/* fill in the fifo before timeout calculations
701 	 * if we are interrupted here, then the data is
702 	 * getting transferred by the HW while we are interrupted
703 	 */
704 	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
705 
706 	/* set the timeout */
707 	timeout = jiffies + BCM2835_SPI_POLLING_JIFFIES;
708 
709 	/* loop until finished the transfer */
710 	while (bs->rx_len) {
711 		/* fill in tx fifo with remaining data */
712 		bcm2835_wr_fifo(bs);
713 
714 		/* read from fifo as much as possible */
715 		bcm2835_rd_fifo(bs);
716 
717 		/* if there is still data pending to read
718 		 * then check the timeout
719 		 */
720 		if (bs->rx_len && time_after(jiffies, timeout)) {
721 			dev_dbg_ratelimited(&spi->dev,
722 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
723 					    jiffies - timeout,
724 					    bs->tx_len, bs->rx_len);
725 			/* fall back to interrupt mode */
726 			return bcm2835_spi_transfer_one_irq(master, spi,
727 							    tfr, cs, false);
728 		}
729 	}
730 
731 	/* Transfer complete - reset SPI HW */
732 	bcm2835_spi_reset_hw(master);
733 	/* and return without waiting for completion */
734 	return 0;
735 }
736 
737 static int bcm2835_spi_transfer_one(struct spi_master *master,
738 				    struct spi_device *spi,
739 				    struct spi_transfer *tfr)
740 {
741 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
742 	unsigned long spi_hz, clk_hz, cdiv;
743 	unsigned long spi_used_hz;
744 	unsigned long long xfer_time_us;
745 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
746 
747 	/* set clock */
748 	spi_hz = tfr->speed_hz;
749 	clk_hz = clk_get_rate(bs->clk);
750 
751 	if (spi_hz >= clk_hz / 2) {
752 		cdiv = 2; /* clk_hz/2 is the fastest we can go */
753 	} else if (spi_hz) {
754 		/* CDIV must be a multiple of two */
755 		cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
756 		cdiv += (cdiv % 2);
757 
758 		if (cdiv >= 65536)
759 			cdiv = 0; /* 0 is the slowest we can go */
760 	} else {
761 		cdiv = 0; /* 0 is the slowest we can go */
762 	}
763 	spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
764 	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
765 
766 	/* handle all the 3-wire mode */
767 	if ((spi->mode & SPI_3WIRE) && (tfr->rx_buf))
768 		cs |= BCM2835_SPI_CS_REN;
769 	else
770 		cs &= ~BCM2835_SPI_CS_REN;
771 
772 	/*
773 	 * The driver always uses software-controlled GPIO Chip Select.
774 	 * Set the hardware-controlled native Chip Select to an invalid
775 	 * value to prevent it from interfering.
776 	 */
777 	cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
778 
779 	/* set transmit buffers and length */
780 	bs->tx_buf = tfr->tx_buf;
781 	bs->rx_buf = tfr->rx_buf;
782 	bs->tx_len = tfr->len;
783 	bs->rx_len = tfr->len;
784 
785 	/* calculate the estimated time in us the transfer runs */
786 	xfer_time_us = (unsigned long long)tfr->len
787 		* 9 /* clocks/byte - SPI-HW waits 1 clock after each byte */
788 		* 1000000;
789 	do_div(xfer_time_us, spi_used_hz);
790 
791 	/* for short requests run polling*/
792 	if (xfer_time_us <= BCM2835_SPI_POLLING_LIMIT_US)
793 		return bcm2835_spi_transfer_one_poll(master, spi, tfr,
794 						     cs, xfer_time_us);
795 
796 	/* run in dma mode if conditions are right */
797 	if (master->can_dma && bcm2835_spi_can_dma(master, spi, tfr))
798 		return bcm2835_spi_transfer_one_dma(master, spi, tfr, cs);
799 
800 	/* run in interrupt-mode */
801 	return bcm2835_spi_transfer_one_irq(master, spi, tfr, cs, true);
802 }
803 
804 static int bcm2835_spi_prepare_message(struct spi_master *master,
805 				       struct spi_message *msg)
806 {
807 	struct spi_device *spi = msg->spi;
808 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
809 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
810 	int ret;
811 
812 	/*
813 	 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by the SPI HW
814 	 * due to DLEN. Split up transfers (32-bit FIFO aligned) if the limit is
815 	 * exceeded.
816 	 */
817 	ret = spi_split_transfers_maxsize(master, msg, 65532,
818 					  GFP_KERNEL | GFP_DMA);
819 	if (ret)
820 		return ret;
821 
822 	cs &= ~(BCM2835_SPI_CS_CPOL | BCM2835_SPI_CS_CPHA);
823 
824 	if (spi->mode & SPI_CPOL)
825 		cs |= BCM2835_SPI_CS_CPOL;
826 	if (spi->mode & SPI_CPHA)
827 		cs |= BCM2835_SPI_CS_CPHA;
828 
829 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
830 
831 	return 0;
832 }
833 
834 static void bcm2835_spi_handle_err(struct spi_master *master,
835 				   struct spi_message *msg)
836 {
837 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
838 
839 	/* if an error occurred and we have an active dma, then terminate */
840 	if (cmpxchg(&bs->dma_pending, true, false)) {
841 		dmaengine_terminate_sync(master->dma_tx);
842 		dmaengine_terminate_sync(master->dma_rx);
843 		bcm2835_spi_undo_prologue(bs);
844 	}
845 	/* and reset */
846 	bcm2835_spi_reset_hw(master);
847 }
848 
849 static int chip_match_name(struct gpio_chip *chip, void *data)
850 {
851 	return !strcmp(chip->label, data);
852 }
853 
854 static int bcm2835_spi_setup(struct spi_device *spi)
855 {
856 	int err;
857 	struct gpio_chip *chip;
858 	/*
859 	 * sanity checking the native-chipselects
860 	 */
861 	if (spi->mode & SPI_NO_CS)
862 		return 0;
863 	if (gpio_is_valid(spi->cs_gpio))
864 		return 0;
865 	if (spi->chip_select > 1) {
866 		/* error in the case of native CS requested with CS > 1
867 		 * officially there is a CS2, but it is not documented
868 		 * which GPIO is connected with that...
869 		 */
870 		dev_err(&spi->dev,
871 			"setup: only two native chip-selects are supported\n");
872 		return -EINVAL;
873 	}
874 	/* now translate native cs to GPIO */
875 
876 	/* get the gpio chip for the base */
877 	chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
878 	if (!chip)
879 		return 0;
880 
881 	/* and calculate the real CS */
882 	spi->cs_gpio = chip->base + 8 - spi->chip_select;
883 
884 	/* and set up the "mode" and level */
885 	dev_info(&spi->dev, "setting up native-CS%i as GPIO %i\n",
886 		 spi->chip_select, spi->cs_gpio);
887 
888 	/* set up GPIO as output and pull to the correct level */
889 	err = gpio_direction_output(spi->cs_gpio,
890 				    (spi->mode & SPI_CS_HIGH) ? 0 : 1);
891 	if (err) {
892 		dev_err(&spi->dev,
893 			"could not set CS%i gpio %i as output: %i",
894 			spi->chip_select, spi->cs_gpio, err);
895 		return err;
896 	}
897 
898 	return 0;
899 }
900 
901 static int bcm2835_spi_probe(struct platform_device *pdev)
902 {
903 	struct spi_master *master;
904 	struct bcm2835_spi *bs;
905 	struct resource *res;
906 	int err;
907 
908 	master = spi_alloc_master(&pdev->dev, sizeof(*bs));
909 	if (!master) {
910 		dev_err(&pdev->dev, "spi_alloc_master() failed\n");
911 		return -ENOMEM;
912 	}
913 
914 	platform_set_drvdata(pdev, master);
915 
916 	master->mode_bits = BCM2835_SPI_MODE_BITS;
917 	master->bits_per_word_mask = SPI_BPW_MASK(8);
918 	master->num_chipselect = 3;
919 	master->setup = bcm2835_spi_setup;
920 	master->transfer_one = bcm2835_spi_transfer_one;
921 	master->handle_err = bcm2835_spi_handle_err;
922 	master->prepare_message = bcm2835_spi_prepare_message;
923 	master->dev.of_node = pdev->dev.of_node;
924 
925 	bs = spi_master_get_devdata(master);
926 
927 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
928 	bs->regs = devm_ioremap_resource(&pdev->dev, res);
929 	if (IS_ERR(bs->regs)) {
930 		err = PTR_ERR(bs->regs);
931 		goto out_master_put;
932 	}
933 
934 	bs->clk = devm_clk_get(&pdev->dev, NULL);
935 	if (IS_ERR(bs->clk)) {
936 		err = PTR_ERR(bs->clk);
937 		dev_err(&pdev->dev, "could not get clk: %d\n", err);
938 		goto out_master_put;
939 	}
940 
941 	bs->irq = platform_get_irq(pdev, 0);
942 	if (bs->irq <= 0) {
943 		dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
944 		err = bs->irq ? bs->irq : -ENODEV;
945 		goto out_master_put;
946 	}
947 
948 	clk_prepare_enable(bs->clk);
949 
950 	bcm2835_dma_init(master, &pdev->dev);
951 
952 	/* initialise the hardware with the default polarities */
953 	bcm2835_wr(bs, BCM2835_SPI_CS,
954 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
955 
956 	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
957 			       dev_name(&pdev->dev), master);
958 	if (err) {
959 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
960 		goto out_clk_disable;
961 	}
962 
963 	err = devm_spi_register_master(&pdev->dev, master);
964 	if (err) {
965 		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
966 		goto out_clk_disable;
967 	}
968 
969 	return 0;
970 
971 out_clk_disable:
972 	clk_disable_unprepare(bs->clk);
973 out_master_put:
974 	spi_master_put(master);
975 	return err;
976 }
977 
978 static int bcm2835_spi_remove(struct platform_device *pdev)
979 {
980 	struct spi_master *master = platform_get_drvdata(pdev);
981 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
982 
983 	/* Clear FIFOs, and disable the HW block */
984 	bcm2835_wr(bs, BCM2835_SPI_CS,
985 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
986 
987 	clk_disable_unprepare(bs->clk);
988 
989 	bcm2835_dma_release(master);
990 
991 	return 0;
992 }
993 
994 static const struct of_device_id bcm2835_spi_match[] = {
995 	{ .compatible = "brcm,bcm2835-spi", },
996 	{}
997 };
998 MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
999 
1000 static struct platform_driver bcm2835_spi_driver = {
1001 	.driver		= {
1002 		.name		= DRV_NAME,
1003 		.of_match_table	= bcm2835_spi_match,
1004 	},
1005 	.probe		= bcm2835_spi_probe,
1006 	.remove		= bcm2835_spi_remove,
1007 };
1008 module_platform_driver(bcm2835_spi_driver);
1009 
1010 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1011 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1012 MODULE_LICENSE("GPL");
1013