xref: /openbmc/linux/drivers/spi/spi-bcm2835.c (revision e6b58555558a1ea653e415fc45308964087f9053)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Broadcom BCM2835 SPI Controllers
4  *
5  * Copyright (C) 2012 Chris Boot
6  * Copyright (C) 2013 Stephen Warren
7  * Copyright (C) 2015 Martin Sperl
8  *
9  * This driver is inspired by:
10  * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11  * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/debugfs.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_device.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/gpio/machine.h> /* FIXME: using chip internals */
30 #include <linux/gpio/driver.h> /* FIXME: using chip internals */
31 #include <linux/of_irq.h>
32 #include <linux/spi/spi.h>
33 
34 /* SPI register offsets */
35 #define BCM2835_SPI_CS			0x00
36 #define BCM2835_SPI_FIFO		0x04
37 #define BCM2835_SPI_CLK			0x08
38 #define BCM2835_SPI_DLEN		0x0c
39 #define BCM2835_SPI_LTOH		0x10
40 #define BCM2835_SPI_DC			0x14
41 
42 /* Bitfields in CS */
43 #define BCM2835_SPI_CS_LEN_LONG		0x02000000
44 #define BCM2835_SPI_CS_DMA_LEN		0x01000000
45 #define BCM2835_SPI_CS_CSPOL2		0x00800000
46 #define BCM2835_SPI_CS_CSPOL1		0x00400000
47 #define BCM2835_SPI_CS_CSPOL0		0x00200000
48 #define BCM2835_SPI_CS_RXF		0x00100000
49 #define BCM2835_SPI_CS_RXR		0x00080000
50 #define BCM2835_SPI_CS_TXD		0x00040000
51 #define BCM2835_SPI_CS_RXD		0x00020000
52 #define BCM2835_SPI_CS_DONE		0x00010000
53 #define BCM2835_SPI_CS_LEN		0x00002000
54 #define BCM2835_SPI_CS_REN		0x00001000
55 #define BCM2835_SPI_CS_ADCS		0x00000800
56 #define BCM2835_SPI_CS_INTR		0x00000400
57 #define BCM2835_SPI_CS_INTD		0x00000200
58 #define BCM2835_SPI_CS_DMAEN		0x00000100
59 #define BCM2835_SPI_CS_TA		0x00000080
60 #define BCM2835_SPI_CS_CSPOL		0x00000040
61 #define BCM2835_SPI_CS_CLEAR_RX		0x00000020
62 #define BCM2835_SPI_CS_CLEAR_TX		0x00000010
63 #define BCM2835_SPI_CS_CPOL		0x00000008
64 #define BCM2835_SPI_CS_CPHA		0x00000004
65 #define BCM2835_SPI_CS_CS_10		0x00000002
66 #define BCM2835_SPI_CS_CS_01		0x00000001
67 
68 #define BCM2835_SPI_FIFO_SIZE		64
69 #define BCM2835_SPI_FIFO_SIZE_3_4	48
70 #define BCM2835_SPI_DMA_MIN_LENGTH	96
71 #define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
72 				| SPI_NO_CS | SPI_3WIRE)
73 
74 #define DRV_NAME	"spi-bcm2835"
75 
76 /* define polling limits */
77 static unsigned int polling_limit_us = 30;
78 module_param(polling_limit_us, uint, 0664);
79 MODULE_PARM_DESC(polling_limit_us,
80 		 "time in us to run a transfer in polling mode\n");
81 
82 /**
83  * struct bcm2835_spi - BCM2835 SPI controller
84  * @regs: base address of register map
85  * @clk: core clock, divided to calculate serial clock
86  * @clk_hz: core clock cached speed
87  * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
88  * @tfr: SPI transfer currently processed
89  * @ctlr: SPI controller reverse lookup
90  * @tx_buf: pointer whence next transmitted byte is read
91  * @rx_buf: pointer where next received byte is written
92  * @tx_len: remaining bytes to transmit
93  * @rx_len: remaining bytes to receive
94  * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
95  *	length is not a multiple of 4 (to overcome hardware limitation)
96  * @rx_prologue: bytes received without DMA if first RX sglist entry's
97  *	length is not a multiple of 4 (to overcome hardware limitation)
98  * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
99  * @debugfs_dir: the debugfs directory - neede to remove debugfs when
100  *      unloading the module
101  * @count_transfer_polling: count of how often polling mode is used
102  * @count_transfer_irq: count of how often interrupt mode is used
103  * @count_transfer_irq_after_polling: count of how often we fall back to
104  *      interrupt mode after starting in polling mode.
105  *      These are counted as well in @count_transfer_polling and
106  *      @count_transfer_irq
107  * @count_transfer_dma: count how often dma mode is used
108  * @slv: SPI slave currently selected
109  *	(used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
110  * @tx_dma_active: whether a TX DMA descriptor is in progress
111  * @rx_dma_active: whether a RX DMA descriptor is in progress
112  *	(used by bcm2835_spi_dma_tx_done() to handle a race)
113  * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
114  *	(cyclically copies from zero page to TX FIFO)
115  * @fill_tx_addr: bus address of zero page
116  */
117 struct bcm2835_spi {
118 	void __iomem *regs;
119 	struct clk *clk;
120 	unsigned long clk_hz;
121 	int irq;
122 	struct spi_transfer *tfr;
123 	struct spi_controller *ctlr;
124 	const u8 *tx_buf;
125 	u8 *rx_buf;
126 	int tx_len;
127 	int rx_len;
128 	int tx_prologue;
129 	int rx_prologue;
130 	unsigned int tx_spillover;
131 
132 	struct dentry *debugfs_dir;
133 	u64 count_transfer_polling;
134 	u64 count_transfer_irq;
135 	u64 count_transfer_irq_after_polling;
136 	u64 count_transfer_dma;
137 
138 	struct bcm2835_spidev *slv;
139 	unsigned int tx_dma_active;
140 	unsigned int rx_dma_active;
141 	struct dma_async_tx_descriptor *fill_tx_desc;
142 	dma_addr_t fill_tx_addr;
143 };
144 
145 /**
146  * struct bcm2835_spidev - BCM2835 SPI slave
147  * @prepare_cs: precalculated CS register value for ->prepare_message()
148  *	(uses slave-specific clock polarity and phase settings)
149  * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
150  *	(cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
151  * @clear_rx_addr: bus address of @clear_rx_cs
152  * @clear_rx_cs: precalculated CS register value to clear RX FIFO
153  *	(uses slave-specific clock polarity and phase settings)
154  */
155 struct bcm2835_spidev {
156 	u32 prepare_cs;
157 	struct dma_async_tx_descriptor *clear_rx_desc;
158 	dma_addr_t clear_rx_addr;
159 	u32 clear_rx_cs ____cacheline_aligned;
160 };
161 
162 #if defined(CONFIG_DEBUG_FS)
163 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
164 				   const char *dname)
165 {
166 	char name[64];
167 	struct dentry *dir;
168 
169 	/* get full name */
170 	snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
171 
172 	/* the base directory */
173 	dir = debugfs_create_dir(name, NULL);
174 	bs->debugfs_dir = dir;
175 
176 	/* the counters */
177 	debugfs_create_u64("count_transfer_polling", 0444, dir,
178 			   &bs->count_transfer_polling);
179 	debugfs_create_u64("count_transfer_irq", 0444, dir,
180 			   &bs->count_transfer_irq);
181 	debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
182 			   &bs->count_transfer_irq_after_polling);
183 	debugfs_create_u64("count_transfer_dma", 0444, dir,
184 			   &bs->count_transfer_dma);
185 }
186 
187 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
188 {
189 	debugfs_remove_recursive(bs->debugfs_dir);
190 	bs->debugfs_dir = NULL;
191 }
192 #else
193 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
194 				   const char *dname)
195 {
196 }
197 
198 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
199 {
200 }
201 #endif /* CONFIG_DEBUG_FS */
202 
203 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
204 {
205 	return readl(bs->regs + reg);
206 }
207 
208 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
209 {
210 	writel(val, bs->regs + reg);
211 }
212 
213 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
214 {
215 	u8 byte;
216 
217 	while ((bs->rx_len) &&
218 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
219 		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
220 		if (bs->rx_buf)
221 			*bs->rx_buf++ = byte;
222 		bs->rx_len--;
223 	}
224 }
225 
226 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
227 {
228 	u8 byte;
229 
230 	while ((bs->tx_len) &&
231 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
232 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
233 		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
234 		bs->tx_len--;
235 	}
236 }
237 
238 /**
239  * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
240  * @bs: BCM2835 SPI controller
241  * @count: bytes to read from RX FIFO
242  *
243  * The caller must ensure that @bs->rx_len is greater than or equal to @count,
244  * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
245  * in the CS register is set (such that a read from the FIFO register receives
246  * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
247  */
248 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
249 {
250 	u32 val;
251 	int len;
252 
253 	bs->rx_len -= count;
254 
255 	do {
256 		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
257 		len = min(count, 4);
258 		memcpy(bs->rx_buf, &val, len);
259 		bs->rx_buf += len;
260 		count -= 4;
261 	} while (count > 0);
262 }
263 
264 /**
265  * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
266  * @bs: BCM2835 SPI controller
267  * @count: bytes to write to TX FIFO
268  *
269  * The caller must ensure that @bs->tx_len is greater than or equal to @count,
270  * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
271  * in the CS register is set (such that a write to the FIFO register transmits
272  * 32-bit instead of just 8-bit).
273  */
274 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
275 {
276 	u32 val;
277 	int len;
278 
279 	bs->tx_len -= count;
280 
281 	do {
282 		if (bs->tx_buf) {
283 			len = min(count, 4);
284 			memcpy(&val, bs->tx_buf, len);
285 			bs->tx_buf += len;
286 		} else {
287 			val = 0;
288 		}
289 		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
290 		count -= 4;
291 	} while (count > 0);
292 }
293 
294 /**
295  * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
296  * @bs: BCM2835 SPI controller
297  *
298  * The caller must ensure that the RX FIFO can accommodate as many bytes
299  * as have been written to the TX FIFO:  Transmission is halted once the
300  * RX FIFO is full, causing this function to spin forever.
301  */
302 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
303 {
304 	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
305 		cpu_relax();
306 }
307 
308 /**
309  * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
310  * @bs: BCM2835 SPI controller
311  * @count: bytes available for reading in RX FIFO
312  */
313 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
314 {
315 	u8 val;
316 
317 	count = min(count, bs->rx_len);
318 	bs->rx_len -= count;
319 
320 	do {
321 		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
322 		if (bs->rx_buf)
323 			*bs->rx_buf++ = val;
324 	} while (--count);
325 }
326 
327 /**
328  * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
329  * @bs: BCM2835 SPI controller
330  * @count: bytes available for writing in TX FIFO
331  */
332 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
333 {
334 	u8 val;
335 
336 	count = min(count, bs->tx_len);
337 	bs->tx_len -= count;
338 
339 	do {
340 		val = bs->tx_buf ? *bs->tx_buf++ : 0;
341 		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
342 	} while (--count);
343 }
344 
345 static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
346 {
347 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
348 
349 	/* Disable SPI interrupts and transfer */
350 	cs &= ~(BCM2835_SPI_CS_INTR |
351 		BCM2835_SPI_CS_INTD |
352 		BCM2835_SPI_CS_DMAEN |
353 		BCM2835_SPI_CS_TA);
354 	/*
355 	 * Transmission sometimes breaks unless the DONE bit is written at the
356 	 * end of every transfer.  The spec says it's a RO bit.  Either the
357 	 * spec is wrong and the bit is actually of type RW1C, or it's a
358 	 * hardware erratum.
359 	 */
360 	cs |= BCM2835_SPI_CS_DONE;
361 	/* and reset RX/TX FIFOS */
362 	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
363 
364 	/* and reset the SPI_HW */
365 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
366 	/* as well as DLEN */
367 	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
368 }
369 
370 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
371 {
372 	struct bcm2835_spi *bs = dev_id;
373 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
374 
375 	/*
376 	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
377 	 * or if RXR is set (RX FIFO >= ¾ full).
378 	 */
379 	if (cs & BCM2835_SPI_CS_RXF)
380 		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
381 	else if (cs & BCM2835_SPI_CS_RXR)
382 		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
383 
384 	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
385 		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
386 
387 	/* Read as many bytes as possible from FIFO */
388 	bcm2835_rd_fifo(bs);
389 	/* Write as many bytes as possible to FIFO */
390 	bcm2835_wr_fifo(bs);
391 
392 	if (!bs->rx_len) {
393 		/* Transfer complete - reset SPI HW */
394 		bcm2835_spi_reset_hw(bs);
395 		/* wake up the framework */
396 		spi_finalize_current_transfer(bs->ctlr);
397 	}
398 
399 	return IRQ_HANDLED;
400 }
401 
402 static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
403 					struct spi_device *spi,
404 					struct spi_transfer *tfr,
405 					u32 cs, bool fifo_empty)
406 {
407 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
408 
409 	/* update usage statistics */
410 	bs->count_transfer_irq++;
411 
412 	/*
413 	 * Enable HW block, but with interrupts still disabled.
414 	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
415 	 */
416 	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
417 
418 	/* fill TX FIFO as much as possible */
419 	if (fifo_empty)
420 		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
421 	bcm2835_wr_fifo(bs);
422 
423 	/* enable interrupts */
424 	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
425 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
426 
427 	/* signal that we need to wait for completion */
428 	return 1;
429 }
430 
431 /**
432  * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
433  * @ctlr: SPI master controller
434  * @tfr: SPI transfer
435  * @bs: BCM2835 SPI controller
436  * @cs: CS register
437  *
438  * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
439  * Only the final write access is permitted to transmit less than 4 bytes, the
440  * SPI controller deduces its intended size from the DLEN register.
441  *
442  * If a TX or RX sglist contains multiple entries, one per page, and the first
443  * entry starts in the middle of a page, that first entry's length may not be
444  * a multiple of 4.  Subsequent entries are fine because they span an entire
445  * page, hence do have a length that's a multiple of 4.
446  *
447  * This cannot happen with kmalloc'ed buffers (which is what most clients use)
448  * because they are contiguous in physical memory and therefore not split on
449  * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
450  * buffers.
451  *
452  * The DMA engine is incapable of combining sglist entries into a continuous
453  * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
454  * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
455  * entry is rounded up by throwing away received bytes.
456  *
457  * Overcome this limitation by transferring the first few bytes without DMA:
458  * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
459  * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
460  * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
461  * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
462  *
463  * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
464  * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
465  * Caution, the additional 4 bytes spill over to the second TX sglist entry
466  * if the length of the first is *exactly* 1.
467  *
468  * At most 6 bytes are written and at most 3 bytes read.  Do we know the
469  * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
470  *
471  * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
472  * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
473  * the width but also garbles the FIFO's contents.  The prologue must therefore
474  * be transmitted in 32-bit width to ensure that the following DMA transfer can
475  * pick up the residue in the RX FIFO in ungarbled form.
476  */
477 static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
478 					  struct spi_transfer *tfr,
479 					  struct bcm2835_spi *bs,
480 					  u32 cs)
481 {
482 	int tx_remaining;
483 
484 	bs->tfr		 = tfr;
485 	bs->tx_prologue  = 0;
486 	bs->rx_prologue  = 0;
487 	bs->tx_spillover = false;
488 
489 	if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
490 		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
491 
492 	if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
493 		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
494 
495 		if (bs->rx_prologue > bs->tx_prologue) {
496 			if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
497 				bs->tx_prologue  = bs->rx_prologue;
498 			} else {
499 				bs->tx_prologue += 4;
500 				bs->tx_spillover =
501 					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
502 			}
503 		}
504 	}
505 
506 	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
507 	if (!bs->tx_prologue)
508 		return;
509 
510 	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
511 	if (bs->rx_prologue) {
512 		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
513 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
514 						  | BCM2835_SPI_CS_DMAEN);
515 		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
516 		bcm2835_wait_tx_fifo_empty(bs);
517 		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
518 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
519 						  | BCM2835_SPI_CS_CLEAR_TX
520 						  | BCM2835_SPI_CS_DONE);
521 
522 		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
523 					   sg_dma_address(&tfr->rx_sg.sgl[0]),
524 					   bs->rx_prologue, DMA_FROM_DEVICE);
525 
526 		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
527 		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
528 	}
529 
530 	if (!bs->tx_buf)
531 		return;
532 
533 	/*
534 	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
535 	 * Also adjust second entry if prologue spills over to it.
536 	 */
537 	tx_remaining = bs->tx_prologue - bs->rx_prologue;
538 	if (tx_remaining) {
539 		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
540 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
541 						  | BCM2835_SPI_CS_DMAEN);
542 		bcm2835_wr_fifo_count(bs, tx_remaining);
543 		bcm2835_wait_tx_fifo_empty(bs);
544 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
545 						  | BCM2835_SPI_CS_DONE);
546 	}
547 
548 	if (likely(!bs->tx_spillover)) {
549 		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
550 		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
551 	} else {
552 		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
553 		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
554 		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
555 	}
556 }
557 
558 /**
559  * bcm2835_spi_undo_prologue() - reconstruct original sglist state
560  * @bs: BCM2835 SPI controller
561  *
562  * Undo changes which were made to an SPI transfer's sglist when transmitting
563  * the prologue.  This is necessary to ensure the same memory ranges are
564  * unmapped that were originally mapped.
565  */
566 static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
567 {
568 	struct spi_transfer *tfr = bs->tfr;
569 
570 	if (!bs->tx_prologue)
571 		return;
572 
573 	if (bs->rx_prologue) {
574 		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
575 		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
576 	}
577 
578 	if (!bs->tx_buf)
579 		goto out;
580 
581 	if (likely(!bs->tx_spillover)) {
582 		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
583 		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
584 	} else {
585 		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
586 		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
587 		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
588 	}
589 out:
590 	bs->tx_prologue = 0;
591 }
592 
593 /**
594  * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
595  * @data: SPI master controller
596  *
597  * Used for bidirectional and RX-only transfers.
598  */
599 static void bcm2835_spi_dma_rx_done(void *data)
600 {
601 	struct spi_controller *ctlr = data;
602 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
603 
604 	/* terminate tx-dma as we do not have an irq for it
605 	 * because when the rx dma will terminate and this callback
606 	 * is called the tx-dma must have finished - can't get to this
607 	 * situation otherwise...
608 	 */
609 	dmaengine_terminate_async(ctlr->dma_tx);
610 	bs->tx_dma_active = false;
611 	bs->rx_dma_active = false;
612 	bcm2835_spi_undo_prologue(bs);
613 
614 	/* reset fifo and HW */
615 	bcm2835_spi_reset_hw(bs);
616 
617 	/* and mark as completed */;
618 	spi_finalize_current_transfer(ctlr);
619 }
620 
621 /**
622  * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
623  * @data: SPI master controller
624  *
625  * Used for TX-only transfers.
626  */
627 static void bcm2835_spi_dma_tx_done(void *data)
628 {
629 	struct spi_controller *ctlr = data;
630 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
631 
632 	/* busy-wait for TX FIFO to empty */
633 	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
634 		bcm2835_wr(bs, BCM2835_SPI_CS, bs->slv->clear_rx_cs);
635 
636 	bs->tx_dma_active = false;
637 	smp_wmb();
638 
639 	/*
640 	 * In case of a very short transfer, RX DMA may not have been
641 	 * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
642 	 * to terminate it immediately after issuing.
643 	 */
644 	if (cmpxchg(&bs->rx_dma_active, true, false))
645 		dmaengine_terminate_async(ctlr->dma_rx);
646 
647 	bcm2835_spi_undo_prologue(bs);
648 	bcm2835_spi_reset_hw(bs);
649 	spi_finalize_current_transfer(ctlr);
650 }
651 
652 /**
653  * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
654  * @ctlr: SPI master controller
655  * @tfr: SPI transfer
656  * @bs: BCM2835 SPI controller
657  * @slv: BCM2835 SPI slave
658  * @is_tx: whether to submit DMA descriptor for TX or RX sglist
659  *
660  * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
661  * Return 0 on success or a negative error number.
662  */
663 static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
664 				  struct spi_transfer *tfr,
665 				  struct bcm2835_spi *bs,
666 				  struct bcm2835_spidev *slv,
667 				  bool is_tx)
668 {
669 	struct dma_chan *chan;
670 	struct scatterlist *sgl;
671 	unsigned int nents;
672 	enum dma_transfer_direction dir;
673 	unsigned long flags;
674 
675 	struct dma_async_tx_descriptor *desc;
676 	dma_cookie_t cookie;
677 
678 	if (is_tx) {
679 		dir   = DMA_MEM_TO_DEV;
680 		chan  = ctlr->dma_tx;
681 		nents = tfr->tx_sg.nents;
682 		sgl   = tfr->tx_sg.sgl;
683 		flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
684 	} else {
685 		dir   = DMA_DEV_TO_MEM;
686 		chan  = ctlr->dma_rx;
687 		nents = tfr->rx_sg.nents;
688 		sgl   = tfr->rx_sg.sgl;
689 		flags = DMA_PREP_INTERRUPT;
690 	}
691 	/* prepare the channel */
692 	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
693 	if (!desc)
694 		return -EINVAL;
695 
696 	/*
697 	 * Completion is signaled by the RX channel for bidirectional and
698 	 * RX-only transfers; else by the TX channel for TX-only transfers.
699 	 */
700 	if (!is_tx) {
701 		desc->callback = bcm2835_spi_dma_rx_done;
702 		desc->callback_param = ctlr;
703 	} else if (!tfr->rx_buf) {
704 		desc->callback = bcm2835_spi_dma_tx_done;
705 		desc->callback_param = ctlr;
706 		bs->slv = slv;
707 	}
708 
709 	/* submit it to DMA-engine */
710 	cookie = dmaengine_submit(desc);
711 
712 	return dma_submit_error(cookie);
713 }
714 
715 /**
716  * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
717  * @ctlr: SPI master controller
718  * @tfr: SPI transfer
719  * @slv: BCM2835 SPI slave
720  * @cs: CS register
721  *
722  * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
723  * the TX and RX DMA channel to copy between memory and FIFO register.
724  *
725  * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
726  * memory is pointless.  However not reading the RX FIFO isn't an option either
727  * because transmission is halted once it's full.  As a workaround, cyclically
728  * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
729  *
730  * The CS register value is precalculated in bcm2835_spi_setup().  Normally
731  * this is called only once, on slave registration.  A DMA descriptor to write
732  * this value is preallocated in bcm2835_dma_init().  All that's left to do
733  * when performing a TX-only transfer is to submit this descriptor to the RX
734  * DMA channel.  Latency is thereby minimized.  The descriptor does not
735  * generate any interrupts while running.  It must be terminated once the
736  * TX DMA channel is done.
737  *
738  * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
739  * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
740  * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
741  * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
742  * reduction in bus traffic and thus energy consumption is achieved.
743  *
744  * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
745  * copying from the zero page.  The DMA descriptor to do this is preallocated
746  * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
747  * done and can then be reused.
748  *
749  * The BCM2835 DMA driver autodetects when a transaction copies from the zero
750  * page and utilizes the DMA controller's ability to synthesize zeroes instead
751  * of copying them from memory.  This reduces traffic on the memory bus.  The
752  * feature is not available on so-called "lite" channels, but normally TX DMA
753  * is backed by a full-featured channel.
754  *
755  * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
756  * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
757  * has been counted down to zero (hardware erratum).  Thus, when the transfer
758  * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
759  * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
760  * performed at the end of an RX-only transfer.
761  */
762 static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
763 					struct spi_transfer *tfr,
764 					struct bcm2835_spidev *slv,
765 					u32 cs)
766 {
767 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
768 	dma_cookie_t cookie;
769 	int ret;
770 
771 	/* update usage statistics */
772 	bs->count_transfer_dma++;
773 
774 	/*
775 	 * Transfer first few bytes without DMA if length of first TX or RX
776 	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
777 	 */
778 	bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
779 
780 	/* setup tx-DMA */
781 	if (bs->tx_buf) {
782 		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, slv, true);
783 	} else {
784 		cookie = dmaengine_submit(bs->fill_tx_desc);
785 		ret = dma_submit_error(cookie);
786 	}
787 	if (ret)
788 		goto err_reset_hw;
789 
790 	/* set the DMA length */
791 	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
792 
793 	/* start the HW */
794 	bcm2835_wr(bs, BCM2835_SPI_CS,
795 		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
796 
797 	bs->tx_dma_active = true;
798 	smp_wmb();
799 
800 	/* start TX early */
801 	dma_async_issue_pending(ctlr->dma_tx);
802 
803 	/* setup rx-DMA late - to run transfers while
804 	 * mapping of the rx buffers still takes place
805 	 * this saves 10us or more.
806 	 */
807 	if (bs->rx_buf) {
808 		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, slv, false);
809 	} else {
810 		cookie = dmaengine_submit(slv->clear_rx_desc);
811 		ret = dma_submit_error(cookie);
812 	}
813 	if (ret) {
814 		/* need to reset on errors */
815 		dmaengine_terminate_sync(ctlr->dma_tx);
816 		bs->tx_dma_active = false;
817 		goto err_reset_hw;
818 	}
819 
820 	/* start rx dma late */
821 	dma_async_issue_pending(ctlr->dma_rx);
822 	bs->rx_dma_active = true;
823 	smp_mb();
824 
825 	/*
826 	 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
827 	 * may run before RX DMA is issued.  Terminate RX DMA if so.
828 	 */
829 	if (!bs->rx_buf && !bs->tx_dma_active &&
830 	    cmpxchg(&bs->rx_dma_active, true, false)) {
831 		dmaengine_terminate_async(ctlr->dma_rx);
832 		bcm2835_spi_reset_hw(bs);
833 	}
834 
835 	/* wait for wakeup in framework */
836 	return 1;
837 
838 err_reset_hw:
839 	bcm2835_spi_reset_hw(bs);
840 	bcm2835_spi_undo_prologue(bs);
841 	return ret;
842 }
843 
844 static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
845 				struct spi_device *spi,
846 				struct spi_transfer *tfr)
847 {
848 	/* we start DMA efforts only on bigger transfers */
849 	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
850 		return false;
851 
852 	/* return OK */
853 	return true;
854 }
855 
856 static void bcm2835_dma_release(struct spi_controller *ctlr,
857 				struct bcm2835_spi *bs)
858 {
859 	if (ctlr->dma_tx) {
860 		dmaengine_terminate_sync(ctlr->dma_tx);
861 
862 		if (bs->fill_tx_desc)
863 			dmaengine_desc_free(bs->fill_tx_desc);
864 
865 		if (bs->fill_tx_addr)
866 			dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
867 					     bs->fill_tx_addr, sizeof(u32),
868 					     DMA_TO_DEVICE,
869 					     DMA_ATTR_SKIP_CPU_SYNC);
870 
871 		dma_release_channel(ctlr->dma_tx);
872 		ctlr->dma_tx = NULL;
873 	}
874 
875 	if (ctlr->dma_rx) {
876 		dmaengine_terminate_sync(ctlr->dma_rx);
877 		dma_release_channel(ctlr->dma_rx);
878 		ctlr->dma_rx = NULL;
879 	}
880 }
881 
882 static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
883 			    struct bcm2835_spi *bs)
884 {
885 	struct dma_slave_config slave_config;
886 	const __be32 *addr;
887 	dma_addr_t dma_reg_base;
888 	int ret;
889 
890 	/* base address in dma-space */
891 	addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
892 	if (!addr) {
893 		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
894 		/* Fall back to interrupt mode */
895 		return 0;
896 	}
897 	dma_reg_base = be32_to_cpup(addr);
898 
899 	/* get tx/rx dma */
900 	ctlr->dma_tx = dma_request_chan(dev, "tx");
901 	if (IS_ERR(ctlr->dma_tx)) {
902 		dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
903 		ret = PTR_ERR(ctlr->dma_tx);
904 		ctlr->dma_tx = NULL;
905 		goto err;
906 	}
907 	ctlr->dma_rx = dma_request_chan(dev, "rx");
908 	if (IS_ERR(ctlr->dma_rx)) {
909 		dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
910 		ret = PTR_ERR(ctlr->dma_rx);
911 		ctlr->dma_rx = NULL;
912 		goto err_release;
913 	}
914 
915 	/*
916 	 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
917 	 * or, in case of an RX-only transfer, cyclically copies from the zero
918 	 * page to the FIFO using a preallocated, reusable descriptor.
919 	 */
920 	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
921 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
922 
923 	ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
924 	if (ret)
925 		goto err_config;
926 
927 	bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
928 					      ZERO_PAGE(0), 0, sizeof(u32),
929 					      DMA_TO_DEVICE,
930 					      DMA_ATTR_SKIP_CPU_SYNC);
931 	if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
932 		dev_err(dev, "cannot map zero page - not using DMA mode\n");
933 		bs->fill_tx_addr = 0;
934 		ret = -ENOMEM;
935 		goto err_release;
936 	}
937 
938 	bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
939 						     bs->fill_tx_addr,
940 						     sizeof(u32), 0,
941 						     DMA_MEM_TO_DEV, 0);
942 	if (!bs->fill_tx_desc) {
943 		dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
944 		ret = -ENOMEM;
945 		goto err_release;
946 	}
947 
948 	ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
949 	if (ret) {
950 		dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
951 		goto err_release;
952 	}
953 
954 	/*
955 	 * The RX DMA channel is used bidirectionally:  It either reads the
956 	 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
957 	 * precalculated value to the CS register to clear the RX FIFO.
958 	 */
959 	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
960 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
961 	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
962 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
963 
964 	ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
965 	if (ret)
966 		goto err_config;
967 
968 	/* all went well, so set can_dma */
969 	ctlr->can_dma = bcm2835_spi_can_dma;
970 
971 	return 0;
972 
973 err_config:
974 	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
975 		ret);
976 err_release:
977 	bcm2835_dma_release(ctlr, bs);
978 err:
979 	/*
980 	 * Only report error for deferred probing, otherwise fall back to
981 	 * interrupt mode
982 	 */
983 	if (ret != -EPROBE_DEFER)
984 		ret = 0;
985 
986 	return ret;
987 }
988 
989 static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
990 					 struct spi_device *spi,
991 					 struct spi_transfer *tfr,
992 					 u32 cs)
993 {
994 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
995 	unsigned long timeout;
996 
997 	/* update usage statistics */
998 	bs->count_transfer_polling++;
999 
1000 	/* enable HW block without interrupts */
1001 	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1002 
1003 	/* fill in the fifo before timeout calculations
1004 	 * if we are interrupted here, then the data is
1005 	 * getting transferred by the HW while we are interrupted
1006 	 */
1007 	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1008 
1009 	/* set the timeout to at least 2 jiffies */
1010 	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1011 
1012 	/* loop until finished the transfer */
1013 	while (bs->rx_len) {
1014 		/* fill in tx fifo with remaining data */
1015 		bcm2835_wr_fifo(bs);
1016 
1017 		/* read from fifo as much as possible */
1018 		bcm2835_rd_fifo(bs);
1019 
1020 		/* if there is still data pending to read
1021 		 * then check the timeout
1022 		 */
1023 		if (bs->rx_len && time_after(jiffies, timeout)) {
1024 			dev_dbg_ratelimited(&spi->dev,
1025 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1026 					    jiffies - timeout,
1027 					    bs->tx_len, bs->rx_len);
1028 			/* fall back to interrupt mode */
1029 
1030 			/* update usage statistics */
1031 			bs->count_transfer_irq_after_polling++;
1032 
1033 			return bcm2835_spi_transfer_one_irq(ctlr, spi,
1034 							    tfr, cs, false);
1035 		}
1036 	}
1037 
1038 	/* Transfer complete - reset SPI HW */
1039 	bcm2835_spi_reset_hw(bs);
1040 	/* and return without waiting for completion */
1041 	return 0;
1042 }
1043 
1044 static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1045 				    struct spi_device *spi,
1046 				    struct spi_transfer *tfr)
1047 {
1048 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1049 	struct bcm2835_spidev *slv = spi_get_ctldata(spi);
1050 	unsigned long spi_hz, cdiv;
1051 	unsigned long hz_per_byte, byte_limit;
1052 	u32 cs = slv->prepare_cs;
1053 
1054 	/* set clock */
1055 	spi_hz = tfr->speed_hz;
1056 
1057 	if (spi_hz >= bs->clk_hz / 2) {
1058 		cdiv = 2; /* clk_hz/2 is the fastest we can go */
1059 	} else if (spi_hz) {
1060 		/* CDIV must be a multiple of two */
1061 		cdiv = DIV_ROUND_UP(bs->clk_hz, spi_hz);
1062 		cdiv += (cdiv % 2);
1063 
1064 		if (cdiv >= 65536)
1065 			cdiv = 0; /* 0 is the slowest we can go */
1066 	} else {
1067 		cdiv = 0; /* 0 is the slowest we can go */
1068 	}
1069 	tfr->effective_speed_hz = cdiv ? (bs->clk_hz / cdiv) : (bs->clk_hz / 65536);
1070 	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1071 
1072 	/* handle all the 3-wire mode */
1073 	if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1074 		cs |= BCM2835_SPI_CS_REN;
1075 
1076 	/* set transmit buffers and length */
1077 	bs->tx_buf = tfr->tx_buf;
1078 	bs->rx_buf = tfr->rx_buf;
1079 	bs->tx_len = tfr->len;
1080 	bs->rx_len = tfr->len;
1081 
1082 	/* Calculate the estimated time in us the transfer runs.  Note that
1083 	 * there is 1 idle clocks cycles after each byte getting transferred
1084 	 * so we have 9 cycles/byte.  This is used to find the number of Hz
1085 	 * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
1086 	 * per 300,000 Hz of bus clock.
1087 	 */
1088 	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1089 	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
1090 
1091 	/* run in polling mode for short transfers */
1092 	if (tfr->len < byte_limit)
1093 		return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1094 
1095 	/* run in dma mode if conditions are right
1096 	 * Note that unlike poll or interrupt mode DMA mode does not have
1097 	 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1098 	 */
1099 	if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1100 		return bcm2835_spi_transfer_one_dma(ctlr, tfr, slv, cs);
1101 
1102 	/* run in interrupt-mode */
1103 	return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1104 }
1105 
1106 static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1107 				       struct spi_message *msg)
1108 {
1109 	struct spi_device *spi = msg->spi;
1110 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1111 	struct bcm2835_spidev *slv = spi_get_ctldata(spi);
1112 	int ret;
1113 
1114 	if (ctlr->can_dma) {
1115 		/*
1116 		 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1117 		 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1118 		 * aligned) if the limit is exceeded.
1119 		 */
1120 		ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
1121 						  GFP_KERNEL | GFP_DMA);
1122 		if (ret)
1123 			return ret;
1124 	}
1125 
1126 	/*
1127 	 * Set up clock polarity before spi_transfer_one_message() asserts
1128 	 * chip select to avoid a gratuitous clock signal edge.
1129 	 */
1130 	bcm2835_wr(bs, BCM2835_SPI_CS, slv->prepare_cs);
1131 
1132 	return 0;
1133 }
1134 
1135 static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1136 				   struct spi_message *msg)
1137 {
1138 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1139 
1140 	/* if an error occurred and we have an active dma, then terminate */
1141 	dmaengine_terminate_sync(ctlr->dma_tx);
1142 	bs->tx_dma_active = false;
1143 	dmaengine_terminate_sync(ctlr->dma_rx);
1144 	bs->rx_dma_active = false;
1145 	bcm2835_spi_undo_prologue(bs);
1146 
1147 	/* and reset */
1148 	bcm2835_spi_reset_hw(bs);
1149 }
1150 
1151 static int chip_match_name(struct gpio_chip *chip, void *data)
1152 {
1153 	return !strcmp(chip->label, data);
1154 }
1155 
1156 static void bcm2835_spi_cleanup(struct spi_device *spi)
1157 {
1158 	struct bcm2835_spidev *slv = spi_get_ctldata(spi);
1159 	struct spi_controller *ctlr = spi->controller;
1160 
1161 	if (slv->clear_rx_desc)
1162 		dmaengine_desc_free(slv->clear_rx_desc);
1163 
1164 	if (slv->clear_rx_addr)
1165 		dma_unmap_single(ctlr->dma_rx->device->dev,
1166 				 slv->clear_rx_addr,
1167 				 sizeof(u32),
1168 				 DMA_TO_DEVICE);
1169 
1170 	kfree(slv);
1171 }
1172 
1173 static int bcm2835_spi_setup_dma(struct spi_controller *ctlr,
1174 				 struct spi_device *spi,
1175 				 struct bcm2835_spi *bs,
1176 				 struct bcm2835_spidev *slv)
1177 {
1178 	int ret;
1179 
1180 	if (!ctlr->dma_rx)
1181 		return 0;
1182 
1183 	slv->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
1184 					    &slv->clear_rx_cs,
1185 					    sizeof(u32),
1186 					    DMA_TO_DEVICE);
1187 	if (dma_mapping_error(ctlr->dma_rx->device->dev, slv->clear_rx_addr)) {
1188 		dev_err(&spi->dev, "cannot map clear_rx_cs\n");
1189 		slv->clear_rx_addr = 0;
1190 		return -ENOMEM;
1191 	}
1192 
1193 	slv->clear_rx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
1194 						       slv->clear_rx_addr,
1195 						       sizeof(u32), 0,
1196 						       DMA_MEM_TO_DEV, 0);
1197 	if (!slv->clear_rx_desc) {
1198 		dev_err(&spi->dev, "cannot prepare clear_rx_desc\n");
1199 		return -ENOMEM;
1200 	}
1201 
1202 	ret = dmaengine_desc_set_reuse(slv->clear_rx_desc);
1203 	if (ret) {
1204 		dev_err(&spi->dev, "cannot reuse clear_rx_desc\n");
1205 		return ret;
1206 	}
1207 
1208 	return 0;
1209 }
1210 
1211 static int bcm2835_spi_setup(struct spi_device *spi)
1212 {
1213 	struct spi_controller *ctlr = spi->controller;
1214 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1215 	struct bcm2835_spidev *slv = spi_get_ctldata(spi);
1216 	struct gpio_chip *chip;
1217 	int ret;
1218 	u32 cs;
1219 
1220 	if (!slv) {
1221 		slv = kzalloc(ALIGN(sizeof(*slv), dma_get_cache_alignment()),
1222 			      GFP_KERNEL);
1223 		if (!slv)
1224 			return -ENOMEM;
1225 
1226 		spi_set_ctldata(spi, slv);
1227 
1228 		ret = bcm2835_spi_setup_dma(ctlr, spi, bs, slv);
1229 		if (ret)
1230 			goto err_cleanup;
1231 	}
1232 
1233 	/*
1234 	 * Precalculate SPI slave's CS register value for ->prepare_message():
1235 	 * The driver always uses software-controlled GPIO chip select, hence
1236 	 * set the hardware-controlled native chip select to an invalid value
1237 	 * to prevent it from interfering.
1238 	 */
1239 	cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1240 	if (spi->mode & SPI_CPOL)
1241 		cs |= BCM2835_SPI_CS_CPOL;
1242 	if (spi->mode & SPI_CPHA)
1243 		cs |= BCM2835_SPI_CS_CPHA;
1244 	slv->prepare_cs = cs;
1245 
1246 	/*
1247 	 * Precalculate SPI slave's CS register value to clear RX FIFO
1248 	 * in case of a TX-only DMA transfer.
1249 	 */
1250 	if (ctlr->dma_rx) {
1251 		slv->clear_rx_cs = cs | BCM2835_SPI_CS_TA |
1252 					BCM2835_SPI_CS_DMAEN |
1253 					BCM2835_SPI_CS_CLEAR_RX;
1254 		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1255 					   slv->clear_rx_addr,
1256 					   sizeof(u32),
1257 					   DMA_TO_DEVICE);
1258 	}
1259 
1260 	/*
1261 	 * sanity checking the native-chipselects
1262 	 */
1263 	if (spi->mode & SPI_NO_CS)
1264 		return 0;
1265 	/*
1266 	 * The SPI core has successfully requested the CS GPIO line from the
1267 	 * device tree, so we are done.
1268 	 */
1269 	if (spi->cs_gpiod)
1270 		return 0;
1271 	if (spi->chip_select > 1) {
1272 		/* error in the case of native CS requested with CS > 1
1273 		 * officially there is a CS2, but it is not documented
1274 		 * which GPIO is connected with that...
1275 		 */
1276 		dev_err(&spi->dev,
1277 			"setup: only two native chip-selects are supported\n");
1278 		ret = -EINVAL;
1279 		goto err_cleanup;
1280 	}
1281 
1282 	/*
1283 	 * Translate native CS to GPIO
1284 	 *
1285 	 * FIXME: poking around in the gpiolib internals like this is
1286 	 * not very good practice. Find a way to locate the real problem
1287 	 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
1288 	 * sometimes not assigned correctly? Erroneous device trees?
1289 	 */
1290 
1291 	/* get the gpio chip for the base */
1292 	chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
1293 	if (!chip)
1294 		return 0;
1295 
1296 	spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select,
1297 						  DRV_NAME,
1298 						  GPIO_LOOKUP_FLAGS_DEFAULT,
1299 						  GPIOD_OUT_LOW);
1300 	if (IS_ERR(spi->cs_gpiod)) {
1301 		ret = PTR_ERR(spi->cs_gpiod);
1302 		goto err_cleanup;
1303 	}
1304 
1305 	/* and set up the "mode" and level */
1306 	dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1307 		 spi->chip_select);
1308 
1309 	return 0;
1310 
1311 err_cleanup:
1312 	bcm2835_spi_cleanup(spi);
1313 	return ret;
1314 }
1315 
1316 static int bcm2835_spi_probe(struct platform_device *pdev)
1317 {
1318 	struct spi_controller *ctlr;
1319 	struct bcm2835_spi *bs;
1320 	int err;
1321 
1322 	ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*bs));
1323 	if (!ctlr)
1324 		return -ENOMEM;
1325 
1326 	platform_set_drvdata(pdev, ctlr);
1327 
1328 	ctlr->use_gpio_descriptors = true;
1329 	ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1330 	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1331 	ctlr->num_chipselect = 3;
1332 	ctlr->setup = bcm2835_spi_setup;
1333 	ctlr->cleanup = bcm2835_spi_cleanup;
1334 	ctlr->transfer_one = bcm2835_spi_transfer_one;
1335 	ctlr->handle_err = bcm2835_spi_handle_err;
1336 	ctlr->prepare_message = bcm2835_spi_prepare_message;
1337 	ctlr->dev.of_node = pdev->dev.of_node;
1338 
1339 	bs = spi_controller_get_devdata(ctlr);
1340 	bs->ctlr = ctlr;
1341 
1342 	bs->regs = devm_platform_ioremap_resource(pdev, 0);
1343 	if (IS_ERR(bs->regs))
1344 		return PTR_ERR(bs->regs);
1345 
1346 	bs->clk = devm_clk_get(&pdev->dev, NULL);
1347 	if (IS_ERR(bs->clk))
1348 		return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
1349 				     "could not get clk\n");
1350 
1351 	ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2;
1352 
1353 	bs->irq = platform_get_irq(pdev, 0);
1354 	if (bs->irq <= 0)
1355 		return bs->irq ? bs->irq : -ENODEV;
1356 
1357 	clk_prepare_enable(bs->clk);
1358 	bs->clk_hz = clk_get_rate(bs->clk);
1359 
1360 	err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1361 	if (err)
1362 		goto out_clk_disable;
1363 
1364 	/* initialise the hardware with the default polarities */
1365 	bcm2835_wr(bs, BCM2835_SPI_CS,
1366 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1367 
1368 	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
1369 			       dev_name(&pdev->dev), bs);
1370 	if (err) {
1371 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1372 		goto out_dma_release;
1373 	}
1374 
1375 	err = spi_register_controller(ctlr);
1376 	if (err) {
1377 		dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1378 			err);
1379 		goto out_dma_release;
1380 	}
1381 
1382 	bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1383 
1384 	return 0;
1385 
1386 out_dma_release:
1387 	bcm2835_dma_release(ctlr, bs);
1388 out_clk_disable:
1389 	clk_disable_unprepare(bs->clk);
1390 	return err;
1391 }
1392 
1393 static int bcm2835_spi_remove(struct platform_device *pdev)
1394 {
1395 	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1396 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1397 
1398 	bcm2835_debugfs_remove(bs);
1399 
1400 	spi_unregister_controller(ctlr);
1401 
1402 	bcm2835_dma_release(ctlr, bs);
1403 
1404 	/* Clear FIFOs, and disable the HW block */
1405 	bcm2835_wr(bs, BCM2835_SPI_CS,
1406 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1407 
1408 	clk_disable_unprepare(bs->clk);
1409 
1410 	return 0;
1411 }
1412 
1413 static void bcm2835_spi_shutdown(struct platform_device *pdev)
1414 {
1415 	int ret;
1416 
1417 	ret = bcm2835_spi_remove(pdev);
1418 	if (ret)
1419 		dev_err(&pdev->dev, "failed to shutdown\n");
1420 }
1421 
1422 static const struct of_device_id bcm2835_spi_match[] = {
1423 	{ .compatible = "brcm,bcm2835-spi", },
1424 	{}
1425 };
1426 MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1427 
1428 static struct platform_driver bcm2835_spi_driver = {
1429 	.driver		= {
1430 		.name		= DRV_NAME,
1431 		.of_match_table	= bcm2835_spi_match,
1432 	},
1433 	.probe		= bcm2835_spi_probe,
1434 	.remove		= bcm2835_spi_remove,
1435 	.shutdown	= bcm2835_spi_shutdown,
1436 };
1437 module_platform_driver(bcm2835_spi_driver);
1438 
1439 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1440 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1441 MODULE_LICENSE("GPL");
1442