1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for Broadcom BCM2835 SPI Controllers 4 * 5 * Copyright (C) 2012 Chris Boot 6 * Copyright (C) 2013 Stephen Warren 7 * Copyright (C) 2015 Martin Sperl 8 * 9 * This driver is inspired by: 10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org> 11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/completion.h> 16 #include <linux/debugfs.h> 17 #include <linux/delay.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/dmaengine.h> 20 #include <linux/err.h> 21 #include <linux/interrupt.h> 22 #include <linux/io.h> 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_device.h> 28 #include <linux/of_gpio.h> 29 #include <linux/of_irq.h> 30 #include <linux/spi/spi.h> 31 32 /* SPI register offsets */ 33 #define BCM2835_SPI_CS 0x00 34 #define BCM2835_SPI_FIFO 0x04 35 #define BCM2835_SPI_CLK 0x08 36 #define BCM2835_SPI_DLEN 0x0c 37 #define BCM2835_SPI_LTOH 0x10 38 #define BCM2835_SPI_DC 0x14 39 40 /* Bitfields in CS */ 41 #define BCM2835_SPI_CS_LEN_LONG 0x02000000 42 #define BCM2835_SPI_CS_DMA_LEN 0x01000000 43 #define BCM2835_SPI_CS_CSPOL2 0x00800000 44 #define BCM2835_SPI_CS_CSPOL1 0x00400000 45 #define BCM2835_SPI_CS_CSPOL0 0x00200000 46 #define BCM2835_SPI_CS_RXF 0x00100000 47 #define BCM2835_SPI_CS_RXR 0x00080000 48 #define BCM2835_SPI_CS_TXD 0x00040000 49 #define BCM2835_SPI_CS_RXD 0x00020000 50 #define BCM2835_SPI_CS_DONE 0x00010000 51 #define BCM2835_SPI_CS_LEN 0x00002000 52 #define BCM2835_SPI_CS_REN 0x00001000 53 #define BCM2835_SPI_CS_ADCS 0x00000800 54 #define BCM2835_SPI_CS_INTR 0x00000400 55 #define BCM2835_SPI_CS_INTD 0x00000200 56 #define BCM2835_SPI_CS_DMAEN 0x00000100 57 #define BCM2835_SPI_CS_TA 0x00000080 58 #define BCM2835_SPI_CS_CSPOL 0x00000040 59 #define BCM2835_SPI_CS_CLEAR_RX 0x00000020 60 #define BCM2835_SPI_CS_CLEAR_TX 0x00000010 61 #define BCM2835_SPI_CS_CPOL 0x00000008 62 #define BCM2835_SPI_CS_CPHA 0x00000004 63 #define BCM2835_SPI_CS_CS_10 0x00000002 64 #define BCM2835_SPI_CS_CS_01 0x00000001 65 66 #define BCM2835_SPI_FIFO_SIZE 64 67 #define BCM2835_SPI_FIFO_SIZE_3_4 48 68 #define BCM2835_SPI_DMA_MIN_LENGTH 96 69 #define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \ 70 | SPI_NO_CS | SPI_3WIRE) 71 72 #define DRV_NAME "spi-bcm2835" 73 74 /* define polling limits */ 75 unsigned int polling_limit_us = 30; 76 module_param(polling_limit_us, uint, 0664); 77 MODULE_PARM_DESC(polling_limit_us, 78 "time in us to run a transfer in polling mode\n"); 79 80 /** 81 * struct bcm2835_spi - BCM2835 SPI controller 82 * @regs: base address of register map 83 * @clk: core clock, divided to calculate serial clock 84 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full 85 * @tfr: SPI transfer currently processed 86 * @tx_buf: pointer whence next transmitted byte is read 87 * @rx_buf: pointer where next received byte is written 88 * @tx_len: remaining bytes to transmit 89 * @rx_len: remaining bytes to receive 90 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's 91 * length is not a multiple of 4 (to overcome hardware limitation) 92 * @rx_prologue: bytes received without DMA if first RX sglist entry's 93 * length is not a multiple of 4 (to overcome hardware limitation) 94 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry 95 * @dma_pending: whether a DMA transfer is in progress 96 * @debugfs_dir: the debugfs directory - neede to remove debugfs when 97 * unloading the module 98 * @count_transfer_polling: count of how often polling mode is used 99 * @count_transfer_irq: count of how often interrupt mode is used 100 * @count_transfer_irq_after_polling: count of how often we fall back to 101 * interrupt mode after starting in polling mode. 102 * These are counted as well in @count_transfer_polling and 103 * @count_transfer_irq 104 * @count_transfer_dma: count how often dma mode is used 105 */ 106 struct bcm2835_spi { 107 void __iomem *regs; 108 struct clk *clk; 109 int irq; 110 struct spi_transfer *tfr; 111 const u8 *tx_buf; 112 u8 *rx_buf; 113 int tx_len; 114 int rx_len; 115 int tx_prologue; 116 int rx_prologue; 117 unsigned int tx_spillover; 118 unsigned int dma_pending; 119 120 struct dentry *debugfs_dir; 121 u64 count_transfer_polling; 122 u64 count_transfer_irq; 123 u64 count_transfer_irq_after_polling; 124 u64 count_transfer_dma; 125 }; 126 127 #if defined(CONFIG_DEBUG_FS) 128 static void bcm2835_debugfs_create(struct bcm2835_spi *bs, 129 const char *dname) 130 { 131 char name[64]; 132 struct dentry *dir; 133 134 /* get full name */ 135 snprintf(name, sizeof(name), "spi-bcm2835-%s", dname); 136 137 /* the base directory */ 138 dir = debugfs_create_dir(name, NULL); 139 bs->debugfs_dir = dir; 140 141 /* the counters */ 142 debugfs_create_u64("count_transfer_polling", 0444, dir, 143 &bs->count_transfer_polling); 144 debugfs_create_u64("count_transfer_irq", 0444, dir, 145 &bs->count_transfer_irq); 146 debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir, 147 &bs->count_transfer_irq_after_polling); 148 debugfs_create_u64("count_transfer_dma", 0444, dir, 149 &bs->count_transfer_dma); 150 } 151 152 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs) 153 { 154 debugfs_remove_recursive(bs->debugfs_dir); 155 bs->debugfs_dir = NULL; 156 } 157 #else 158 static void bcm2835_debugfs_create(struct bcm2835_spi *bs, 159 const char *dname) 160 { 161 } 162 163 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs) 164 { 165 } 166 #endif /* CONFIG_DEBUG_FS */ 167 168 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg) 169 { 170 return readl(bs->regs + reg); 171 } 172 173 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val) 174 { 175 writel(val, bs->regs + reg); 176 } 177 178 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs) 179 { 180 u8 byte; 181 182 while ((bs->rx_len) && 183 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) { 184 byte = bcm2835_rd(bs, BCM2835_SPI_FIFO); 185 if (bs->rx_buf) 186 *bs->rx_buf++ = byte; 187 bs->rx_len--; 188 } 189 } 190 191 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs) 192 { 193 u8 byte; 194 195 while ((bs->tx_len) && 196 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) { 197 byte = bs->tx_buf ? *bs->tx_buf++ : 0; 198 bcm2835_wr(bs, BCM2835_SPI_FIFO, byte); 199 bs->tx_len--; 200 } 201 } 202 203 /** 204 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO 205 * @bs: BCM2835 SPI controller 206 * @count: bytes to read from RX FIFO 207 * 208 * The caller must ensure that @bs->rx_len is greater than or equal to @count, 209 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag 210 * in the CS register is set (such that a read from the FIFO register receives 211 * 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL. 212 */ 213 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count) 214 { 215 u32 val; 216 int len; 217 218 bs->rx_len -= count; 219 220 while (count > 0) { 221 val = bcm2835_rd(bs, BCM2835_SPI_FIFO); 222 len = min(count, 4); 223 memcpy(bs->rx_buf, &val, len); 224 bs->rx_buf += len; 225 count -= 4; 226 } 227 } 228 229 /** 230 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO 231 * @bs: BCM2835 SPI controller 232 * @count: bytes to write to TX FIFO 233 * 234 * The caller must ensure that @bs->tx_len is greater than or equal to @count, 235 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag 236 * in the CS register is set (such that a write to the FIFO register transmits 237 * 32-bit instead of just 8-bit). 238 */ 239 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count) 240 { 241 u32 val; 242 int len; 243 244 bs->tx_len -= count; 245 246 while (count > 0) { 247 if (bs->tx_buf) { 248 len = min(count, 4); 249 memcpy(&val, bs->tx_buf, len); 250 bs->tx_buf += len; 251 } else { 252 val = 0; 253 } 254 bcm2835_wr(bs, BCM2835_SPI_FIFO, val); 255 count -= 4; 256 } 257 } 258 259 /** 260 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty 261 * @bs: BCM2835 SPI controller 262 * 263 * The caller must ensure that the RX FIFO can accommodate as many bytes 264 * as have been written to the TX FIFO: Transmission is halted once the 265 * RX FIFO is full, causing this function to spin forever. 266 */ 267 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs) 268 { 269 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE)) 270 cpu_relax(); 271 } 272 273 /** 274 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO 275 * @bs: BCM2835 SPI controller 276 * @count: bytes available for reading in RX FIFO 277 */ 278 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count) 279 { 280 u8 val; 281 282 count = min(count, bs->rx_len); 283 bs->rx_len -= count; 284 285 while (count) { 286 val = bcm2835_rd(bs, BCM2835_SPI_FIFO); 287 if (bs->rx_buf) 288 *bs->rx_buf++ = val; 289 count--; 290 } 291 } 292 293 /** 294 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO 295 * @bs: BCM2835 SPI controller 296 * @count: bytes available for writing in TX FIFO 297 */ 298 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count) 299 { 300 u8 val; 301 302 count = min(count, bs->tx_len); 303 bs->tx_len -= count; 304 305 while (count) { 306 val = bs->tx_buf ? *bs->tx_buf++ : 0; 307 bcm2835_wr(bs, BCM2835_SPI_FIFO, val); 308 count--; 309 } 310 } 311 312 static void bcm2835_spi_reset_hw(struct spi_controller *ctlr) 313 { 314 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 315 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS); 316 317 /* Disable SPI interrupts and transfer */ 318 cs &= ~(BCM2835_SPI_CS_INTR | 319 BCM2835_SPI_CS_INTD | 320 BCM2835_SPI_CS_DMAEN | 321 BCM2835_SPI_CS_TA); 322 /* and reset RX/TX FIFOS */ 323 cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX; 324 325 /* and reset the SPI_HW */ 326 bcm2835_wr(bs, BCM2835_SPI_CS, cs); 327 /* as well as DLEN */ 328 bcm2835_wr(bs, BCM2835_SPI_DLEN, 0); 329 } 330 331 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id) 332 { 333 struct spi_controller *ctlr = dev_id; 334 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 335 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS); 336 337 /* 338 * An interrupt is signaled either if DONE is set (TX FIFO empty) 339 * or if RXR is set (RX FIFO >= ¾ full). 340 */ 341 if (cs & BCM2835_SPI_CS_RXF) 342 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); 343 else if (cs & BCM2835_SPI_CS_RXR) 344 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4); 345 346 if (bs->tx_len && cs & BCM2835_SPI_CS_DONE) 347 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); 348 349 /* Read as many bytes as possible from FIFO */ 350 bcm2835_rd_fifo(bs); 351 /* Write as many bytes as possible to FIFO */ 352 bcm2835_wr_fifo(bs); 353 354 if (!bs->rx_len) { 355 /* Transfer complete - reset SPI HW */ 356 bcm2835_spi_reset_hw(ctlr); 357 /* wake up the framework */ 358 complete(&ctlr->xfer_completion); 359 } 360 361 return IRQ_HANDLED; 362 } 363 364 static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr, 365 struct spi_device *spi, 366 struct spi_transfer *tfr, 367 u32 cs, bool fifo_empty) 368 { 369 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 370 371 /* update usage statistics */ 372 bs->count_transfer_irq++; 373 374 /* 375 * Enable HW block, but with interrupts still disabled. 376 * Otherwise the empty TX FIFO would immediately trigger an interrupt. 377 */ 378 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA); 379 380 /* fill TX FIFO as much as possible */ 381 if (fifo_empty) 382 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); 383 bcm2835_wr_fifo(bs); 384 385 /* enable interrupts */ 386 cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA; 387 bcm2835_wr(bs, BCM2835_SPI_CS, cs); 388 389 /* signal that we need to wait for completion */ 390 return 1; 391 } 392 393 /** 394 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA 395 * @ctlr: SPI master controller 396 * @tfr: SPI transfer 397 * @bs: BCM2835 SPI controller 398 * @cs: CS register 399 * 400 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks. 401 * Only the final write access is permitted to transmit less than 4 bytes, the 402 * SPI controller deduces its intended size from the DLEN register. 403 * 404 * If a TX or RX sglist contains multiple entries, one per page, and the first 405 * entry starts in the middle of a page, that first entry's length may not be 406 * a multiple of 4. Subsequent entries are fine because they span an entire 407 * page, hence do have a length that's a multiple of 4. 408 * 409 * This cannot happen with kmalloc'ed buffers (which is what most clients use) 410 * because they are contiguous in physical memory and therefore not split on 411 * page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed 412 * buffers. 413 * 414 * The DMA engine is incapable of combining sglist entries into a continuous 415 * stream of 4 byte chunks, it treats every entry separately: A TX entry is 416 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX 417 * entry is rounded up by throwing away received bytes. 418 * 419 * Overcome this limitation by transferring the first few bytes without DMA: 420 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42, 421 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO. 422 * The residue of 1 byte in the RX FIFO is picked up by DMA. Together with 423 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes. 424 * 425 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1, 426 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO. 427 * Caution, the additional 4 bytes spill over to the second TX sglist entry 428 * if the length of the first is *exactly* 1. 429 * 430 * At most 6 bytes are written and at most 3 bytes read. Do we know the 431 * transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH. 432 * 433 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width 434 * by the DMA engine. Toggling the DMA Enable flag in the CS register switches 435 * the width but also garbles the FIFO's contents. The prologue must therefore 436 * be transmitted in 32-bit width to ensure that the following DMA transfer can 437 * pick up the residue in the RX FIFO in ungarbled form. 438 */ 439 static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr, 440 struct spi_transfer *tfr, 441 struct bcm2835_spi *bs, 442 u32 cs) 443 { 444 int tx_remaining; 445 446 bs->tfr = tfr; 447 bs->tx_prologue = 0; 448 bs->rx_prologue = 0; 449 bs->tx_spillover = false; 450 451 if (!sg_is_last(&tfr->tx_sg.sgl[0])) 452 bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3; 453 454 if (!sg_is_last(&tfr->rx_sg.sgl[0])) { 455 bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3; 456 457 if (bs->rx_prologue > bs->tx_prologue) { 458 if (sg_is_last(&tfr->tx_sg.sgl[0])) { 459 bs->tx_prologue = bs->rx_prologue; 460 } else { 461 bs->tx_prologue += 4; 462 bs->tx_spillover = 463 !(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3); 464 } 465 } 466 } 467 468 /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */ 469 if (!bs->tx_prologue) 470 return; 471 472 /* Write and read RX prologue. Adjust first entry in RX sglist. */ 473 if (bs->rx_prologue) { 474 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue); 475 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA 476 | BCM2835_SPI_CS_DMAEN); 477 bcm2835_wr_fifo_count(bs, bs->rx_prologue); 478 bcm2835_wait_tx_fifo_empty(bs); 479 bcm2835_rd_fifo_count(bs, bs->rx_prologue); 480 bcm2835_spi_reset_hw(ctlr); 481 482 dma_sync_single_for_device(ctlr->dma_rx->device->dev, 483 sg_dma_address(&tfr->rx_sg.sgl[0]), 484 bs->rx_prologue, DMA_FROM_DEVICE); 485 486 sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue; 487 sg_dma_len(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue; 488 } 489 490 /* 491 * Write remaining TX prologue. Adjust first entry in TX sglist. 492 * Also adjust second entry if prologue spills over to it. 493 */ 494 tx_remaining = bs->tx_prologue - bs->rx_prologue; 495 if (tx_remaining) { 496 bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining); 497 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA 498 | BCM2835_SPI_CS_DMAEN); 499 bcm2835_wr_fifo_count(bs, tx_remaining); 500 bcm2835_wait_tx_fifo_empty(bs); 501 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX); 502 } 503 504 if (likely(!bs->tx_spillover)) { 505 sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue; 506 sg_dma_len(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue; 507 } else { 508 sg_dma_len(&tfr->tx_sg.sgl[0]) = 0; 509 sg_dma_address(&tfr->tx_sg.sgl[1]) += 4; 510 sg_dma_len(&tfr->tx_sg.sgl[1]) -= 4; 511 } 512 } 513 514 /** 515 * bcm2835_spi_undo_prologue() - reconstruct original sglist state 516 * @bs: BCM2835 SPI controller 517 * 518 * Undo changes which were made to an SPI transfer's sglist when transmitting 519 * the prologue. This is necessary to ensure the same memory ranges are 520 * unmapped that were originally mapped. 521 */ 522 static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs) 523 { 524 struct spi_transfer *tfr = bs->tfr; 525 526 if (!bs->tx_prologue) 527 return; 528 529 if (bs->rx_prologue) { 530 sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue; 531 sg_dma_len(&tfr->rx_sg.sgl[0]) += bs->rx_prologue; 532 } 533 534 if (likely(!bs->tx_spillover)) { 535 sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue; 536 sg_dma_len(&tfr->tx_sg.sgl[0]) += bs->tx_prologue; 537 } else { 538 sg_dma_len(&tfr->tx_sg.sgl[0]) = bs->tx_prologue - 4; 539 sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4; 540 sg_dma_len(&tfr->tx_sg.sgl[1]) += 4; 541 } 542 } 543 544 static void bcm2835_spi_dma_done(void *data) 545 { 546 struct spi_controller *ctlr = data; 547 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 548 549 /* reset fifo and HW */ 550 bcm2835_spi_reset_hw(ctlr); 551 552 /* and terminate tx-dma as we do not have an irq for it 553 * because when the rx dma will terminate and this callback 554 * is called the tx-dma must have finished - can't get to this 555 * situation otherwise... 556 */ 557 if (cmpxchg(&bs->dma_pending, true, false)) { 558 dmaengine_terminate_async(ctlr->dma_tx); 559 bcm2835_spi_undo_prologue(bs); 560 } 561 562 /* and mark as completed */; 563 complete(&ctlr->xfer_completion); 564 } 565 566 static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr, 567 struct spi_transfer *tfr, 568 bool is_tx) 569 { 570 struct dma_chan *chan; 571 struct scatterlist *sgl; 572 unsigned int nents; 573 enum dma_transfer_direction dir; 574 unsigned long flags; 575 576 struct dma_async_tx_descriptor *desc; 577 dma_cookie_t cookie; 578 579 if (is_tx) { 580 dir = DMA_MEM_TO_DEV; 581 chan = ctlr->dma_tx; 582 nents = tfr->tx_sg.nents; 583 sgl = tfr->tx_sg.sgl; 584 flags = 0 /* no tx interrupt */; 585 586 } else { 587 dir = DMA_DEV_TO_MEM; 588 chan = ctlr->dma_rx; 589 nents = tfr->rx_sg.nents; 590 sgl = tfr->rx_sg.sgl; 591 flags = DMA_PREP_INTERRUPT; 592 } 593 /* prepare the channel */ 594 desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags); 595 if (!desc) 596 return -EINVAL; 597 598 /* set callback for rx */ 599 if (!is_tx) { 600 desc->callback = bcm2835_spi_dma_done; 601 desc->callback_param = ctlr; 602 } 603 604 /* submit it to DMA-engine */ 605 cookie = dmaengine_submit(desc); 606 607 return dma_submit_error(cookie); 608 } 609 610 static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr, 611 struct spi_device *spi, 612 struct spi_transfer *tfr, 613 u32 cs) 614 { 615 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 616 int ret; 617 618 /* update usage statistics */ 619 bs->count_transfer_dma++; 620 621 /* 622 * Transfer first few bytes without DMA if length of first TX or RX 623 * sglist entry is not a multiple of 4 bytes (hardware limitation). 624 */ 625 bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs); 626 627 /* setup tx-DMA */ 628 ret = bcm2835_spi_prepare_sg(ctlr, tfr, true); 629 if (ret) 630 goto err_reset_hw; 631 632 /* start TX early */ 633 dma_async_issue_pending(ctlr->dma_tx); 634 635 /* mark as dma pending */ 636 bs->dma_pending = 1; 637 638 /* set the DMA length */ 639 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len); 640 641 /* start the HW */ 642 bcm2835_wr(bs, BCM2835_SPI_CS, 643 cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN); 644 645 /* setup rx-DMA late - to run transfers while 646 * mapping of the rx buffers still takes place 647 * this saves 10us or more. 648 */ 649 ret = bcm2835_spi_prepare_sg(ctlr, tfr, false); 650 if (ret) { 651 /* need to reset on errors */ 652 dmaengine_terminate_sync(ctlr->dma_tx); 653 bs->dma_pending = false; 654 goto err_reset_hw; 655 } 656 657 /* start rx dma late */ 658 dma_async_issue_pending(ctlr->dma_rx); 659 660 /* wait for wakeup in framework */ 661 return 1; 662 663 err_reset_hw: 664 bcm2835_spi_reset_hw(ctlr); 665 bcm2835_spi_undo_prologue(bs); 666 return ret; 667 } 668 669 static bool bcm2835_spi_can_dma(struct spi_controller *ctlr, 670 struct spi_device *spi, 671 struct spi_transfer *tfr) 672 { 673 /* we start DMA efforts only on bigger transfers */ 674 if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH) 675 return false; 676 677 /* return OK */ 678 return true; 679 } 680 681 static void bcm2835_dma_release(struct spi_controller *ctlr) 682 { 683 if (ctlr->dma_tx) { 684 dmaengine_terminate_sync(ctlr->dma_tx); 685 dma_release_channel(ctlr->dma_tx); 686 ctlr->dma_tx = NULL; 687 } 688 if (ctlr->dma_rx) { 689 dmaengine_terminate_sync(ctlr->dma_rx); 690 dma_release_channel(ctlr->dma_rx); 691 ctlr->dma_rx = NULL; 692 } 693 } 694 695 static void bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev) 696 { 697 struct dma_slave_config slave_config; 698 const __be32 *addr; 699 dma_addr_t dma_reg_base; 700 int ret; 701 702 /* base address in dma-space */ 703 addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL); 704 if (!addr) { 705 dev_err(dev, "could not get DMA-register address - not using dma mode\n"); 706 goto err; 707 } 708 dma_reg_base = be32_to_cpup(addr); 709 710 /* get tx/rx dma */ 711 ctlr->dma_tx = dma_request_slave_channel(dev, "tx"); 712 if (!ctlr->dma_tx) { 713 dev_err(dev, "no tx-dma configuration found - not using dma mode\n"); 714 goto err; 715 } 716 ctlr->dma_rx = dma_request_slave_channel(dev, "rx"); 717 if (!ctlr->dma_rx) { 718 dev_err(dev, "no rx-dma configuration found - not using dma mode\n"); 719 goto err_release; 720 } 721 722 /* configure DMAs */ 723 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO); 724 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 725 726 ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config); 727 if (ret) 728 goto err_config; 729 730 slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO); 731 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 732 733 ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config); 734 if (ret) 735 goto err_config; 736 737 /* all went well, so set can_dma */ 738 ctlr->can_dma = bcm2835_spi_can_dma; 739 /* need to do TX AND RX DMA, so we need dummy buffers */ 740 ctlr->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; 741 742 return; 743 744 err_config: 745 dev_err(dev, "issue configuring dma: %d - not using DMA mode\n", 746 ret); 747 err_release: 748 bcm2835_dma_release(ctlr); 749 err: 750 return; 751 } 752 753 static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr, 754 struct spi_device *spi, 755 struct spi_transfer *tfr, 756 u32 cs) 757 { 758 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 759 unsigned long timeout; 760 761 /* update usage statistics */ 762 bs->count_transfer_polling++; 763 764 /* enable HW block without interrupts */ 765 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA); 766 767 /* fill in the fifo before timeout calculations 768 * if we are interrupted here, then the data is 769 * getting transferred by the HW while we are interrupted 770 */ 771 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); 772 773 /* set the timeout to at least 2 jiffies */ 774 timeout = jiffies + 2 + HZ * polling_limit_us / 1000000; 775 776 /* loop until finished the transfer */ 777 while (bs->rx_len) { 778 /* fill in tx fifo with remaining data */ 779 bcm2835_wr_fifo(bs); 780 781 /* read from fifo as much as possible */ 782 bcm2835_rd_fifo(bs); 783 784 /* if there is still data pending to read 785 * then check the timeout 786 */ 787 if (bs->rx_len && time_after(jiffies, timeout)) { 788 dev_dbg_ratelimited(&spi->dev, 789 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n", 790 jiffies - timeout, 791 bs->tx_len, bs->rx_len); 792 /* fall back to interrupt mode */ 793 794 /* update usage statistics */ 795 bs->count_transfer_irq_after_polling++; 796 797 return bcm2835_spi_transfer_one_irq(ctlr, spi, 798 tfr, cs, false); 799 } 800 } 801 802 /* Transfer complete - reset SPI HW */ 803 bcm2835_spi_reset_hw(ctlr); 804 /* and return without waiting for completion */ 805 return 0; 806 } 807 808 static int bcm2835_spi_transfer_one(struct spi_controller *ctlr, 809 struct spi_device *spi, 810 struct spi_transfer *tfr) 811 { 812 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 813 unsigned long spi_hz, clk_hz, cdiv, spi_used_hz; 814 unsigned long hz_per_byte, byte_limit; 815 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS); 816 817 /* set clock */ 818 spi_hz = tfr->speed_hz; 819 clk_hz = clk_get_rate(bs->clk); 820 821 if (spi_hz >= clk_hz / 2) { 822 cdiv = 2; /* clk_hz/2 is the fastest we can go */ 823 } else if (spi_hz) { 824 /* CDIV must be a multiple of two */ 825 cdiv = DIV_ROUND_UP(clk_hz, spi_hz); 826 cdiv += (cdiv % 2); 827 828 if (cdiv >= 65536) 829 cdiv = 0; /* 0 is the slowest we can go */ 830 } else { 831 cdiv = 0; /* 0 is the slowest we can go */ 832 } 833 spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536); 834 bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv); 835 836 /* handle all the 3-wire mode */ 837 if ((spi->mode & SPI_3WIRE) && (tfr->rx_buf)) 838 cs |= BCM2835_SPI_CS_REN; 839 else 840 cs &= ~BCM2835_SPI_CS_REN; 841 842 /* 843 * The driver always uses software-controlled GPIO Chip Select. 844 * Set the hardware-controlled native Chip Select to an invalid 845 * value to prevent it from interfering. 846 */ 847 cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01; 848 849 /* set transmit buffers and length */ 850 bs->tx_buf = tfr->tx_buf; 851 bs->rx_buf = tfr->rx_buf; 852 bs->tx_len = tfr->len; 853 bs->rx_len = tfr->len; 854 855 /* Calculate the estimated time in us the transfer runs. Note that 856 * there is 1 idle clocks cycles after each byte getting transferred 857 * so we have 9 cycles/byte. This is used to find the number of Hz 858 * per byte per polling limit. E.g., we can transfer 1 byte in 30 us 859 * per 300,000 Hz of bus clock. 860 */ 861 hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0; 862 byte_limit = hz_per_byte ? spi_used_hz / hz_per_byte : 1; 863 864 /* run in polling mode for short transfers */ 865 if (tfr->len < byte_limit) 866 return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs); 867 868 /* run in dma mode if conditions are right 869 * Note that unlike poll or interrupt mode DMA mode does not have 870 * this 1 idle clock cycle pattern but runs the spi clock without gaps 871 */ 872 if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr)) 873 return bcm2835_spi_transfer_one_dma(ctlr, spi, tfr, cs); 874 875 /* run in interrupt-mode */ 876 return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true); 877 } 878 879 static int bcm2835_spi_prepare_message(struct spi_controller *ctlr, 880 struct spi_message *msg) 881 { 882 struct spi_device *spi = msg->spi; 883 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 884 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS); 885 int ret; 886 887 if (ctlr->can_dma) { 888 /* 889 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by 890 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO 891 * aligned) if the limit is exceeded. 892 */ 893 ret = spi_split_transfers_maxsize(ctlr, msg, 65532, 894 GFP_KERNEL | GFP_DMA); 895 if (ret) 896 return ret; 897 } 898 899 cs &= ~(BCM2835_SPI_CS_CPOL | BCM2835_SPI_CS_CPHA); 900 901 if (spi->mode & SPI_CPOL) 902 cs |= BCM2835_SPI_CS_CPOL; 903 if (spi->mode & SPI_CPHA) 904 cs |= BCM2835_SPI_CS_CPHA; 905 906 bcm2835_wr(bs, BCM2835_SPI_CS, cs); 907 908 return 0; 909 } 910 911 static void bcm2835_spi_handle_err(struct spi_controller *ctlr, 912 struct spi_message *msg) 913 { 914 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 915 916 /* if an error occurred and we have an active dma, then terminate */ 917 if (cmpxchg(&bs->dma_pending, true, false)) { 918 dmaengine_terminate_sync(ctlr->dma_tx); 919 dmaengine_terminate_sync(ctlr->dma_rx); 920 bcm2835_spi_undo_prologue(bs); 921 } 922 /* and reset */ 923 bcm2835_spi_reset_hw(ctlr); 924 } 925 926 static int chip_match_name(struct gpio_chip *chip, void *data) 927 { 928 return !strcmp(chip->label, data); 929 } 930 931 static int bcm2835_spi_setup(struct spi_device *spi) 932 { 933 int err; 934 struct gpio_chip *chip; 935 /* 936 * sanity checking the native-chipselects 937 */ 938 if (spi->mode & SPI_NO_CS) 939 return 0; 940 if (gpio_is_valid(spi->cs_gpio)) 941 return 0; 942 if (spi->chip_select > 1) { 943 /* error in the case of native CS requested with CS > 1 944 * officially there is a CS2, but it is not documented 945 * which GPIO is connected with that... 946 */ 947 dev_err(&spi->dev, 948 "setup: only two native chip-selects are supported\n"); 949 return -EINVAL; 950 } 951 /* now translate native cs to GPIO */ 952 953 /* get the gpio chip for the base */ 954 chip = gpiochip_find("pinctrl-bcm2835", chip_match_name); 955 if (!chip) 956 return 0; 957 958 /* and calculate the real CS */ 959 spi->cs_gpio = chip->base + 8 - spi->chip_select; 960 961 /* and set up the "mode" and level */ 962 dev_info(&spi->dev, "setting up native-CS%i as GPIO %i\n", 963 spi->chip_select, spi->cs_gpio); 964 965 /* set up GPIO as output and pull to the correct level */ 966 err = gpio_direction_output(spi->cs_gpio, 967 (spi->mode & SPI_CS_HIGH) ? 0 : 1); 968 if (err) { 969 dev_err(&spi->dev, 970 "could not set CS%i gpio %i as output: %i", 971 spi->chip_select, spi->cs_gpio, err); 972 return err; 973 } 974 975 return 0; 976 } 977 978 static int bcm2835_spi_probe(struct platform_device *pdev) 979 { 980 struct spi_controller *ctlr; 981 struct bcm2835_spi *bs; 982 struct resource *res; 983 int err; 984 985 ctlr = spi_alloc_master(&pdev->dev, sizeof(*bs)); 986 if (!ctlr) 987 return -ENOMEM; 988 989 platform_set_drvdata(pdev, ctlr); 990 991 ctlr->mode_bits = BCM2835_SPI_MODE_BITS; 992 ctlr->bits_per_word_mask = SPI_BPW_MASK(8); 993 ctlr->num_chipselect = 3; 994 ctlr->setup = bcm2835_spi_setup; 995 ctlr->transfer_one = bcm2835_spi_transfer_one; 996 ctlr->handle_err = bcm2835_spi_handle_err; 997 ctlr->prepare_message = bcm2835_spi_prepare_message; 998 ctlr->dev.of_node = pdev->dev.of_node; 999 1000 bs = spi_controller_get_devdata(ctlr); 1001 1002 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1003 bs->regs = devm_ioremap_resource(&pdev->dev, res); 1004 if (IS_ERR(bs->regs)) { 1005 err = PTR_ERR(bs->regs); 1006 goto out_controller_put; 1007 } 1008 1009 bs->clk = devm_clk_get(&pdev->dev, NULL); 1010 if (IS_ERR(bs->clk)) { 1011 err = PTR_ERR(bs->clk); 1012 dev_err(&pdev->dev, "could not get clk: %d\n", err); 1013 goto out_controller_put; 1014 } 1015 1016 bs->irq = platform_get_irq(pdev, 0); 1017 if (bs->irq <= 0) { 1018 dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq); 1019 err = bs->irq ? bs->irq : -ENODEV; 1020 goto out_controller_put; 1021 } 1022 1023 clk_prepare_enable(bs->clk); 1024 1025 bcm2835_dma_init(ctlr, &pdev->dev); 1026 1027 /* initialise the hardware with the default polarities */ 1028 bcm2835_wr(bs, BCM2835_SPI_CS, 1029 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX); 1030 1031 err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0, 1032 dev_name(&pdev->dev), ctlr); 1033 if (err) { 1034 dev_err(&pdev->dev, "could not request IRQ: %d\n", err); 1035 goto out_clk_disable; 1036 } 1037 1038 err = devm_spi_register_controller(&pdev->dev, ctlr); 1039 if (err) { 1040 dev_err(&pdev->dev, "could not register SPI controller: %d\n", 1041 err); 1042 goto out_clk_disable; 1043 } 1044 1045 bcm2835_debugfs_create(bs, dev_name(&pdev->dev)); 1046 1047 return 0; 1048 1049 out_clk_disable: 1050 clk_disable_unprepare(bs->clk); 1051 out_controller_put: 1052 spi_controller_put(ctlr); 1053 return err; 1054 } 1055 1056 static int bcm2835_spi_remove(struct platform_device *pdev) 1057 { 1058 struct spi_controller *ctlr = platform_get_drvdata(pdev); 1059 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 1060 1061 bcm2835_debugfs_remove(bs); 1062 1063 /* Clear FIFOs, and disable the HW block */ 1064 bcm2835_wr(bs, BCM2835_SPI_CS, 1065 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX); 1066 1067 clk_disable_unprepare(bs->clk); 1068 1069 bcm2835_dma_release(ctlr); 1070 1071 return 0; 1072 } 1073 1074 static const struct of_device_id bcm2835_spi_match[] = { 1075 { .compatible = "brcm,bcm2835-spi", }, 1076 {} 1077 }; 1078 MODULE_DEVICE_TABLE(of, bcm2835_spi_match); 1079 1080 static struct platform_driver bcm2835_spi_driver = { 1081 .driver = { 1082 .name = DRV_NAME, 1083 .of_match_table = bcm2835_spi_match, 1084 }, 1085 .probe = bcm2835_spi_probe, 1086 .remove = bcm2835_spi_remove, 1087 }; 1088 module_platform_driver(bcm2835_spi_driver); 1089 1090 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835"); 1091 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>"); 1092 MODULE_LICENSE("GPL"); 1093