xref: /openbmc/linux/drivers/spi/spi-bcm2835.c (revision dfc53baa)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Broadcom BCM2835 SPI Controllers
4  *
5  * Copyright (C) 2012 Chris Boot
6  * Copyright (C) 2013 Stephen Warren
7  * Copyright (C) 2015 Martin Sperl
8  *
9  * This driver is inspired by:
10  * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11  * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/debugfs.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_device.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/gpio/machine.h> /* FIXME: using chip internals */
30 #include <linux/gpio/driver.h> /* FIXME: using chip internals */
31 #include <linux/of_irq.h>
32 #include <linux/spi/spi.h>
33 
34 /* SPI register offsets */
35 #define BCM2835_SPI_CS			0x00
36 #define BCM2835_SPI_FIFO		0x04
37 #define BCM2835_SPI_CLK			0x08
38 #define BCM2835_SPI_DLEN		0x0c
39 #define BCM2835_SPI_LTOH		0x10
40 #define BCM2835_SPI_DC			0x14
41 
42 /* Bitfields in CS */
43 #define BCM2835_SPI_CS_LEN_LONG		0x02000000
44 #define BCM2835_SPI_CS_DMA_LEN		0x01000000
45 #define BCM2835_SPI_CS_CSPOL2		0x00800000
46 #define BCM2835_SPI_CS_CSPOL1		0x00400000
47 #define BCM2835_SPI_CS_CSPOL0		0x00200000
48 #define BCM2835_SPI_CS_RXF		0x00100000
49 #define BCM2835_SPI_CS_RXR		0x00080000
50 #define BCM2835_SPI_CS_TXD		0x00040000
51 #define BCM2835_SPI_CS_RXD		0x00020000
52 #define BCM2835_SPI_CS_DONE		0x00010000
53 #define BCM2835_SPI_CS_LEN		0x00002000
54 #define BCM2835_SPI_CS_REN		0x00001000
55 #define BCM2835_SPI_CS_ADCS		0x00000800
56 #define BCM2835_SPI_CS_INTR		0x00000400
57 #define BCM2835_SPI_CS_INTD		0x00000200
58 #define BCM2835_SPI_CS_DMAEN		0x00000100
59 #define BCM2835_SPI_CS_TA		0x00000080
60 #define BCM2835_SPI_CS_CSPOL		0x00000040
61 #define BCM2835_SPI_CS_CLEAR_RX		0x00000020
62 #define BCM2835_SPI_CS_CLEAR_TX		0x00000010
63 #define BCM2835_SPI_CS_CPOL		0x00000008
64 #define BCM2835_SPI_CS_CPHA		0x00000004
65 #define BCM2835_SPI_CS_CS_10		0x00000002
66 #define BCM2835_SPI_CS_CS_01		0x00000001
67 
68 #define BCM2835_SPI_FIFO_SIZE		64
69 #define BCM2835_SPI_FIFO_SIZE_3_4	48
70 #define BCM2835_SPI_DMA_MIN_LENGTH	96
71 #define BCM2835_SPI_NUM_CS		4   /* raise as necessary */
72 #define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
73 				| SPI_NO_CS | SPI_3WIRE)
74 
75 #define DRV_NAME	"spi-bcm2835"
76 
77 /* define polling limits */
78 unsigned int polling_limit_us = 30;
79 module_param(polling_limit_us, uint, 0664);
80 MODULE_PARM_DESC(polling_limit_us,
81 		 "time in us to run a transfer in polling mode\n");
82 
83 /**
84  * struct bcm2835_spi - BCM2835 SPI controller
85  * @regs: base address of register map
86  * @clk: core clock, divided to calculate serial clock
87  * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
88  * @tfr: SPI transfer currently processed
89  * @ctlr: SPI controller reverse lookup
90  * @tx_buf: pointer whence next transmitted byte is read
91  * @rx_buf: pointer where next received byte is written
92  * @tx_len: remaining bytes to transmit
93  * @rx_len: remaining bytes to receive
94  * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
95  *	length is not a multiple of 4 (to overcome hardware limitation)
96  * @rx_prologue: bytes received without DMA if first RX sglist entry's
97  *	length is not a multiple of 4 (to overcome hardware limitation)
98  * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
99  * @prepare_cs: precalculated CS register value for ->prepare_message()
100  *	(uses slave-specific clock polarity and phase settings)
101  * @debugfs_dir: the debugfs directory - neede to remove debugfs when
102  *      unloading the module
103  * @count_transfer_polling: count of how often polling mode is used
104  * @count_transfer_irq: count of how often interrupt mode is used
105  * @count_transfer_irq_after_polling: count of how often we fall back to
106  *      interrupt mode after starting in polling mode.
107  *      These are counted as well in @count_transfer_polling and
108  *      @count_transfer_irq
109  * @count_transfer_dma: count how often dma mode is used
110  * @chip_select: SPI slave currently selected
111  *	(used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
112  * @tx_dma_active: whether a TX DMA descriptor is in progress
113  * @rx_dma_active: whether a RX DMA descriptor is in progress
114  *	(used by bcm2835_spi_dma_tx_done() to handle a race)
115  * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
116  *	(cyclically copies from zero page to TX FIFO)
117  * @fill_tx_addr: bus address of zero page
118  * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
119  *	(cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
120  * @clear_rx_addr: bus address of @clear_rx_cs
121  * @clear_rx_cs: precalculated CS register value to clear RX FIFO
122  *	(uses slave-specific clock polarity and phase settings)
123  */
124 struct bcm2835_spi {
125 	void __iomem *regs;
126 	struct clk *clk;
127 	int irq;
128 	struct spi_transfer *tfr;
129 	struct spi_controller *ctlr;
130 	const u8 *tx_buf;
131 	u8 *rx_buf;
132 	int tx_len;
133 	int rx_len;
134 	int tx_prologue;
135 	int rx_prologue;
136 	unsigned int tx_spillover;
137 	u32 prepare_cs[BCM2835_SPI_NUM_CS];
138 
139 	struct dentry *debugfs_dir;
140 	u64 count_transfer_polling;
141 	u64 count_transfer_irq;
142 	u64 count_transfer_irq_after_polling;
143 	u64 count_transfer_dma;
144 
145 	u8 chip_select;
146 	unsigned int tx_dma_active;
147 	unsigned int rx_dma_active;
148 	struct dma_async_tx_descriptor *fill_tx_desc;
149 	dma_addr_t fill_tx_addr;
150 	struct dma_async_tx_descriptor *clear_rx_desc[BCM2835_SPI_NUM_CS];
151 	dma_addr_t clear_rx_addr;
152 	u32 clear_rx_cs[BCM2835_SPI_NUM_CS] ____cacheline_aligned;
153 };
154 
155 #if defined(CONFIG_DEBUG_FS)
156 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
157 				   const char *dname)
158 {
159 	char name[64];
160 	struct dentry *dir;
161 
162 	/* get full name */
163 	snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
164 
165 	/* the base directory */
166 	dir = debugfs_create_dir(name, NULL);
167 	bs->debugfs_dir = dir;
168 
169 	/* the counters */
170 	debugfs_create_u64("count_transfer_polling", 0444, dir,
171 			   &bs->count_transfer_polling);
172 	debugfs_create_u64("count_transfer_irq", 0444, dir,
173 			   &bs->count_transfer_irq);
174 	debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
175 			   &bs->count_transfer_irq_after_polling);
176 	debugfs_create_u64("count_transfer_dma", 0444, dir,
177 			   &bs->count_transfer_dma);
178 }
179 
180 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
181 {
182 	debugfs_remove_recursive(bs->debugfs_dir);
183 	bs->debugfs_dir = NULL;
184 }
185 #else
186 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
187 				   const char *dname)
188 {
189 }
190 
191 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
192 {
193 }
194 #endif /* CONFIG_DEBUG_FS */
195 
196 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
197 {
198 	return readl(bs->regs + reg);
199 }
200 
201 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
202 {
203 	writel(val, bs->regs + reg);
204 }
205 
206 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
207 {
208 	u8 byte;
209 
210 	while ((bs->rx_len) &&
211 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
212 		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
213 		if (bs->rx_buf)
214 			*bs->rx_buf++ = byte;
215 		bs->rx_len--;
216 	}
217 }
218 
219 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
220 {
221 	u8 byte;
222 
223 	while ((bs->tx_len) &&
224 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
225 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
226 		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
227 		bs->tx_len--;
228 	}
229 }
230 
231 /**
232  * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
233  * @bs: BCM2835 SPI controller
234  * @count: bytes to read from RX FIFO
235  *
236  * The caller must ensure that @bs->rx_len is greater than or equal to @count,
237  * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
238  * in the CS register is set (such that a read from the FIFO register receives
239  * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
240  */
241 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
242 {
243 	u32 val;
244 	int len;
245 
246 	bs->rx_len -= count;
247 
248 	do {
249 		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
250 		len = min(count, 4);
251 		memcpy(bs->rx_buf, &val, len);
252 		bs->rx_buf += len;
253 		count -= 4;
254 	} while (count > 0);
255 }
256 
257 /**
258  * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
259  * @bs: BCM2835 SPI controller
260  * @count: bytes to write to TX FIFO
261  *
262  * The caller must ensure that @bs->tx_len is greater than or equal to @count,
263  * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
264  * in the CS register is set (such that a write to the FIFO register transmits
265  * 32-bit instead of just 8-bit).
266  */
267 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
268 {
269 	u32 val;
270 	int len;
271 
272 	bs->tx_len -= count;
273 
274 	do {
275 		if (bs->tx_buf) {
276 			len = min(count, 4);
277 			memcpy(&val, bs->tx_buf, len);
278 			bs->tx_buf += len;
279 		} else {
280 			val = 0;
281 		}
282 		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
283 		count -= 4;
284 	} while (count > 0);
285 }
286 
287 /**
288  * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
289  * @bs: BCM2835 SPI controller
290  *
291  * The caller must ensure that the RX FIFO can accommodate as many bytes
292  * as have been written to the TX FIFO:  Transmission is halted once the
293  * RX FIFO is full, causing this function to spin forever.
294  */
295 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
296 {
297 	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
298 		cpu_relax();
299 }
300 
301 /**
302  * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
303  * @bs: BCM2835 SPI controller
304  * @count: bytes available for reading in RX FIFO
305  */
306 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
307 {
308 	u8 val;
309 
310 	count = min(count, bs->rx_len);
311 	bs->rx_len -= count;
312 
313 	do {
314 		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
315 		if (bs->rx_buf)
316 			*bs->rx_buf++ = val;
317 	} while (--count);
318 }
319 
320 /**
321  * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
322  * @bs: BCM2835 SPI controller
323  * @count: bytes available for writing in TX FIFO
324  */
325 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
326 {
327 	u8 val;
328 
329 	count = min(count, bs->tx_len);
330 	bs->tx_len -= count;
331 
332 	do {
333 		val = bs->tx_buf ? *bs->tx_buf++ : 0;
334 		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
335 	} while (--count);
336 }
337 
338 static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
339 {
340 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
341 
342 	/* Disable SPI interrupts and transfer */
343 	cs &= ~(BCM2835_SPI_CS_INTR |
344 		BCM2835_SPI_CS_INTD |
345 		BCM2835_SPI_CS_DMAEN |
346 		BCM2835_SPI_CS_TA);
347 	/*
348 	 * Transmission sometimes breaks unless the DONE bit is written at the
349 	 * end of every transfer.  The spec says it's a RO bit.  Either the
350 	 * spec is wrong and the bit is actually of type RW1C, or it's a
351 	 * hardware erratum.
352 	 */
353 	cs |= BCM2835_SPI_CS_DONE;
354 	/* and reset RX/TX FIFOS */
355 	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
356 
357 	/* and reset the SPI_HW */
358 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
359 	/* as well as DLEN */
360 	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
361 }
362 
363 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
364 {
365 	struct bcm2835_spi *bs = dev_id;
366 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
367 
368 	/*
369 	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
370 	 * or if RXR is set (RX FIFO >= ¾ full).
371 	 */
372 	if (cs & BCM2835_SPI_CS_RXF)
373 		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
374 	else if (cs & BCM2835_SPI_CS_RXR)
375 		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
376 
377 	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
378 		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
379 
380 	/* Read as many bytes as possible from FIFO */
381 	bcm2835_rd_fifo(bs);
382 	/* Write as many bytes as possible to FIFO */
383 	bcm2835_wr_fifo(bs);
384 
385 	if (!bs->rx_len) {
386 		/* Transfer complete - reset SPI HW */
387 		bcm2835_spi_reset_hw(bs);
388 		/* wake up the framework */
389 		complete(&bs->ctlr->xfer_completion);
390 	}
391 
392 	return IRQ_HANDLED;
393 }
394 
395 static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
396 					struct spi_device *spi,
397 					struct spi_transfer *tfr,
398 					u32 cs, bool fifo_empty)
399 {
400 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
401 
402 	/* update usage statistics */
403 	bs->count_transfer_irq++;
404 
405 	/*
406 	 * Enable HW block, but with interrupts still disabled.
407 	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
408 	 */
409 	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
410 
411 	/* fill TX FIFO as much as possible */
412 	if (fifo_empty)
413 		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
414 	bcm2835_wr_fifo(bs);
415 
416 	/* enable interrupts */
417 	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
418 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
419 
420 	/* signal that we need to wait for completion */
421 	return 1;
422 }
423 
424 /**
425  * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
426  * @ctlr: SPI master controller
427  * @tfr: SPI transfer
428  * @bs: BCM2835 SPI controller
429  * @cs: CS register
430  *
431  * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
432  * Only the final write access is permitted to transmit less than 4 bytes, the
433  * SPI controller deduces its intended size from the DLEN register.
434  *
435  * If a TX or RX sglist contains multiple entries, one per page, and the first
436  * entry starts in the middle of a page, that first entry's length may not be
437  * a multiple of 4.  Subsequent entries are fine because they span an entire
438  * page, hence do have a length that's a multiple of 4.
439  *
440  * This cannot happen with kmalloc'ed buffers (which is what most clients use)
441  * because they are contiguous in physical memory and therefore not split on
442  * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
443  * buffers.
444  *
445  * The DMA engine is incapable of combining sglist entries into a continuous
446  * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
447  * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
448  * entry is rounded up by throwing away received bytes.
449  *
450  * Overcome this limitation by transferring the first few bytes without DMA:
451  * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
452  * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
453  * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
454  * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
455  *
456  * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
457  * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
458  * Caution, the additional 4 bytes spill over to the second TX sglist entry
459  * if the length of the first is *exactly* 1.
460  *
461  * At most 6 bytes are written and at most 3 bytes read.  Do we know the
462  * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
463  *
464  * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
465  * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
466  * the width but also garbles the FIFO's contents.  The prologue must therefore
467  * be transmitted in 32-bit width to ensure that the following DMA transfer can
468  * pick up the residue in the RX FIFO in ungarbled form.
469  */
470 static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
471 					  struct spi_transfer *tfr,
472 					  struct bcm2835_spi *bs,
473 					  u32 cs)
474 {
475 	int tx_remaining;
476 
477 	bs->tfr		 = tfr;
478 	bs->tx_prologue  = 0;
479 	bs->rx_prologue  = 0;
480 	bs->tx_spillover = false;
481 
482 	if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
483 		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
484 
485 	if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
486 		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
487 
488 		if (bs->rx_prologue > bs->tx_prologue) {
489 			if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
490 				bs->tx_prologue  = bs->rx_prologue;
491 			} else {
492 				bs->tx_prologue += 4;
493 				bs->tx_spillover =
494 					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
495 			}
496 		}
497 	}
498 
499 	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
500 	if (!bs->tx_prologue)
501 		return;
502 
503 	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
504 	if (bs->rx_prologue) {
505 		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
506 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
507 						  | BCM2835_SPI_CS_DMAEN);
508 		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
509 		bcm2835_wait_tx_fifo_empty(bs);
510 		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
511 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
512 						  | BCM2835_SPI_CS_CLEAR_TX
513 						  | BCM2835_SPI_CS_DONE);
514 
515 		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
516 					   sg_dma_address(&tfr->rx_sg.sgl[0]),
517 					   bs->rx_prologue, DMA_FROM_DEVICE);
518 
519 		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
520 		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
521 	}
522 
523 	if (!bs->tx_buf)
524 		return;
525 
526 	/*
527 	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
528 	 * Also adjust second entry if prologue spills over to it.
529 	 */
530 	tx_remaining = bs->tx_prologue - bs->rx_prologue;
531 	if (tx_remaining) {
532 		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
533 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
534 						  | BCM2835_SPI_CS_DMAEN);
535 		bcm2835_wr_fifo_count(bs, tx_remaining);
536 		bcm2835_wait_tx_fifo_empty(bs);
537 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
538 						  | BCM2835_SPI_CS_DONE);
539 	}
540 
541 	if (likely(!bs->tx_spillover)) {
542 		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
543 		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
544 	} else {
545 		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
546 		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
547 		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
548 	}
549 }
550 
551 /**
552  * bcm2835_spi_undo_prologue() - reconstruct original sglist state
553  * @bs: BCM2835 SPI controller
554  *
555  * Undo changes which were made to an SPI transfer's sglist when transmitting
556  * the prologue.  This is necessary to ensure the same memory ranges are
557  * unmapped that were originally mapped.
558  */
559 static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
560 {
561 	struct spi_transfer *tfr = bs->tfr;
562 
563 	if (!bs->tx_prologue)
564 		return;
565 
566 	if (bs->rx_prologue) {
567 		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
568 		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
569 	}
570 
571 	if (!bs->tx_buf)
572 		goto out;
573 
574 	if (likely(!bs->tx_spillover)) {
575 		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
576 		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
577 	} else {
578 		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
579 		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
580 		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
581 	}
582 out:
583 	bs->tx_prologue = 0;
584 }
585 
586 /**
587  * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
588  * @data: SPI master controller
589  *
590  * Used for bidirectional and RX-only transfers.
591  */
592 static void bcm2835_spi_dma_rx_done(void *data)
593 {
594 	struct spi_controller *ctlr = data;
595 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
596 
597 	/* terminate tx-dma as we do not have an irq for it
598 	 * because when the rx dma will terminate and this callback
599 	 * is called the tx-dma must have finished - can't get to this
600 	 * situation otherwise...
601 	 */
602 	dmaengine_terminate_async(ctlr->dma_tx);
603 	bs->tx_dma_active = false;
604 	bs->rx_dma_active = false;
605 	bcm2835_spi_undo_prologue(bs);
606 
607 	/* reset fifo and HW */
608 	bcm2835_spi_reset_hw(bs);
609 
610 	/* and mark as completed */;
611 	complete(&ctlr->xfer_completion);
612 }
613 
614 /**
615  * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
616  * @data: SPI master controller
617  *
618  * Used for TX-only transfers.
619  */
620 static void bcm2835_spi_dma_tx_done(void *data)
621 {
622 	struct spi_controller *ctlr = data;
623 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
624 
625 	/* busy-wait for TX FIFO to empty */
626 	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
627 		bcm2835_wr(bs, BCM2835_SPI_CS,
628 			   bs->clear_rx_cs[bs->chip_select]);
629 
630 	bs->tx_dma_active = false;
631 	smp_wmb();
632 
633 	/*
634 	 * In case of a very short transfer, RX DMA may not have been
635 	 * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
636 	 * to terminate it immediately after issuing.
637 	 */
638 	if (cmpxchg(&bs->rx_dma_active, true, false))
639 		dmaengine_terminate_async(ctlr->dma_rx);
640 
641 	bcm2835_spi_undo_prologue(bs);
642 	bcm2835_spi_reset_hw(bs);
643 	complete(&ctlr->xfer_completion);
644 }
645 
646 /**
647  * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
648  * @ctlr: SPI master controller
649  * @spi: SPI slave
650  * @tfr: SPI transfer
651  * @bs: BCM2835 SPI controller
652  * @is_tx: whether to submit DMA descriptor for TX or RX sglist
653  *
654  * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
655  * Return 0 on success or a negative error number.
656  */
657 static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
658 				  struct spi_device *spi,
659 				  struct spi_transfer *tfr,
660 				  struct bcm2835_spi *bs,
661 				  bool is_tx)
662 {
663 	struct dma_chan *chan;
664 	struct scatterlist *sgl;
665 	unsigned int nents;
666 	enum dma_transfer_direction dir;
667 	unsigned long flags;
668 
669 	struct dma_async_tx_descriptor *desc;
670 	dma_cookie_t cookie;
671 
672 	if (is_tx) {
673 		dir   = DMA_MEM_TO_DEV;
674 		chan  = ctlr->dma_tx;
675 		nents = tfr->tx_sg.nents;
676 		sgl   = tfr->tx_sg.sgl;
677 		flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
678 	} else {
679 		dir   = DMA_DEV_TO_MEM;
680 		chan  = ctlr->dma_rx;
681 		nents = tfr->rx_sg.nents;
682 		sgl   = tfr->rx_sg.sgl;
683 		flags = DMA_PREP_INTERRUPT;
684 	}
685 	/* prepare the channel */
686 	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
687 	if (!desc)
688 		return -EINVAL;
689 
690 	/*
691 	 * Completion is signaled by the RX channel for bidirectional and
692 	 * RX-only transfers; else by the TX channel for TX-only transfers.
693 	 */
694 	if (!is_tx) {
695 		desc->callback = bcm2835_spi_dma_rx_done;
696 		desc->callback_param = ctlr;
697 	} else if (!tfr->rx_buf) {
698 		desc->callback = bcm2835_spi_dma_tx_done;
699 		desc->callback_param = ctlr;
700 		bs->chip_select = spi->chip_select;
701 	}
702 
703 	/* submit it to DMA-engine */
704 	cookie = dmaengine_submit(desc);
705 
706 	return dma_submit_error(cookie);
707 }
708 
709 /**
710  * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
711  * @ctlr: SPI master controller
712  * @spi: SPI slave
713  * @tfr: SPI transfer
714  * @cs: CS register
715  *
716  * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
717  * the TX and RX DMA channel to copy between memory and FIFO register.
718  *
719  * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
720  * memory is pointless.  However not reading the RX FIFO isn't an option either
721  * because transmission is halted once it's full.  As a workaround, cyclically
722  * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
723  *
724  * The CS register value is precalculated in bcm2835_spi_setup().  Normally
725  * this is called only once, on slave registration.  A DMA descriptor to write
726  * this value is preallocated in bcm2835_dma_init().  All that's left to do
727  * when performing a TX-only transfer is to submit this descriptor to the RX
728  * DMA channel.  Latency is thereby minimized.  The descriptor does not
729  * generate any interrupts while running.  It must be terminated once the
730  * TX DMA channel is done.
731  *
732  * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
733  * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
734  * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
735  * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
736  * reduction in bus traffic and thus energy consumption is achieved.
737  *
738  * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
739  * copying from the zero page.  The DMA descriptor to do this is preallocated
740  * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
741  * done and can then be reused.
742  *
743  * The BCM2835 DMA driver autodetects when a transaction copies from the zero
744  * page and utilizes the DMA controller's ability to synthesize zeroes instead
745  * of copying them from memory.  This reduces traffic on the memory bus.  The
746  * feature is not available on so-called "lite" channels, but normally TX DMA
747  * is backed by a full-featured channel.
748  *
749  * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
750  * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
751  * has been counted down to zero (hardware erratum).  Thus, when the transfer
752  * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
753  * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
754  * performed at the end of an RX-only transfer.
755  */
756 static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
757 					struct spi_device *spi,
758 					struct spi_transfer *tfr,
759 					u32 cs)
760 {
761 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
762 	dma_cookie_t cookie;
763 	int ret;
764 
765 	/* update usage statistics */
766 	bs->count_transfer_dma++;
767 
768 	/*
769 	 * Transfer first few bytes without DMA if length of first TX or RX
770 	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
771 	 */
772 	bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
773 
774 	/* setup tx-DMA */
775 	if (bs->tx_buf) {
776 		ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, true);
777 	} else {
778 		cookie = dmaengine_submit(bs->fill_tx_desc);
779 		ret = dma_submit_error(cookie);
780 	}
781 	if (ret)
782 		goto err_reset_hw;
783 
784 	/* set the DMA length */
785 	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
786 
787 	/* start the HW */
788 	bcm2835_wr(bs, BCM2835_SPI_CS,
789 		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
790 
791 	bs->tx_dma_active = true;
792 	smp_wmb();
793 
794 	/* start TX early */
795 	dma_async_issue_pending(ctlr->dma_tx);
796 
797 	/* setup rx-DMA late - to run transfers while
798 	 * mapping of the rx buffers still takes place
799 	 * this saves 10us or more.
800 	 */
801 	if (bs->rx_buf) {
802 		ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, false);
803 	} else {
804 		cookie = dmaengine_submit(bs->clear_rx_desc[spi->chip_select]);
805 		ret = dma_submit_error(cookie);
806 	}
807 	if (ret) {
808 		/* need to reset on errors */
809 		dmaengine_terminate_sync(ctlr->dma_tx);
810 		bs->tx_dma_active = false;
811 		goto err_reset_hw;
812 	}
813 
814 	/* start rx dma late */
815 	dma_async_issue_pending(ctlr->dma_rx);
816 	bs->rx_dma_active = true;
817 	smp_mb();
818 
819 	/*
820 	 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
821 	 * may run before RX DMA is issued.  Terminate RX DMA if so.
822 	 */
823 	if (!bs->rx_buf && !bs->tx_dma_active &&
824 	    cmpxchg(&bs->rx_dma_active, true, false)) {
825 		dmaengine_terminate_async(ctlr->dma_rx);
826 		bcm2835_spi_reset_hw(bs);
827 	}
828 
829 	/* wait for wakeup in framework */
830 	return 1;
831 
832 err_reset_hw:
833 	bcm2835_spi_reset_hw(bs);
834 	bcm2835_spi_undo_prologue(bs);
835 	return ret;
836 }
837 
838 static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
839 				struct spi_device *spi,
840 				struct spi_transfer *tfr)
841 {
842 	/* we start DMA efforts only on bigger transfers */
843 	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
844 		return false;
845 
846 	/* return OK */
847 	return true;
848 }
849 
850 static void bcm2835_dma_release(struct spi_controller *ctlr,
851 				struct bcm2835_spi *bs)
852 {
853 	int i;
854 
855 	if (ctlr->dma_tx) {
856 		dmaengine_terminate_sync(ctlr->dma_tx);
857 
858 		if (bs->fill_tx_desc)
859 			dmaengine_desc_free(bs->fill_tx_desc);
860 
861 		if (bs->fill_tx_addr)
862 			dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
863 					     bs->fill_tx_addr, sizeof(u32),
864 					     DMA_TO_DEVICE,
865 					     DMA_ATTR_SKIP_CPU_SYNC);
866 
867 		dma_release_channel(ctlr->dma_tx);
868 		ctlr->dma_tx = NULL;
869 	}
870 
871 	if (ctlr->dma_rx) {
872 		dmaengine_terminate_sync(ctlr->dma_rx);
873 
874 		for (i = 0; i < BCM2835_SPI_NUM_CS; i++)
875 			if (bs->clear_rx_desc[i])
876 				dmaengine_desc_free(bs->clear_rx_desc[i]);
877 
878 		if (bs->clear_rx_addr)
879 			dma_unmap_single(ctlr->dma_rx->device->dev,
880 					 bs->clear_rx_addr,
881 					 sizeof(bs->clear_rx_cs),
882 					 DMA_TO_DEVICE);
883 
884 		dma_release_channel(ctlr->dma_rx);
885 		ctlr->dma_rx = NULL;
886 	}
887 }
888 
889 static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
890 			    struct bcm2835_spi *bs)
891 {
892 	struct dma_slave_config slave_config;
893 	const __be32 *addr;
894 	dma_addr_t dma_reg_base;
895 	int ret, i;
896 
897 	/* base address in dma-space */
898 	addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
899 	if (!addr) {
900 		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
901 		/* Fall back to interrupt mode */
902 		return 0;
903 	}
904 	dma_reg_base = be32_to_cpup(addr);
905 
906 	/* get tx/rx dma */
907 	ctlr->dma_tx = dma_request_chan(dev, "tx");
908 	if (IS_ERR(ctlr->dma_tx)) {
909 		dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
910 		ret = PTR_ERR(ctlr->dma_tx);
911 		ctlr->dma_tx = NULL;
912 		goto err;
913 	}
914 	ctlr->dma_rx = dma_request_chan(dev, "rx");
915 	if (IS_ERR(ctlr->dma_rx)) {
916 		dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
917 		ret = PTR_ERR(ctlr->dma_rx);
918 		ctlr->dma_rx = NULL;
919 		goto err_release;
920 	}
921 
922 	/*
923 	 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
924 	 * or, in case of an RX-only transfer, cyclically copies from the zero
925 	 * page to the FIFO using a preallocated, reusable descriptor.
926 	 */
927 	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
928 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
929 
930 	ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
931 	if (ret)
932 		goto err_config;
933 
934 	bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
935 					      ZERO_PAGE(0), 0, sizeof(u32),
936 					      DMA_TO_DEVICE,
937 					      DMA_ATTR_SKIP_CPU_SYNC);
938 	if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
939 		dev_err(dev, "cannot map zero page - not using DMA mode\n");
940 		bs->fill_tx_addr = 0;
941 		ret = -ENOMEM;
942 		goto err_release;
943 	}
944 
945 	bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
946 						     bs->fill_tx_addr,
947 						     sizeof(u32), 0,
948 						     DMA_MEM_TO_DEV, 0);
949 	if (!bs->fill_tx_desc) {
950 		dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
951 		ret = -ENOMEM;
952 		goto err_release;
953 	}
954 
955 	ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
956 	if (ret) {
957 		dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
958 		goto err_release;
959 	}
960 
961 	/*
962 	 * The RX DMA channel is used bidirectionally:  It either reads the
963 	 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
964 	 * precalculated value to the CS register to clear the RX FIFO.
965 	 */
966 	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
967 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
968 	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
969 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
970 
971 	ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
972 	if (ret)
973 		goto err_config;
974 
975 	bs->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
976 					   bs->clear_rx_cs,
977 					   sizeof(bs->clear_rx_cs),
978 					   DMA_TO_DEVICE);
979 	if (dma_mapping_error(ctlr->dma_rx->device->dev, bs->clear_rx_addr)) {
980 		dev_err(dev, "cannot map clear_rx_cs - not using DMA mode\n");
981 		bs->clear_rx_addr = 0;
982 		ret = -ENOMEM;
983 		goto err_release;
984 	}
985 
986 	for (i = 0; i < BCM2835_SPI_NUM_CS; i++) {
987 		bs->clear_rx_desc[i] = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
988 					   bs->clear_rx_addr + i * sizeof(u32),
989 					   sizeof(u32), 0,
990 					   DMA_MEM_TO_DEV, 0);
991 		if (!bs->clear_rx_desc[i]) {
992 			dev_err(dev, "cannot prepare clear_rx_desc - not using DMA mode\n");
993 			ret = -ENOMEM;
994 			goto err_release;
995 		}
996 
997 		ret = dmaengine_desc_set_reuse(bs->clear_rx_desc[i]);
998 		if (ret) {
999 			dev_err(dev, "cannot reuse clear_rx_desc - not using DMA mode\n");
1000 			goto err_release;
1001 		}
1002 	}
1003 
1004 	/* all went well, so set can_dma */
1005 	ctlr->can_dma = bcm2835_spi_can_dma;
1006 
1007 	return 0;
1008 
1009 err_config:
1010 	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
1011 		ret);
1012 err_release:
1013 	bcm2835_dma_release(ctlr, bs);
1014 err:
1015 	/*
1016 	 * Only report error for deferred probing, otherwise fall back to
1017 	 * interrupt mode
1018 	 */
1019 	if (ret != -EPROBE_DEFER)
1020 		ret = 0;
1021 
1022 	return ret;
1023 }
1024 
1025 static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
1026 					 struct spi_device *spi,
1027 					 struct spi_transfer *tfr,
1028 					 u32 cs)
1029 {
1030 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1031 	unsigned long timeout;
1032 
1033 	/* update usage statistics */
1034 	bs->count_transfer_polling++;
1035 
1036 	/* enable HW block without interrupts */
1037 	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1038 
1039 	/* fill in the fifo before timeout calculations
1040 	 * if we are interrupted here, then the data is
1041 	 * getting transferred by the HW while we are interrupted
1042 	 */
1043 	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1044 
1045 	/* set the timeout to at least 2 jiffies */
1046 	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1047 
1048 	/* loop until finished the transfer */
1049 	while (bs->rx_len) {
1050 		/* fill in tx fifo with remaining data */
1051 		bcm2835_wr_fifo(bs);
1052 
1053 		/* read from fifo as much as possible */
1054 		bcm2835_rd_fifo(bs);
1055 
1056 		/* if there is still data pending to read
1057 		 * then check the timeout
1058 		 */
1059 		if (bs->rx_len && time_after(jiffies, timeout)) {
1060 			dev_dbg_ratelimited(&spi->dev,
1061 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1062 					    jiffies - timeout,
1063 					    bs->tx_len, bs->rx_len);
1064 			/* fall back to interrupt mode */
1065 
1066 			/* update usage statistics */
1067 			bs->count_transfer_irq_after_polling++;
1068 
1069 			return bcm2835_spi_transfer_one_irq(ctlr, spi,
1070 							    tfr, cs, false);
1071 		}
1072 	}
1073 
1074 	/* Transfer complete - reset SPI HW */
1075 	bcm2835_spi_reset_hw(bs);
1076 	/* and return without waiting for completion */
1077 	return 0;
1078 }
1079 
1080 static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1081 				    struct spi_device *spi,
1082 				    struct spi_transfer *tfr)
1083 {
1084 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1085 	unsigned long spi_hz, clk_hz, cdiv;
1086 	unsigned long hz_per_byte, byte_limit;
1087 	u32 cs = bs->prepare_cs[spi->chip_select];
1088 
1089 	/* set clock */
1090 	spi_hz = tfr->speed_hz;
1091 	clk_hz = clk_get_rate(bs->clk);
1092 
1093 	if (spi_hz >= clk_hz / 2) {
1094 		cdiv = 2; /* clk_hz/2 is the fastest we can go */
1095 	} else if (spi_hz) {
1096 		/* CDIV must be a multiple of two */
1097 		cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
1098 		cdiv += (cdiv % 2);
1099 
1100 		if (cdiv >= 65536)
1101 			cdiv = 0; /* 0 is the slowest we can go */
1102 	} else {
1103 		cdiv = 0; /* 0 is the slowest we can go */
1104 	}
1105 	tfr->effective_speed_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
1106 	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1107 
1108 	/* handle all the 3-wire mode */
1109 	if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1110 		cs |= BCM2835_SPI_CS_REN;
1111 
1112 	/* set transmit buffers and length */
1113 	bs->tx_buf = tfr->tx_buf;
1114 	bs->rx_buf = tfr->rx_buf;
1115 	bs->tx_len = tfr->len;
1116 	bs->rx_len = tfr->len;
1117 
1118 	/* Calculate the estimated time in us the transfer runs.  Note that
1119 	 * there is 1 idle clocks cycles after each byte getting transferred
1120 	 * so we have 9 cycles/byte.  This is used to find the number of Hz
1121 	 * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
1122 	 * per 300,000 Hz of bus clock.
1123 	 */
1124 	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1125 	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
1126 
1127 	/* run in polling mode for short transfers */
1128 	if (tfr->len < byte_limit)
1129 		return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1130 
1131 	/* run in dma mode if conditions are right
1132 	 * Note that unlike poll or interrupt mode DMA mode does not have
1133 	 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1134 	 */
1135 	if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1136 		return bcm2835_spi_transfer_one_dma(ctlr, spi, tfr, cs);
1137 
1138 	/* run in interrupt-mode */
1139 	return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1140 }
1141 
1142 static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1143 				       struct spi_message *msg)
1144 {
1145 	struct spi_device *spi = msg->spi;
1146 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1147 	int ret;
1148 
1149 	if (ctlr->can_dma) {
1150 		/*
1151 		 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1152 		 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1153 		 * aligned) if the limit is exceeded.
1154 		 */
1155 		ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
1156 						  GFP_KERNEL | GFP_DMA);
1157 		if (ret)
1158 			return ret;
1159 	}
1160 
1161 	/*
1162 	 * Set up clock polarity before spi_transfer_one_message() asserts
1163 	 * chip select to avoid a gratuitous clock signal edge.
1164 	 */
1165 	bcm2835_wr(bs, BCM2835_SPI_CS, bs->prepare_cs[spi->chip_select]);
1166 
1167 	return 0;
1168 }
1169 
1170 static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1171 				   struct spi_message *msg)
1172 {
1173 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1174 
1175 	/* if an error occurred and we have an active dma, then terminate */
1176 	dmaengine_terminate_sync(ctlr->dma_tx);
1177 	bs->tx_dma_active = false;
1178 	dmaengine_terminate_sync(ctlr->dma_rx);
1179 	bs->rx_dma_active = false;
1180 	bcm2835_spi_undo_prologue(bs);
1181 
1182 	/* and reset */
1183 	bcm2835_spi_reset_hw(bs);
1184 }
1185 
1186 static int chip_match_name(struct gpio_chip *chip, void *data)
1187 {
1188 	return !strcmp(chip->label, data);
1189 }
1190 
1191 static int bcm2835_spi_setup(struct spi_device *spi)
1192 {
1193 	struct spi_controller *ctlr = spi->controller;
1194 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1195 	struct gpio_chip *chip;
1196 	enum gpio_lookup_flags lflags;
1197 	u32 cs;
1198 
1199 	/*
1200 	 * Precalculate SPI slave's CS register value for ->prepare_message():
1201 	 * The driver always uses software-controlled GPIO chip select, hence
1202 	 * set the hardware-controlled native chip select to an invalid value
1203 	 * to prevent it from interfering.
1204 	 */
1205 	cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1206 	if (spi->mode & SPI_CPOL)
1207 		cs |= BCM2835_SPI_CS_CPOL;
1208 	if (spi->mode & SPI_CPHA)
1209 		cs |= BCM2835_SPI_CS_CPHA;
1210 	bs->prepare_cs[spi->chip_select] = cs;
1211 
1212 	/*
1213 	 * Precalculate SPI slave's CS register value to clear RX FIFO
1214 	 * in case of a TX-only DMA transfer.
1215 	 */
1216 	if (ctlr->dma_rx) {
1217 		bs->clear_rx_cs[spi->chip_select] = cs |
1218 						    BCM2835_SPI_CS_TA |
1219 						    BCM2835_SPI_CS_DMAEN |
1220 						    BCM2835_SPI_CS_CLEAR_RX;
1221 		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1222 					   bs->clear_rx_addr,
1223 					   sizeof(bs->clear_rx_cs),
1224 					   DMA_TO_DEVICE);
1225 	}
1226 
1227 	/*
1228 	 * sanity checking the native-chipselects
1229 	 */
1230 	if (spi->mode & SPI_NO_CS)
1231 		return 0;
1232 	/*
1233 	 * The SPI core has successfully requested the CS GPIO line from the
1234 	 * device tree, so we are done.
1235 	 */
1236 	if (spi->cs_gpiod)
1237 		return 0;
1238 	if (spi->chip_select > 1) {
1239 		/* error in the case of native CS requested with CS > 1
1240 		 * officially there is a CS2, but it is not documented
1241 		 * which GPIO is connected with that...
1242 		 */
1243 		dev_err(&spi->dev,
1244 			"setup: only two native chip-selects are supported\n");
1245 		return -EINVAL;
1246 	}
1247 
1248 	/*
1249 	 * Translate native CS to GPIO
1250 	 *
1251 	 * FIXME: poking around in the gpiolib internals like this is
1252 	 * not very good practice. Find a way to locate the real problem
1253 	 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
1254 	 * sometimes not assigned correctly? Erroneous device trees?
1255 	 */
1256 
1257 	/* get the gpio chip for the base */
1258 	chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
1259 	if (!chip)
1260 		return 0;
1261 
1262 	/*
1263 	 * Retrieve the corresponding GPIO line used for CS.
1264 	 * The inversion semantics will be handled by the GPIO core
1265 	 * code, so we pass GPIOD_OUT_LOW for "unasserted" and
1266 	 * the correct flag for inversion semantics. The SPI_CS_HIGH
1267 	 * on spi->mode cannot be checked for polarity in this case
1268 	 * as the flag use_gpio_descriptors enforces SPI_CS_HIGH.
1269 	 */
1270 	if (of_property_read_bool(spi->dev.of_node, "spi-cs-high"))
1271 		lflags = GPIO_ACTIVE_HIGH;
1272 	else
1273 		lflags = GPIO_ACTIVE_LOW;
1274 	spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select,
1275 						  DRV_NAME,
1276 						  lflags,
1277 						  GPIOD_OUT_LOW);
1278 	if (IS_ERR(spi->cs_gpiod))
1279 		return PTR_ERR(spi->cs_gpiod);
1280 
1281 	/* and set up the "mode" and level */
1282 	dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1283 		 spi->chip_select);
1284 
1285 	return 0;
1286 }
1287 
1288 static int bcm2835_spi_probe(struct platform_device *pdev)
1289 {
1290 	struct spi_controller *ctlr;
1291 	struct bcm2835_spi *bs;
1292 	int err;
1293 
1294 	ctlr = spi_alloc_master(&pdev->dev, ALIGN(sizeof(*bs),
1295 						  dma_get_cache_alignment()));
1296 	if (!ctlr)
1297 		return -ENOMEM;
1298 
1299 	platform_set_drvdata(pdev, ctlr);
1300 
1301 	ctlr->use_gpio_descriptors = true;
1302 	ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1303 	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1304 	ctlr->num_chipselect = BCM2835_SPI_NUM_CS;
1305 	ctlr->setup = bcm2835_spi_setup;
1306 	ctlr->transfer_one = bcm2835_spi_transfer_one;
1307 	ctlr->handle_err = bcm2835_spi_handle_err;
1308 	ctlr->prepare_message = bcm2835_spi_prepare_message;
1309 	ctlr->dev.of_node = pdev->dev.of_node;
1310 
1311 	bs = spi_controller_get_devdata(ctlr);
1312 	bs->ctlr = ctlr;
1313 
1314 	bs->regs = devm_platform_ioremap_resource(pdev, 0);
1315 	if (IS_ERR(bs->regs)) {
1316 		err = PTR_ERR(bs->regs);
1317 		goto out_controller_put;
1318 	}
1319 
1320 	bs->clk = devm_clk_get(&pdev->dev, NULL);
1321 	if (IS_ERR(bs->clk)) {
1322 		err = PTR_ERR(bs->clk);
1323 		if (err == -EPROBE_DEFER)
1324 			dev_dbg(&pdev->dev, "could not get clk: %d\n", err);
1325 		else
1326 			dev_err(&pdev->dev, "could not get clk: %d\n", err);
1327 		goto out_controller_put;
1328 	}
1329 
1330 	bs->irq = platform_get_irq(pdev, 0);
1331 	if (bs->irq <= 0) {
1332 		err = bs->irq ? bs->irq : -ENODEV;
1333 		goto out_controller_put;
1334 	}
1335 
1336 	clk_prepare_enable(bs->clk);
1337 
1338 	err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1339 	if (err)
1340 		goto out_clk_disable;
1341 
1342 	/* initialise the hardware with the default polarities */
1343 	bcm2835_wr(bs, BCM2835_SPI_CS,
1344 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1345 
1346 	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
1347 			       dev_name(&pdev->dev), bs);
1348 	if (err) {
1349 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1350 		goto out_dma_release;
1351 	}
1352 
1353 	err = spi_register_controller(ctlr);
1354 	if (err) {
1355 		dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1356 			err);
1357 		goto out_dma_release;
1358 	}
1359 
1360 	bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1361 
1362 	return 0;
1363 
1364 out_dma_release:
1365 	bcm2835_dma_release(ctlr, bs);
1366 out_clk_disable:
1367 	clk_disable_unprepare(bs->clk);
1368 out_controller_put:
1369 	spi_controller_put(ctlr);
1370 	return err;
1371 }
1372 
1373 static int bcm2835_spi_remove(struct platform_device *pdev)
1374 {
1375 	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1376 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1377 
1378 	bcm2835_debugfs_remove(bs);
1379 
1380 	spi_unregister_controller(ctlr);
1381 
1382 	bcm2835_dma_release(ctlr, bs);
1383 
1384 	/* Clear FIFOs, and disable the HW block */
1385 	bcm2835_wr(bs, BCM2835_SPI_CS,
1386 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1387 
1388 	clk_disable_unprepare(bs->clk);
1389 
1390 	return 0;
1391 }
1392 
1393 static void bcm2835_spi_shutdown(struct platform_device *pdev)
1394 {
1395 	int ret;
1396 
1397 	ret = bcm2835_spi_remove(pdev);
1398 	if (ret)
1399 		dev_err(&pdev->dev, "failed to shutdown\n");
1400 }
1401 
1402 static const struct of_device_id bcm2835_spi_match[] = {
1403 	{ .compatible = "brcm,bcm2835-spi", },
1404 	{}
1405 };
1406 MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1407 
1408 static struct platform_driver bcm2835_spi_driver = {
1409 	.driver		= {
1410 		.name		= DRV_NAME,
1411 		.of_match_table	= bcm2835_spi_match,
1412 	},
1413 	.probe		= bcm2835_spi_probe,
1414 	.remove		= bcm2835_spi_remove,
1415 	.shutdown	= bcm2835_spi_shutdown,
1416 };
1417 module_platform_driver(bcm2835_spi_driver);
1418 
1419 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1420 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1421 MODULE_LICENSE("GPL");
1422