xref: /openbmc/linux/drivers/spi/spi-bcm2835.c (revision d6e0cbb1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Broadcom BCM2835 SPI Controllers
4  *
5  * Copyright (C) 2012 Chris Boot
6  * Copyright (C) 2013 Stephen Warren
7  * Copyright (C) 2015 Martin Sperl
8  *
9  * This driver is inspired by:
10  * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11  * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/debugfs.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_device.h>
28 #include <linux/of_gpio.h>
29 #include <linux/of_irq.h>
30 #include <linux/spi/spi.h>
31 
32 /* SPI register offsets */
33 #define BCM2835_SPI_CS			0x00
34 #define BCM2835_SPI_FIFO		0x04
35 #define BCM2835_SPI_CLK			0x08
36 #define BCM2835_SPI_DLEN		0x0c
37 #define BCM2835_SPI_LTOH		0x10
38 #define BCM2835_SPI_DC			0x14
39 
40 /* Bitfields in CS */
41 #define BCM2835_SPI_CS_LEN_LONG		0x02000000
42 #define BCM2835_SPI_CS_DMA_LEN		0x01000000
43 #define BCM2835_SPI_CS_CSPOL2		0x00800000
44 #define BCM2835_SPI_CS_CSPOL1		0x00400000
45 #define BCM2835_SPI_CS_CSPOL0		0x00200000
46 #define BCM2835_SPI_CS_RXF		0x00100000
47 #define BCM2835_SPI_CS_RXR		0x00080000
48 #define BCM2835_SPI_CS_TXD		0x00040000
49 #define BCM2835_SPI_CS_RXD		0x00020000
50 #define BCM2835_SPI_CS_DONE		0x00010000
51 #define BCM2835_SPI_CS_LEN		0x00002000
52 #define BCM2835_SPI_CS_REN		0x00001000
53 #define BCM2835_SPI_CS_ADCS		0x00000800
54 #define BCM2835_SPI_CS_INTR		0x00000400
55 #define BCM2835_SPI_CS_INTD		0x00000200
56 #define BCM2835_SPI_CS_DMAEN		0x00000100
57 #define BCM2835_SPI_CS_TA		0x00000080
58 #define BCM2835_SPI_CS_CSPOL		0x00000040
59 #define BCM2835_SPI_CS_CLEAR_RX		0x00000020
60 #define BCM2835_SPI_CS_CLEAR_TX		0x00000010
61 #define BCM2835_SPI_CS_CPOL		0x00000008
62 #define BCM2835_SPI_CS_CPHA		0x00000004
63 #define BCM2835_SPI_CS_CS_10		0x00000002
64 #define BCM2835_SPI_CS_CS_01		0x00000001
65 
66 #define BCM2835_SPI_FIFO_SIZE		64
67 #define BCM2835_SPI_FIFO_SIZE_3_4	48
68 #define BCM2835_SPI_DMA_MIN_LENGTH	96
69 #define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
70 				| SPI_NO_CS | SPI_3WIRE)
71 
72 #define DRV_NAME	"spi-bcm2835"
73 
74 /* define polling limits */
75 unsigned int polling_limit_us = 30;
76 module_param(polling_limit_us, uint, 0664);
77 MODULE_PARM_DESC(polling_limit_us,
78 		 "time in us to run a transfer in polling mode\n");
79 
80 /**
81  * struct bcm2835_spi - BCM2835 SPI controller
82  * @regs: base address of register map
83  * @clk: core clock, divided to calculate serial clock
84  * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
85  * @tfr: SPI transfer currently processed
86  * @tx_buf: pointer whence next transmitted byte is read
87  * @rx_buf: pointer where next received byte is written
88  * @tx_len: remaining bytes to transmit
89  * @rx_len: remaining bytes to receive
90  * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
91  *	length is not a multiple of 4 (to overcome hardware limitation)
92  * @rx_prologue: bytes received without DMA if first RX sglist entry's
93  *	length is not a multiple of 4 (to overcome hardware limitation)
94  * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
95  * @dma_pending: whether a DMA transfer is in progress
96  * @debugfs_dir: the debugfs directory - neede to remove debugfs when
97  *      unloading the module
98  * @count_transfer_polling: count of how often polling mode is used
99  * @count_transfer_irq: count of how often interrupt mode is used
100  * @count_transfer_irq_after_polling: count of how often we fall back to
101  *      interrupt mode after starting in polling mode.
102  *      These are counted as well in @count_transfer_polling and
103  *      @count_transfer_irq
104  * @count_transfer_dma: count how often dma mode is used
105  */
106 struct bcm2835_spi {
107 	void __iomem *regs;
108 	struct clk *clk;
109 	int irq;
110 	struct spi_transfer *tfr;
111 	const u8 *tx_buf;
112 	u8 *rx_buf;
113 	int tx_len;
114 	int rx_len;
115 	int tx_prologue;
116 	int rx_prologue;
117 	unsigned int tx_spillover;
118 	unsigned int dma_pending;
119 
120 	struct dentry *debugfs_dir;
121 	u64 count_transfer_polling;
122 	u64 count_transfer_irq;
123 	u64 count_transfer_irq_after_polling;
124 	u64 count_transfer_dma;
125 };
126 
127 #if defined(CONFIG_DEBUG_FS)
128 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
129 				   const char *dname)
130 {
131 	char name[64];
132 	struct dentry *dir;
133 
134 	/* get full name */
135 	snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
136 
137 	/* the base directory */
138 	dir = debugfs_create_dir(name, NULL);
139 	bs->debugfs_dir = dir;
140 
141 	/* the counters */
142 	debugfs_create_u64("count_transfer_polling", 0444, dir,
143 			   &bs->count_transfer_polling);
144 	debugfs_create_u64("count_transfer_irq", 0444, dir,
145 			   &bs->count_transfer_irq);
146 	debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
147 			   &bs->count_transfer_irq_after_polling);
148 	debugfs_create_u64("count_transfer_dma", 0444, dir,
149 			   &bs->count_transfer_dma);
150 }
151 
152 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
153 {
154 	debugfs_remove_recursive(bs->debugfs_dir);
155 	bs->debugfs_dir = NULL;
156 }
157 #else
158 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
159 				   const char *dname)
160 {
161 }
162 
163 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
164 {
165 }
166 #endif /* CONFIG_DEBUG_FS */
167 
168 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg)
169 {
170 	return readl(bs->regs + reg);
171 }
172 
173 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val)
174 {
175 	writel(val, bs->regs + reg);
176 }
177 
178 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
179 {
180 	u8 byte;
181 
182 	while ((bs->rx_len) &&
183 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
184 		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
185 		if (bs->rx_buf)
186 			*bs->rx_buf++ = byte;
187 		bs->rx_len--;
188 	}
189 }
190 
191 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
192 {
193 	u8 byte;
194 
195 	while ((bs->tx_len) &&
196 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
197 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
198 		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
199 		bs->tx_len--;
200 	}
201 }
202 
203 /**
204  * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
205  * @bs: BCM2835 SPI controller
206  * @count: bytes to read from RX FIFO
207  *
208  * The caller must ensure that @bs->rx_len is greater than or equal to @count,
209  * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
210  * in the CS register is set (such that a read from the FIFO register receives
211  * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
212  */
213 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
214 {
215 	u32 val;
216 	int len;
217 
218 	bs->rx_len -= count;
219 
220 	while (count > 0) {
221 		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
222 		len = min(count, 4);
223 		memcpy(bs->rx_buf, &val, len);
224 		bs->rx_buf += len;
225 		count -= 4;
226 	}
227 }
228 
229 /**
230  * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
231  * @bs: BCM2835 SPI controller
232  * @count: bytes to write to TX FIFO
233  *
234  * The caller must ensure that @bs->tx_len is greater than or equal to @count,
235  * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
236  * in the CS register is set (such that a write to the FIFO register transmits
237  * 32-bit instead of just 8-bit).
238  */
239 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
240 {
241 	u32 val;
242 	int len;
243 
244 	bs->tx_len -= count;
245 
246 	while (count > 0) {
247 		if (bs->tx_buf) {
248 			len = min(count, 4);
249 			memcpy(&val, bs->tx_buf, len);
250 			bs->tx_buf += len;
251 		} else {
252 			val = 0;
253 		}
254 		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
255 		count -= 4;
256 	}
257 }
258 
259 /**
260  * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
261  * @bs: BCM2835 SPI controller
262  *
263  * The caller must ensure that the RX FIFO can accommodate as many bytes
264  * as have been written to the TX FIFO:  Transmission is halted once the
265  * RX FIFO is full, causing this function to spin forever.
266  */
267 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
268 {
269 	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
270 		cpu_relax();
271 }
272 
273 /**
274  * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
275  * @bs: BCM2835 SPI controller
276  * @count: bytes available for reading in RX FIFO
277  */
278 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
279 {
280 	u8 val;
281 
282 	count = min(count, bs->rx_len);
283 	bs->rx_len -= count;
284 
285 	while (count) {
286 		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
287 		if (bs->rx_buf)
288 			*bs->rx_buf++ = val;
289 		count--;
290 	}
291 }
292 
293 /**
294  * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
295  * @bs: BCM2835 SPI controller
296  * @count: bytes available for writing in TX FIFO
297  */
298 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
299 {
300 	u8 val;
301 
302 	count = min(count, bs->tx_len);
303 	bs->tx_len -= count;
304 
305 	while (count) {
306 		val = bs->tx_buf ? *bs->tx_buf++ : 0;
307 		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
308 		count--;
309 	}
310 }
311 
312 static void bcm2835_spi_reset_hw(struct spi_controller *ctlr)
313 {
314 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
315 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
316 
317 	/* Disable SPI interrupts and transfer */
318 	cs &= ~(BCM2835_SPI_CS_INTR |
319 		BCM2835_SPI_CS_INTD |
320 		BCM2835_SPI_CS_DMAEN |
321 		BCM2835_SPI_CS_TA);
322 	/* and reset RX/TX FIFOS */
323 	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
324 
325 	/* and reset the SPI_HW */
326 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
327 	/* as well as DLEN */
328 	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
329 }
330 
331 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
332 {
333 	struct spi_controller *ctlr = dev_id;
334 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
335 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
336 
337 	/*
338 	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
339 	 * or if RXR is set (RX FIFO >= ¾ full).
340 	 */
341 	if (cs & BCM2835_SPI_CS_RXF)
342 		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
343 	else if (cs & BCM2835_SPI_CS_RXR)
344 		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
345 
346 	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
347 		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
348 
349 	/* Read as many bytes as possible from FIFO */
350 	bcm2835_rd_fifo(bs);
351 	/* Write as many bytes as possible to FIFO */
352 	bcm2835_wr_fifo(bs);
353 
354 	if (!bs->rx_len) {
355 		/* Transfer complete - reset SPI HW */
356 		bcm2835_spi_reset_hw(ctlr);
357 		/* wake up the framework */
358 		complete(&ctlr->xfer_completion);
359 	}
360 
361 	return IRQ_HANDLED;
362 }
363 
364 static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
365 					struct spi_device *spi,
366 					struct spi_transfer *tfr,
367 					u32 cs, bool fifo_empty)
368 {
369 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
370 
371 	/* update usage statistics */
372 	bs->count_transfer_irq++;
373 
374 	/*
375 	 * Enable HW block, but with interrupts still disabled.
376 	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
377 	 */
378 	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
379 
380 	/* fill TX FIFO as much as possible */
381 	if (fifo_empty)
382 		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
383 	bcm2835_wr_fifo(bs);
384 
385 	/* enable interrupts */
386 	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
387 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
388 
389 	/* signal that we need to wait for completion */
390 	return 1;
391 }
392 
393 /**
394  * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
395  * @ctlr: SPI master controller
396  * @tfr: SPI transfer
397  * @bs: BCM2835 SPI controller
398  * @cs: CS register
399  *
400  * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
401  * Only the final write access is permitted to transmit less than 4 bytes, the
402  * SPI controller deduces its intended size from the DLEN register.
403  *
404  * If a TX or RX sglist contains multiple entries, one per page, and the first
405  * entry starts in the middle of a page, that first entry's length may not be
406  * a multiple of 4.  Subsequent entries are fine because they span an entire
407  * page, hence do have a length that's a multiple of 4.
408  *
409  * This cannot happen with kmalloc'ed buffers (which is what most clients use)
410  * because they are contiguous in physical memory and therefore not split on
411  * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
412  * buffers.
413  *
414  * The DMA engine is incapable of combining sglist entries into a continuous
415  * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
416  * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
417  * entry is rounded up by throwing away received bytes.
418  *
419  * Overcome this limitation by transferring the first few bytes without DMA:
420  * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
421  * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
422  * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
423  * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
424  *
425  * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
426  * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
427  * Caution, the additional 4 bytes spill over to the second TX sglist entry
428  * if the length of the first is *exactly* 1.
429  *
430  * At most 6 bytes are written and at most 3 bytes read.  Do we know the
431  * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
432  *
433  * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
434  * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
435  * the width but also garbles the FIFO's contents.  The prologue must therefore
436  * be transmitted in 32-bit width to ensure that the following DMA transfer can
437  * pick up the residue in the RX FIFO in ungarbled form.
438  */
439 static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
440 					  struct spi_transfer *tfr,
441 					  struct bcm2835_spi *bs,
442 					  u32 cs)
443 {
444 	int tx_remaining;
445 
446 	bs->tfr		 = tfr;
447 	bs->tx_prologue  = 0;
448 	bs->rx_prologue  = 0;
449 	bs->tx_spillover = false;
450 
451 	if (!sg_is_last(&tfr->tx_sg.sgl[0]))
452 		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
453 
454 	if (!sg_is_last(&tfr->rx_sg.sgl[0])) {
455 		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
456 
457 		if (bs->rx_prologue > bs->tx_prologue) {
458 			if (sg_is_last(&tfr->tx_sg.sgl[0])) {
459 				bs->tx_prologue  = bs->rx_prologue;
460 			} else {
461 				bs->tx_prologue += 4;
462 				bs->tx_spillover =
463 					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
464 			}
465 		}
466 	}
467 
468 	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
469 	if (!bs->tx_prologue)
470 		return;
471 
472 	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
473 	if (bs->rx_prologue) {
474 		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
475 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
476 						  | BCM2835_SPI_CS_DMAEN);
477 		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
478 		bcm2835_wait_tx_fifo_empty(bs);
479 		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
480 		bcm2835_spi_reset_hw(ctlr);
481 
482 		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
483 					   sg_dma_address(&tfr->rx_sg.sgl[0]),
484 					   bs->rx_prologue, DMA_FROM_DEVICE);
485 
486 		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
487 		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
488 	}
489 
490 	/*
491 	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
492 	 * Also adjust second entry if prologue spills over to it.
493 	 */
494 	tx_remaining = bs->tx_prologue - bs->rx_prologue;
495 	if (tx_remaining) {
496 		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
497 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
498 						  | BCM2835_SPI_CS_DMAEN);
499 		bcm2835_wr_fifo_count(bs, tx_remaining);
500 		bcm2835_wait_tx_fifo_empty(bs);
501 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX);
502 	}
503 
504 	if (likely(!bs->tx_spillover)) {
505 		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
506 		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
507 	} else {
508 		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
509 		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
510 		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
511 	}
512 }
513 
514 /**
515  * bcm2835_spi_undo_prologue() - reconstruct original sglist state
516  * @bs: BCM2835 SPI controller
517  *
518  * Undo changes which were made to an SPI transfer's sglist when transmitting
519  * the prologue.  This is necessary to ensure the same memory ranges are
520  * unmapped that were originally mapped.
521  */
522 static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
523 {
524 	struct spi_transfer *tfr = bs->tfr;
525 
526 	if (!bs->tx_prologue)
527 		return;
528 
529 	if (bs->rx_prologue) {
530 		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
531 		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
532 	}
533 
534 	if (likely(!bs->tx_spillover)) {
535 		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
536 		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
537 	} else {
538 		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
539 		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
540 		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
541 	}
542 }
543 
544 static void bcm2835_spi_dma_done(void *data)
545 {
546 	struct spi_controller *ctlr = data;
547 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
548 
549 	/* reset fifo and HW */
550 	bcm2835_spi_reset_hw(ctlr);
551 
552 	/* and terminate tx-dma as we do not have an irq for it
553 	 * because when the rx dma will terminate and this callback
554 	 * is called the tx-dma must have finished - can't get to this
555 	 * situation otherwise...
556 	 */
557 	if (cmpxchg(&bs->dma_pending, true, false)) {
558 		dmaengine_terminate_async(ctlr->dma_tx);
559 		bcm2835_spi_undo_prologue(bs);
560 	}
561 
562 	/* and mark as completed */;
563 	complete(&ctlr->xfer_completion);
564 }
565 
566 static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
567 				  struct spi_transfer *tfr,
568 				  bool is_tx)
569 {
570 	struct dma_chan *chan;
571 	struct scatterlist *sgl;
572 	unsigned int nents;
573 	enum dma_transfer_direction dir;
574 	unsigned long flags;
575 
576 	struct dma_async_tx_descriptor *desc;
577 	dma_cookie_t cookie;
578 
579 	if (is_tx) {
580 		dir   = DMA_MEM_TO_DEV;
581 		chan  = ctlr->dma_tx;
582 		nents = tfr->tx_sg.nents;
583 		sgl   = tfr->tx_sg.sgl;
584 		flags = 0 /* no  tx interrupt */;
585 
586 	} else {
587 		dir   = DMA_DEV_TO_MEM;
588 		chan  = ctlr->dma_rx;
589 		nents = tfr->rx_sg.nents;
590 		sgl   = tfr->rx_sg.sgl;
591 		flags = DMA_PREP_INTERRUPT;
592 	}
593 	/* prepare the channel */
594 	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
595 	if (!desc)
596 		return -EINVAL;
597 
598 	/* set callback for rx */
599 	if (!is_tx) {
600 		desc->callback = bcm2835_spi_dma_done;
601 		desc->callback_param = ctlr;
602 	}
603 
604 	/* submit it to DMA-engine */
605 	cookie = dmaengine_submit(desc);
606 
607 	return dma_submit_error(cookie);
608 }
609 
610 static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
611 					struct spi_device *spi,
612 					struct spi_transfer *tfr,
613 					u32 cs)
614 {
615 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
616 	int ret;
617 
618 	/* update usage statistics */
619 	bs->count_transfer_dma++;
620 
621 	/*
622 	 * Transfer first few bytes without DMA if length of first TX or RX
623 	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
624 	 */
625 	bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
626 
627 	/* setup tx-DMA */
628 	ret = bcm2835_spi_prepare_sg(ctlr, tfr, true);
629 	if (ret)
630 		goto err_reset_hw;
631 
632 	/* start TX early */
633 	dma_async_issue_pending(ctlr->dma_tx);
634 
635 	/* mark as dma pending */
636 	bs->dma_pending = 1;
637 
638 	/* set the DMA length */
639 	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
640 
641 	/* start the HW */
642 	bcm2835_wr(bs, BCM2835_SPI_CS,
643 		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
644 
645 	/* setup rx-DMA late - to run transfers while
646 	 * mapping of the rx buffers still takes place
647 	 * this saves 10us or more.
648 	 */
649 	ret = bcm2835_spi_prepare_sg(ctlr, tfr, false);
650 	if (ret) {
651 		/* need to reset on errors */
652 		dmaengine_terminate_sync(ctlr->dma_tx);
653 		bs->dma_pending = false;
654 		goto err_reset_hw;
655 	}
656 
657 	/* start rx dma late */
658 	dma_async_issue_pending(ctlr->dma_rx);
659 
660 	/* wait for wakeup in framework */
661 	return 1;
662 
663 err_reset_hw:
664 	bcm2835_spi_reset_hw(ctlr);
665 	bcm2835_spi_undo_prologue(bs);
666 	return ret;
667 }
668 
669 static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
670 				struct spi_device *spi,
671 				struct spi_transfer *tfr)
672 {
673 	/* we start DMA efforts only on bigger transfers */
674 	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
675 		return false;
676 
677 	/* return OK */
678 	return true;
679 }
680 
681 static void bcm2835_dma_release(struct spi_controller *ctlr)
682 {
683 	if (ctlr->dma_tx) {
684 		dmaengine_terminate_sync(ctlr->dma_tx);
685 		dma_release_channel(ctlr->dma_tx);
686 		ctlr->dma_tx = NULL;
687 	}
688 	if (ctlr->dma_rx) {
689 		dmaengine_terminate_sync(ctlr->dma_rx);
690 		dma_release_channel(ctlr->dma_rx);
691 		ctlr->dma_rx = NULL;
692 	}
693 }
694 
695 static void bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev)
696 {
697 	struct dma_slave_config slave_config;
698 	const __be32 *addr;
699 	dma_addr_t dma_reg_base;
700 	int ret;
701 
702 	/* base address in dma-space */
703 	addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
704 	if (!addr) {
705 		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
706 		goto err;
707 	}
708 	dma_reg_base = be32_to_cpup(addr);
709 
710 	/* get tx/rx dma */
711 	ctlr->dma_tx = dma_request_slave_channel(dev, "tx");
712 	if (!ctlr->dma_tx) {
713 		dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
714 		goto err;
715 	}
716 	ctlr->dma_rx = dma_request_slave_channel(dev, "rx");
717 	if (!ctlr->dma_rx) {
718 		dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
719 		goto err_release;
720 	}
721 
722 	/* configure DMAs */
723 	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
724 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
725 
726 	ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
727 	if (ret)
728 		goto err_config;
729 
730 	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
731 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
732 
733 	ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
734 	if (ret)
735 		goto err_config;
736 
737 	/* all went well, so set can_dma */
738 	ctlr->can_dma = bcm2835_spi_can_dma;
739 	/* need to do TX AND RX DMA, so we need dummy buffers */
740 	ctlr->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
741 
742 	return;
743 
744 err_config:
745 	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
746 		ret);
747 err_release:
748 	bcm2835_dma_release(ctlr);
749 err:
750 	return;
751 }
752 
753 static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
754 					 struct spi_device *spi,
755 					 struct spi_transfer *tfr,
756 					 u32 cs)
757 {
758 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
759 	unsigned long timeout;
760 
761 	/* update usage statistics */
762 	bs->count_transfer_polling++;
763 
764 	/* enable HW block without interrupts */
765 	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
766 
767 	/* fill in the fifo before timeout calculations
768 	 * if we are interrupted here, then the data is
769 	 * getting transferred by the HW while we are interrupted
770 	 */
771 	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
772 
773 	/* set the timeout to at least 2 jiffies */
774 	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
775 
776 	/* loop until finished the transfer */
777 	while (bs->rx_len) {
778 		/* fill in tx fifo with remaining data */
779 		bcm2835_wr_fifo(bs);
780 
781 		/* read from fifo as much as possible */
782 		bcm2835_rd_fifo(bs);
783 
784 		/* if there is still data pending to read
785 		 * then check the timeout
786 		 */
787 		if (bs->rx_len && time_after(jiffies, timeout)) {
788 			dev_dbg_ratelimited(&spi->dev,
789 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
790 					    jiffies - timeout,
791 					    bs->tx_len, bs->rx_len);
792 			/* fall back to interrupt mode */
793 
794 			/* update usage statistics */
795 			bs->count_transfer_irq_after_polling++;
796 
797 			return bcm2835_spi_transfer_one_irq(ctlr, spi,
798 							    tfr, cs, false);
799 		}
800 	}
801 
802 	/* Transfer complete - reset SPI HW */
803 	bcm2835_spi_reset_hw(ctlr);
804 	/* and return without waiting for completion */
805 	return 0;
806 }
807 
808 static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
809 				    struct spi_device *spi,
810 				    struct spi_transfer *tfr)
811 {
812 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
813 	unsigned long spi_hz, clk_hz, cdiv, spi_used_hz;
814 	unsigned long hz_per_byte, byte_limit;
815 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
816 
817 	/* set clock */
818 	spi_hz = tfr->speed_hz;
819 	clk_hz = clk_get_rate(bs->clk);
820 
821 	if (spi_hz >= clk_hz / 2) {
822 		cdiv = 2; /* clk_hz/2 is the fastest we can go */
823 	} else if (spi_hz) {
824 		/* CDIV must be a multiple of two */
825 		cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
826 		cdiv += (cdiv % 2);
827 
828 		if (cdiv >= 65536)
829 			cdiv = 0; /* 0 is the slowest we can go */
830 	} else {
831 		cdiv = 0; /* 0 is the slowest we can go */
832 	}
833 	spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
834 	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
835 
836 	/* handle all the 3-wire mode */
837 	if ((spi->mode & SPI_3WIRE) && (tfr->rx_buf))
838 		cs |= BCM2835_SPI_CS_REN;
839 	else
840 		cs &= ~BCM2835_SPI_CS_REN;
841 
842 	/*
843 	 * The driver always uses software-controlled GPIO Chip Select.
844 	 * Set the hardware-controlled native Chip Select to an invalid
845 	 * value to prevent it from interfering.
846 	 */
847 	cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
848 
849 	/* set transmit buffers and length */
850 	bs->tx_buf = tfr->tx_buf;
851 	bs->rx_buf = tfr->rx_buf;
852 	bs->tx_len = tfr->len;
853 	bs->rx_len = tfr->len;
854 
855 	/* Calculate the estimated time in us the transfer runs.  Note that
856 	 * there is 1 idle clocks cycles after each byte getting transferred
857 	 * so we have 9 cycles/byte.  This is used to find the number of Hz
858 	 * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
859 	 * per 300,000 Hz of bus clock.
860 	 */
861 	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
862 	byte_limit = hz_per_byte ? spi_used_hz / hz_per_byte : 1;
863 
864 	/* run in polling mode for short transfers */
865 	if (tfr->len < byte_limit)
866 		return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
867 
868 	/* run in dma mode if conditions are right
869 	 * Note that unlike poll or interrupt mode DMA mode does not have
870 	 * this 1 idle clock cycle pattern but runs the spi clock without gaps
871 	 */
872 	if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
873 		return bcm2835_spi_transfer_one_dma(ctlr, spi, tfr, cs);
874 
875 	/* run in interrupt-mode */
876 	return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
877 }
878 
879 static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
880 				       struct spi_message *msg)
881 {
882 	struct spi_device *spi = msg->spi;
883 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
884 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
885 	int ret;
886 
887 	if (ctlr->can_dma) {
888 		/*
889 		 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
890 		 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
891 		 * aligned) if the limit is exceeded.
892 		 */
893 		ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
894 						  GFP_KERNEL | GFP_DMA);
895 		if (ret)
896 			return ret;
897 	}
898 
899 	cs &= ~(BCM2835_SPI_CS_CPOL | BCM2835_SPI_CS_CPHA);
900 
901 	if (spi->mode & SPI_CPOL)
902 		cs |= BCM2835_SPI_CS_CPOL;
903 	if (spi->mode & SPI_CPHA)
904 		cs |= BCM2835_SPI_CS_CPHA;
905 
906 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
907 
908 	return 0;
909 }
910 
911 static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
912 				   struct spi_message *msg)
913 {
914 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
915 
916 	/* if an error occurred and we have an active dma, then terminate */
917 	if (cmpxchg(&bs->dma_pending, true, false)) {
918 		dmaengine_terminate_sync(ctlr->dma_tx);
919 		dmaengine_terminate_sync(ctlr->dma_rx);
920 		bcm2835_spi_undo_prologue(bs);
921 	}
922 	/* and reset */
923 	bcm2835_spi_reset_hw(ctlr);
924 }
925 
926 static int chip_match_name(struct gpio_chip *chip, void *data)
927 {
928 	return !strcmp(chip->label, data);
929 }
930 
931 static int bcm2835_spi_setup(struct spi_device *spi)
932 {
933 	int err;
934 	struct gpio_chip *chip;
935 	/*
936 	 * sanity checking the native-chipselects
937 	 */
938 	if (spi->mode & SPI_NO_CS)
939 		return 0;
940 	if (gpio_is_valid(spi->cs_gpio))
941 		return 0;
942 	if (spi->chip_select > 1) {
943 		/* error in the case of native CS requested with CS > 1
944 		 * officially there is a CS2, but it is not documented
945 		 * which GPIO is connected with that...
946 		 */
947 		dev_err(&spi->dev,
948 			"setup: only two native chip-selects are supported\n");
949 		return -EINVAL;
950 	}
951 	/* now translate native cs to GPIO */
952 
953 	/* get the gpio chip for the base */
954 	chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
955 	if (!chip)
956 		return 0;
957 
958 	/* and calculate the real CS */
959 	spi->cs_gpio = chip->base + 8 - spi->chip_select;
960 
961 	/* and set up the "mode" and level */
962 	dev_info(&spi->dev, "setting up native-CS%i as GPIO %i\n",
963 		 spi->chip_select, spi->cs_gpio);
964 
965 	/* set up GPIO as output and pull to the correct level */
966 	err = gpio_direction_output(spi->cs_gpio,
967 				    (spi->mode & SPI_CS_HIGH) ? 0 : 1);
968 	if (err) {
969 		dev_err(&spi->dev,
970 			"could not set CS%i gpio %i as output: %i",
971 			spi->chip_select, spi->cs_gpio, err);
972 		return err;
973 	}
974 
975 	return 0;
976 }
977 
978 static int bcm2835_spi_probe(struct platform_device *pdev)
979 {
980 	struct spi_controller *ctlr;
981 	struct bcm2835_spi *bs;
982 	struct resource *res;
983 	int err;
984 
985 	ctlr = spi_alloc_master(&pdev->dev, sizeof(*bs));
986 	if (!ctlr)
987 		return -ENOMEM;
988 
989 	platform_set_drvdata(pdev, ctlr);
990 
991 	ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
992 	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
993 	ctlr->num_chipselect = 3;
994 	ctlr->setup = bcm2835_spi_setup;
995 	ctlr->transfer_one = bcm2835_spi_transfer_one;
996 	ctlr->handle_err = bcm2835_spi_handle_err;
997 	ctlr->prepare_message = bcm2835_spi_prepare_message;
998 	ctlr->dev.of_node = pdev->dev.of_node;
999 
1000 	bs = spi_controller_get_devdata(ctlr);
1001 
1002 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1003 	bs->regs = devm_ioremap_resource(&pdev->dev, res);
1004 	if (IS_ERR(bs->regs)) {
1005 		err = PTR_ERR(bs->regs);
1006 		goto out_controller_put;
1007 	}
1008 
1009 	bs->clk = devm_clk_get(&pdev->dev, NULL);
1010 	if (IS_ERR(bs->clk)) {
1011 		err = PTR_ERR(bs->clk);
1012 		dev_err(&pdev->dev, "could not get clk: %d\n", err);
1013 		goto out_controller_put;
1014 	}
1015 
1016 	bs->irq = platform_get_irq(pdev, 0);
1017 	if (bs->irq <= 0) {
1018 		dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
1019 		err = bs->irq ? bs->irq : -ENODEV;
1020 		goto out_controller_put;
1021 	}
1022 
1023 	clk_prepare_enable(bs->clk);
1024 
1025 	bcm2835_dma_init(ctlr, &pdev->dev);
1026 
1027 	/* initialise the hardware with the default polarities */
1028 	bcm2835_wr(bs, BCM2835_SPI_CS,
1029 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1030 
1031 	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
1032 			       dev_name(&pdev->dev), ctlr);
1033 	if (err) {
1034 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1035 		goto out_clk_disable;
1036 	}
1037 
1038 	err = devm_spi_register_controller(&pdev->dev, ctlr);
1039 	if (err) {
1040 		dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1041 			err);
1042 		goto out_clk_disable;
1043 	}
1044 
1045 	bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1046 
1047 	return 0;
1048 
1049 out_clk_disable:
1050 	clk_disable_unprepare(bs->clk);
1051 out_controller_put:
1052 	spi_controller_put(ctlr);
1053 	return err;
1054 }
1055 
1056 static int bcm2835_spi_remove(struct platform_device *pdev)
1057 {
1058 	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1059 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1060 
1061 	bcm2835_debugfs_remove(bs);
1062 
1063 	/* Clear FIFOs, and disable the HW block */
1064 	bcm2835_wr(bs, BCM2835_SPI_CS,
1065 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1066 
1067 	clk_disable_unprepare(bs->clk);
1068 
1069 	bcm2835_dma_release(ctlr);
1070 
1071 	return 0;
1072 }
1073 
1074 static const struct of_device_id bcm2835_spi_match[] = {
1075 	{ .compatible = "brcm,bcm2835-spi", },
1076 	{}
1077 };
1078 MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1079 
1080 static struct platform_driver bcm2835_spi_driver = {
1081 	.driver		= {
1082 		.name		= DRV_NAME,
1083 		.of_match_table	= bcm2835_spi_match,
1084 	},
1085 	.probe		= bcm2835_spi_probe,
1086 	.remove		= bcm2835_spi_remove,
1087 };
1088 module_platform_driver(bcm2835_spi_driver);
1089 
1090 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1091 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1092 MODULE_LICENSE("GPL");
1093