1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for Broadcom BCM2835 SPI Controllers 4 * 5 * Copyright (C) 2012 Chris Boot 6 * Copyright (C) 2013 Stephen Warren 7 * Copyright (C) 2015 Martin Sperl 8 * 9 * This driver is inspired by: 10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org> 11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/completion.h> 16 #include <linux/debugfs.h> 17 #include <linux/delay.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/dmaengine.h> 20 #include <linux/err.h> 21 #include <linux/interrupt.h> 22 #include <linux/io.h> 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_device.h> 28 #include <linux/gpio/consumer.h> 29 #include <linux/gpio/machine.h> /* FIXME: using chip internals */ 30 #include <linux/gpio/driver.h> /* FIXME: using chip internals */ 31 #include <linux/of_irq.h> 32 #include <linux/spi/spi.h> 33 34 /* SPI register offsets */ 35 #define BCM2835_SPI_CS 0x00 36 #define BCM2835_SPI_FIFO 0x04 37 #define BCM2835_SPI_CLK 0x08 38 #define BCM2835_SPI_DLEN 0x0c 39 #define BCM2835_SPI_LTOH 0x10 40 #define BCM2835_SPI_DC 0x14 41 42 /* Bitfields in CS */ 43 #define BCM2835_SPI_CS_LEN_LONG 0x02000000 44 #define BCM2835_SPI_CS_DMA_LEN 0x01000000 45 #define BCM2835_SPI_CS_CSPOL2 0x00800000 46 #define BCM2835_SPI_CS_CSPOL1 0x00400000 47 #define BCM2835_SPI_CS_CSPOL0 0x00200000 48 #define BCM2835_SPI_CS_RXF 0x00100000 49 #define BCM2835_SPI_CS_RXR 0x00080000 50 #define BCM2835_SPI_CS_TXD 0x00040000 51 #define BCM2835_SPI_CS_RXD 0x00020000 52 #define BCM2835_SPI_CS_DONE 0x00010000 53 #define BCM2835_SPI_CS_LEN 0x00002000 54 #define BCM2835_SPI_CS_REN 0x00001000 55 #define BCM2835_SPI_CS_ADCS 0x00000800 56 #define BCM2835_SPI_CS_INTR 0x00000400 57 #define BCM2835_SPI_CS_INTD 0x00000200 58 #define BCM2835_SPI_CS_DMAEN 0x00000100 59 #define BCM2835_SPI_CS_TA 0x00000080 60 #define BCM2835_SPI_CS_CSPOL 0x00000040 61 #define BCM2835_SPI_CS_CLEAR_RX 0x00000020 62 #define BCM2835_SPI_CS_CLEAR_TX 0x00000010 63 #define BCM2835_SPI_CS_CPOL 0x00000008 64 #define BCM2835_SPI_CS_CPHA 0x00000004 65 #define BCM2835_SPI_CS_CS_10 0x00000002 66 #define BCM2835_SPI_CS_CS_01 0x00000001 67 68 #define BCM2835_SPI_FIFO_SIZE 64 69 #define BCM2835_SPI_FIFO_SIZE_3_4 48 70 #define BCM2835_SPI_DMA_MIN_LENGTH 96 71 #define BCM2835_SPI_NUM_CS 4 /* raise as necessary */ 72 #define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \ 73 | SPI_NO_CS | SPI_3WIRE) 74 75 #define DRV_NAME "spi-bcm2835" 76 77 /* define polling limits */ 78 unsigned int polling_limit_us = 30; 79 module_param(polling_limit_us, uint, 0664); 80 MODULE_PARM_DESC(polling_limit_us, 81 "time in us to run a transfer in polling mode\n"); 82 83 /** 84 * struct bcm2835_spi - BCM2835 SPI controller 85 * @regs: base address of register map 86 * @clk: core clock, divided to calculate serial clock 87 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full 88 * @tfr: SPI transfer currently processed 89 * @tx_buf: pointer whence next transmitted byte is read 90 * @rx_buf: pointer where next received byte is written 91 * @tx_len: remaining bytes to transmit 92 * @rx_len: remaining bytes to receive 93 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's 94 * length is not a multiple of 4 (to overcome hardware limitation) 95 * @rx_prologue: bytes received without DMA if first RX sglist entry's 96 * length is not a multiple of 4 (to overcome hardware limitation) 97 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry 98 * @prepare_cs: precalculated CS register value for ->prepare_message() 99 * (uses slave-specific clock polarity and phase settings) 100 * @debugfs_dir: the debugfs directory - neede to remove debugfs when 101 * unloading the module 102 * @count_transfer_polling: count of how often polling mode is used 103 * @count_transfer_irq: count of how often interrupt mode is used 104 * @count_transfer_irq_after_polling: count of how often we fall back to 105 * interrupt mode after starting in polling mode. 106 * These are counted as well in @count_transfer_polling and 107 * @count_transfer_irq 108 * @count_transfer_dma: count how often dma mode is used 109 * @chip_select: SPI slave currently selected 110 * (used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs) 111 * @tx_dma_active: whether a TX DMA descriptor is in progress 112 * @rx_dma_active: whether a RX DMA descriptor is in progress 113 * (used by bcm2835_spi_dma_tx_done() to handle a race) 114 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers 115 * (cyclically copies from zero page to TX FIFO) 116 * @fill_tx_addr: bus address of zero page 117 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers 118 * (cyclically clears RX FIFO by writing @clear_rx_cs to CS register) 119 * @clear_rx_addr: bus address of @clear_rx_cs 120 * @clear_rx_cs: precalculated CS register value to clear RX FIFO 121 * (uses slave-specific clock polarity and phase settings) 122 */ 123 struct bcm2835_spi { 124 void __iomem *regs; 125 struct clk *clk; 126 int irq; 127 struct spi_transfer *tfr; 128 const u8 *tx_buf; 129 u8 *rx_buf; 130 int tx_len; 131 int rx_len; 132 int tx_prologue; 133 int rx_prologue; 134 unsigned int tx_spillover; 135 u32 prepare_cs[BCM2835_SPI_NUM_CS]; 136 137 struct dentry *debugfs_dir; 138 u64 count_transfer_polling; 139 u64 count_transfer_irq; 140 u64 count_transfer_irq_after_polling; 141 u64 count_transfer_dma; 142 143 u8 chip_select; 144 unsigned int tx_dma_active; 145 unsigned int rx_dma_active; 146 struct dma_async_tx_descriptor *fill_tx_desc; 147 dma_addr_t fill_tx_addr; 148 struct dma_async_tx_descriptor *clear_rx_desc[BCM2835_SPI_NUM_CS]; 149 dma_addr_t clear_rx_addr; 150 u32 clear_rx_cs[BCM2835_SPI_NUM_CS] ____cacheline_aligned; 151 }; 152 153 #if defined(CONFIG_DEBUG_FS) 154 static void bcm2835_debugfs_create(struct bcm2835_spi *bs, 155 const char *dname) 156 { 157 char name[64]; 158 struct dentry *dir; 159 160 /* get full name */ 161 snprintf(name, sizeof(name), "spi-bcm2835-%s", dname); 162 163 /* the base directory */ 164 dir = debugfs_create_dir(name, NULL); 165 bs->debugfs_dir = dir; 166 167 /* the counters */ 168 debugfs_create_u64("count_transfer_polling", 0444, dir, 169 &bs->count_transfer_polling); 170 debugfs_create_u64("count_transfer_irq", 0444, dir, 171 &bs->count_transfer_irq); 172 debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir, 173 &bs->count_transfer_irq_after_polling); 174 debugfs_create_u64("count_transfer_dma", 0444, dir, 175 &bs->count_transfer_dma); 176 } 177 178 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs) 179 { 180 debugfs_remove_recursive(bs->debugfs_dir); 181 bs->debugfs_dir = NULL; 182 } 183 #else 184 static void bcm2835_debugfs_create(struct bcm2835_spi *bs, 185 const char *dname) 186 { 187 } 188 189 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs) 190 { 191 } 192 #endif /* CONFIG_DEBUG_FS */ 193 194 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg) 195 { 196 return readl(bs->regs + reg); 197 } 198 199 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val) 200 { 201 writel(val, bs->regs + reg); 202 } 203 204 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs) 205 { 206 u8 byte; 207 208 while ((bs->rx_len) && 209 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) { 210 byte = bcm2835_rd(bs, BCM2835_SPI_FIFO); 211 if (bs->rx_buf) 212 *bs->rx_buf++ = byte; 213 bs->rx_len--; 214 } 215 } 216 217 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs) 218 { 219 u8 byte; 220 221 while ((bs->tx_len) && 222 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) { 223 byte = bs->tx_buf ? *bs->tx_buf++ : 0; 224 bcm2835_wr(bs, BCM2835_SPI_FIFO, byte); 225 bs->tx_len--; 226 } 227 } 228 229 /** 230 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO 231 * @bs: BCM2835 SPI controller 232 * @count: bytes to read from RX FIFO 233 * 234 * The caller must ensure that @bs->rx_len is greater than or equal to @count, 235 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag 236 * in the CS register is set (such that a read from the FIFO register receives 237 * 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL. 238 */ 239 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count) 240 { 241 u32 val; 242 int len; 243 244 bs->rx_len -= count; 245 246 while (count > 0) { 247 val = bcm2835_rd(bs, BCM2835_SPI_FIFO); 248 len = min(count, 4); 249 memcpy(bs->rx_buf, &val, len); 250 bs->rx_buf += len; 251 count -= 4; 252 } 253 } 254 255 /** 256 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO 257 * @bs: BCM2835 SPI controller 258 * @count: bytes to write to TX FIFO 259 * 260 * The caller must ensure that @bs->tx_len is greater than or equal to @count, 261 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag 262 * in the CS register is set (such that a write to the FIFO register transmits 263 * 32-bit instead of just 8-bit). 264 */ 265 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count) 266 { 267 u32 val; 268 int len; 269 270 bs->tx_len -= count; 271 272 while (count > 0) { 273 if (bs->tx_buf) { 274 len = min(count, 4); 275 memcpy(&val, bs->tx_buf, len); 276 bs->tx_buf += len; 277 } else { 278 val = 0; 279 } 280 bcm2835_wr(bs, BCM2835_SPI_FIFO, val); 281 count -= 4; 282 } 283 } 284 285 /** 286 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty 287 * @bs: BCM2835 SPI controller 288 * 289 * The caller must ensure that the RX FIFO can accommodate as many bytes 290 * as have been written to the TX FIFO: Transmission is halted once the 291 * RX FIFO is full, causing this function to spin forever. 292 */ 293 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs) 294 { 295 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE)) 296 cpu_relax(); 297 } 298 299 /** 300 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO 301 * @bs: BCM2835 SPI controller 302 * @count: bytes available for reading in RX FIFO 303 */ 304 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count) 305 { 306 u8 val; 307 308 count = min(count, bs->rx_len); 309 bs->rx_len -= count; 310 311 while (count) { 312 val = bcm2835_rd(bs, BCM2835_SPI_FIFO); 313 if (bs->rx_buf) 314 *bs->rx_buf++ = val; 315 count--; 316 } 317 } 318 319 /** 320 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO 321 * @bs: BCM2835 SPI controller 322 * @count: bytes available for writing in TX FIFO 323 */ 324 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count) 325 { 326 u8 val; 327 328 count = min(count, bs->tx_len); 329 bs->tx_len -= count; 330 331 while (count) { 332 val = bs->tx_buf ? *bs->tx_buf++ : 0; 333 bcm2835_wr(bs, BCM2835_SPI_FIFO, val); 334 count--; 335 } 336 } 337 338 static void bcm2835_spi_reset_hw(struct spi_controller *ctlr) 339 { 340 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 341 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS); 342 343 /* Disable SPI interrupts and transfer */ 344 cs &= ~(BCM2835_SPI_CS_INTR | 345 BCM2835_SPI_CS_INTD | 346 BCM2835_SPI_CS_DMAEN | 347 BCM2835_SPI_CS_TA); 348 /* 349 * Transmission sometimes breaks unless the DONE bit is written at the 350 * end of every transfer. The spec says it's a RO bit. Either the 351 * spec is wrong and the bit is actually of type RW1C, or it's a 352 * hardware erratum. 353 */ 354 cs |= BCM2835_SPI_CS_DONE; 355 /* and reset RX/TX FIFOS */ 356 cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX; 357 358 /* and reset the SPI_HW */ 359 bcm2835_wr(bs, BCM2835_SPI_CS, cs); 360 /* as well as DLEN */ 361 bcm2835_wr(bs, BCM2835_SPI_DLEN, 0); 362 } 363 364 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id) 365 { 366 struct spi_controller *ctlr = dev_id; 367 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 368 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS); 369 370 /* 371 * An interrupt is signaled either if DONE is set (TX FIFO empty) 372 * or if RXR is set (RX FIFO >= ¾ full). 373 */ 374 if (cs & BCM2835_SPI_CS_RXF) 375 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); 376 else if (cs & BCM2835_SPI_CS_RXR) 377 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4); 378 379 if (bs->tx_len && cs & BCM2835_SPI_CS_DONE) 380 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); 381 382 /* Read as many bytes as possible from FIFO */ 383 bcm2835_rd_fifo(bs); 384 /* Write as many bytes as possible to FIFO */ 385 bcm2835_wr_fifo(bs); 386 387 if (!bs->rx_len) { 388 /* Transfer complete - reset SPI HW */ 389 bcm2835_spi_reset_hw(ctlr); 390 /* wake up the framework */ 391 complete(&ctlr->xfer_completion); 392 } 393 394 return IRQ_HANDLED; 395 } 396 397 static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr, 398 struct spi_device *spi, 399 struct spi_transfer *tfr, 400 u32 cs, bool fifo_empty) 401 { 402 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 403 404 /* update usage statistics */ 405 bs->count_transfer_irq++; 406 407 /* 408 * Enable HW block, but with interrupts still disabled. 409 * Otherwise the empty TX FIFO would immediately trigger an interrupt. 410 */ 411 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA); 412 413 /* fill TX FIFO as much as possible */ 414 if (fifo_empty) 415 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); 416 bcm2835_wr_fifo(bs); 417 418 /* enable interrupts */ 419 cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA; 420 bcm2835_wr(bs, BCM2835_SPI_CS, cs); 421 422 /* signal that we need to wait for completion */ 423 return 1; 424 } 425 426 /** 427 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA 428 * @ctlr: SPI master controller 429 * @tfr: SPI transfer 430 * @bs: BCM2835 SPI controller 431 * @cs: CS register 432 * 433 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks. 434 * Only the final write access is permitted to transmit less than 4 bytes, the 435 * SPI controller deduces its intended size from the DLEN register. 436 * 437 * If a TX or RX sglist contains multiple entries, one per page, and the first 438 * entry starts in the middle of a page, that first entry's length may not be 439 * a multiple of 4. Subsequent entries are fine because they span an entire 440 * page, hence do have a length that's a multiple of 4. 441 * 442 * This cannot happen with kmalloc'ed buffers (which is what most clients use) 443 * because they are contiguous in physical memory and therefore not split on 444 * page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed 445 * buffers. 446 * 447 * The DMA engine is incapable of combining sglist entries into a continuous 448 * stream of 4 byte chunks, it treats every entry separately: A TX entry is 449 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX 450 * entry is rounded up by throwing away received bytes. 451 * 452 * Overcome this limitation by transferring the first few bytes without DMA: 453 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42, 454 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO. 455 * The residue of 1 byte in the RX FIFO is picked up by DMA. Together with 456 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes. 457 * 458 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1, 459 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO. 460 * Caution, the additional 4 bytes spill over to the second TX sglist entry 461 * if the length of the first is *exactly* 1. 462 * 463 * At most 6 bytes are written and at most 3 bytes read. Do we know the 464 * transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH. 465 * 466 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width 467 * by the DMA engine. Toggling the DMA Enable flag in the CS register switches 468 * the width but also garbles the FIFO's contents. The prologue must therefore 469 * be transmitted in 32-bit width to ensure that the following DMA transfer can 470 * pick up the residue in the RX FIFO in ungarbled form. 471 */ 472 static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr, 473 struct spi_transfer *tfr, 474 struct bcm2835_spi *bs, 475 u32 cs) 476 { 477 int tx_remaining; 478 479 bs->tfr = tfr; 480 bs->tx_prologue = 0; 481 bs->rx_prologue = 0; 482 bs->tx_spillover = false; 483 484 if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0])) 485 bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3; 486 487 if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) { 488 bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3; 489 490 if (bs->rx_prologue > bs->tx_prologue) { 491 if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) { 492 bs->tx_prologue = bs->rx_prologue; 493 } else { 494 bs->tx_prologue += 4; 495 bs->tx_spillover = 496 !(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3); 497 } 498 } 499 } 500 501 /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */ 502 if (!bs->tx_prologue) 503 return; 504 505 /* Write and read RX prologue. Adjust first entry in RX sglist. */ 506 if (bs->rx_prologue) { 507 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue); 508 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA 509 | BCM2835_SPI_CS_DMAEN); 510 bcm2835_wr_fifo_count(bs, bs->rx_prologue); 511 bcm2835_wait_tx_fifo_empty(bs); 512 bcm2835_rd_fifo_count(bs, bs->rx_prologue); 513 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX 514 | BCM2835_SPI_CS_CLEAR_TX 515 | BCM2835_SPI_CS_DONE); 516 517 dma_sync_single_for_device(ctlr->dma_rx->device->dev, 518 sg_dma_address(&tfr->rx_sg.sgl[0]), 519 bs->rx_prologue, DMA_FROM_DEVICE); 520 521 sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue; 522 sg_dma_len(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue; 523 } 524 525 if (!bs->tx_buf) 526 return; 527 528 /* 529 * Write remaining TX prologue. Adjust first entry in TX sglist. 530 * Also adjust second entry if prologue spills over to it. 531 */ 532 tx_remaining = bs->tx_prologue - bs->rx_prologue; 533 if (tx_remaining) { 534 bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining); 535 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA 536 | BCM2835_SPI_CS_DMAEN); 537 bcm2835_wr_fifo_count(bs, tx_remaining); 538 bcm2835_wait_tx_fifo_empty(bs); 539 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX 540 | BCM2835_SPI_CS_DONE); 541 } 542 543 if (likely(!bs->tx_spillover)) { 544 sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue; 545 sg_dma_len(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue; 546 } else { 547 sg_dma_len(&tfr->tx_sg.sgl[0]) = 0; 548 sg_dma_address(&tfr->tx_sg.sgl[1]) += 4; 549 sg_dma_len(&tfr->tx_sg.sgl[1]) -= 4; 550 } 551 } 552 553 /** 554 * bcm2835_spi_undo_prologue() - reconstruct original sglist state 555 * @bs: BCM2835 SPI controller 556 * 557 * Undo changes which were made to an SPI transfer's sglist when transmitting 558 * the prologue. This is necessary to ensure the same memory ranges are 559 * unmapped that were originally mapped. 560 */ 561 static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs) 562 { 563 struct spi_transfer *tfr = bs->tfr; 564 565 if (!bs->tx_prologue) 566 return; 567 568 if (bs->rx_prologue) { 569 sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue; 570 sg_dma_len(&tfr->rx_sg.sgl[0]) += bs->rx_prologue; 571 } 572 573 if (!bs->tx_buf) 574 goto out; 575 576 if (likely(!bs->tx_spillover)) { 577 sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue; 578 sg_dma_len(&tfr->tx_sg.sgl[0]) += bs->tx_prologue; 579 } else { 580 sg_dma_len(&tfr->tx_sg.sgl[0]) = bs->tx_prologue - 4; 581 sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4; 582 sg_dma_len(&tfr->tx_sg.sgl[1]) += 4; 583 } 584 out: 585 bs->tx_prologue = 0; 586 } 587 588 /** 589 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel 590 * @data: SPI master controller 591 * 592 * Used for bidirectional and RX-only transfers. 593 */ 594 static void bcm2835_spi_dma_rx_done(void *data) 595 { 596 struct spi_controller *ctlr = data; 597 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 598 599 /* terminate tx-dma as we do not have an irq for it 600 * because when the rx dma will terminate and this callback 601 * is called the tx-dma must have finished - can't get to this 602 * situation otherwise... 603 */ 604 dmaengine_terminate_async(ctlr->dma_tx); 605 bs->tx_dma_active = false; 606 bs->rx_dma_active = false; 607 bcm2835_spi_undo_prologue(bs); 608 609 /* reset fifo and HW */ 610 bcm2835_spi_reset_hw(ctlr); 611 612 /* and mark as completed */; 613 complete(&ctlr->xfer_completion); 614 } 615 616 /** 617 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel 618 * @data: SPI master controller 619 * 620 * Used for TX-only transfers. 621 */ 622 static void bcm2835_spi_dma_tx_done(void *data) 623 { 624 struct spi_controller *ctlr = data; 625 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 626 627 /* busy-wait for TX FIFO to empty */ 628 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE)) 629 bcm2835_wr(bs, BCM2835_SPI_CS, 630 bs->clear_rx_cs[bs->chip_select]); 631 632 bs->tx_dma_active = false; 633 smp_wmb(); 634 635 /* 636 * In case of a very short transfer, RX DMA may not have been 637 * issued yet. The onus is then on bcm2835_spi_transfer_one_dma() 638 * to terminate it immediately after issuing. 639 */ 640 if (cmpxchg(&bs->rx_dma_active, true, false)) 641 dmaengine_terminate_async(ctlr->dma_rx); 642 643 bcm2835_spi_undo_prologue(bs); 644 bcm2835_spi_reset_hw(ctlr); 645 complete(&ctlr->xfer_completion); 646 } 647 648 /** 649 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist 650 * @ctlr: SPI master controller 651 * @spi: SPI slave 652 * @tfr: SPI transfer 653 * @bs: BCM2835 SPI controller 654 * @is_tx: whether to submit DMA descriptor for TX or RX sglist 655 * 656 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr. 657 * Return 0 on success or a negative error number. 658 */ 659 static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr, 660 struct spi_device *spi, 661 struct spi_transfer *tfr, 662 struct bcm2835_spi *bs, 663 bool is_tx) 664 { 665 struct dma_chan *chan; 666 struct scatterlist *sgl; 667 unsigned int nents; 668 enum dma_transfer_direction dir; 669 unsigned long flags; 670 671 struct dma_async_tx_descriptor *desc; 672 dma_cookie_t cookie; 673 674 if (is_tx) { 675 dir = DMA_MEM_TO_DEV; 676 chan = ctlr->dma_tx; 677 nents = tfr->tx_sg.nents; 678 sgl = tfr->tx_sg.sgl; 679 flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT; 680 } else { 681 dir = DMA_DEV_TO_MEM; 682 chan = ctlr->dma_rx; 683 nents = tfr->rx_sg.nents; 684 sgl = tfr->rx_sg.sgl; 685 flags = DMA_PREP_INTERRUPT; 686 } 687 /* prepare the channel */ 688 desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags); 689 if (!desc) 690 return -EINVAL; 691 692 /* 693 * Completion is signaled by the RX channel for bidirectional and 694 * RX-only transfers; else by the TX channel for TX-only transfers. 695 */ 696 if (!is_tx) { 697 desc->callback = bcm2835_spi_dma_rx_done; 698 desc->callback_param = ctlr; 699 } else if (!tfr->rx_buf) { 700 desc->callback = bcm2835_spi_dma_tx_done; 701 desc->callback_param = ctlr; 702 bs->chip_select = spi->chip_select; 703 } 704 705 /* submit it to DMA-engine */ 706 cookie = dmaengine_submit(desc); 707 708 return dma_submit_error(cookie); 709 } 710 711 /** 712 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine 713 * @ctlr: SPI master controller 714 * @spi: SPI slave 715 * @tfr: SPI transfer 716 * @cs: CS register 717 * 718 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up 719 * the TX and RX DMA channel to copy between memory and FIFO register. 720 * 721 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to 722 * memory is pointless. However not reading the RX FIFO isn't an option either 723 * because transmission is halted once it's full. As a workaround, cyclically 724 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register. 725 * 726 * The CS register value is precalculated in bcm2835_spi_setup(). Normally 727 * this is called only once, on slave registration. A DMA descriptor to write 728 * this value is preallocated in bcm2835_dma_init(). All that's left to do 729 * when performing a TX-only transfer is to submit this descriptor to the RX 730 * DMA channel. Latency is thereby minimized. The descriptor does not 731 * generate any interrupts while running. It must be terminated once the 732 * TX DMA channel is done. 733 * 734 * Clearing the RX FIFO is paced by the DREQ signal. The signal is asserted 735 * when the RX FIFO becomes half full, i.e. 32 bytes. (Tuneable with the DC 736 * register.) Reading 32 bytes from the RX FIFO would normally require 8 bus 737 * accesses, whereas clearing it requires only 1 bus access. So an 8-fold 738 * reduction in bus traffic and thus energy consumption is achieved. 739 * 740 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically 741 * copying from the zero page. The DMA descriptor to do this is preallocated 742 * in bcm2835_dma_init(). It must be terminated once the RX DMA channel is 743 * done and can then be reused. 744 * 745 * The BCM2835 DMA driver autodetects when a transaction copies from the zero 746 * page and utilizes the DMA controller's ability to synthesize zeroes instead 747 * of copying them from memory. This reduces traffic on the memory bus. The 748 * feature is not available on so-called "lite" channels, but normally TX DMA 749 * is backed by a full-featured channel. 750 * 751 * Zero-filling the TX FIFO is paced by the DREQ signal. Unfortunately the 752 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register 753 * has been counted down to zero (hardware erratum). Thus, when the transfer 754 * has finished, the DMA engine zero-fills the TX FIFO until it is half full. 755 * (Tuneable with the DC register.) So up to 9 gratuitous bus accesses are 756 * performed at the end of an RX-only transfer. 757 */ 758 static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr, 759 struct spi_device *spi, 760 struct spi_transfer *tfr, 761 u32 cs) 762 { 763 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 764 dma_cookie_t cookie; 765 int ret; 766 767 /* update usage statistics */ 768 bs->count_transfer_dma++; 769 770 /* 771 * Transfer first few bytes without DMA if length of first TX or RX 772 * sglist entry is not a multiple of 4 bytes (hardware limitation). 773 */ 774 bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs); 775 776 /* setup tx-DMA */ 777 if (bs->tx_buf) { 778 ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, true); 779 } else { 780 cookie = dmaengine_submit(bs->fill_tx_desc); 781 ret = dma_submit_error(cookie); 782 } 783 if (ret) 784 goto err_reset_hw; 785 786 /* set the DMA length */ 787 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len); 788 789 /* start the HW */ 790 bcm2835_wr(bs, BCM2835_SPI_CS, 791 cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN); 792 793 bs->tx_dma_active = true; 794 smp_wmb(); 795 796 /* start TX early */ 797 dma_async_issue_pending(ctlr->dma_tx); 798 799 /* setup rx-DMA late - to run transfers while 800 * mapping of the rx buffers still takes place 801 * this saves 10us or more. 802 */ 803 if (bs->rx_buf) { 804 ret = bcm2835_spi_prepare_sg(ctlr, spi, tfr, bs, false); 805 } else { 806 cookie = dmaengine_submit(bs->clear_rx_desc[spi->chip_select]); 807 ret = dma_submit_error(cookie); 808 } 809 if (ret) { 810 /* need to reset on errors */ 811 dmaengine_terminate_sync(ctlr->dma_tx); 812 bs->tx_dma_active = false; 813 goto err_reset_hw; 814 } 815 816 /* start rx dma late */ 817 dma_async_issue_pending(ctlr->dma_rx); 818 bs->rx_dma_active = true; 819 smp_mb(); 820 821 /* 822 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done() 823 * may run before RX DMA is issued. Terminate RX DMA if so. 824 */ 825 if (!bs->rx_buf && !bs->tx_dma_active && 826 cmpxchg(&bs->rx_dma_active, true, false)) { 827 dmaengine_terminate_async(ctlr->dma_rx); 828 bcm2835_spi_reset_hw(ctlr); 829 } 830 831 /* wait for wakeup in framework */ 832 return 1; 833 834 err_reset_hw: 835 bcm2835_spi_reset_hw(ctlr); 836 bcm2835_spi_undo_prologue(bs); 837 return ret; 838 } 839 840 static bool bcm2835_spi_can_dma(struct spi_controller *ctlr, 841 struct spi_device *spi, 842 struct spi_transfer *tfr) 843 { 844 /* we start DMA efforts only on bigger transfers */ 845 if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH) 846 return false; 847 848 /* return OK */ 849 return true; 850 } 851 852 static void bcm2835_dma_release(struct spi_controller *ctlr, 853 struct bcm2835_spi *bs) 854 { 855 int i; 856 857 if (ctlr->dma_tx) { 858 dmaengine_terminate_sync(ctlr->dma_tx); 859 860 if (bs->fill_tx_desc) 861 dmaengine_desc_free(bs->fill_tx_desc); 862 863 if (bs->fill_tx_addr) 864 dma_unmap_page_attrs(ctlr->dma_tx->device->dev, 865 bs->fill_tx_addr, sizeof(u32), 866 DMA_TO_DEVICE, 867 DMA_ATTR_SKIP_CPU_SYNC); 868 869 dma_release_channel(ctlr->dma_tx); 870 ctlr->dma_tx = NULL; 871 } 872 873 if (ctlr->dma_rx) { 874 dmaengine_terminate_sync(ctlr->dma_rx); 875 876 for (i = 0; i < BCM2835_SPI_NUM_CS; i++) 877 if (bs->clear_rx_desc[i]) 878 dmaengine_desc_free(bs->clear_rx_desc[i]); 879 880 if (bs->clear_rx_addr) 881 dma_unmap_single(ctlr->dma_rx->device->dev, 882 bs->clear_rx_addr, 883 sizeof(bs->clear_rx_cs), 884 DMA_TO_DEVICE); 885 886 dma_release_channel(ctlr->dma_rx); 887 ctlr->dma_rx = NULL; 888 } 889 } 890 891 static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev, 892 struct bcm2835_spi *bs) 893 { 894 struct dma_slave_config slave_config; 895 const __be32 *addr; 896 dma_addr_t dma_reg_base; 897 int ret, i; 898 899 /* base address in dma-space */ 900 addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL); 901 if (!addr) { 902 dev_err(dev, "could not get DMA-register address - not using dma mode\n"); 903 /* Fall back to interrupt mode */ 904 return 0; 905 } 906 dma_reg_base = be32_to_cpup(addr); 907 908 /* get tx/rx dma */ 909 ctlr->dma_tx = dma_request_chan(dev, "tx"); 910 if (IS_ERR(ctlr->dma_tx)) { 911 dev_err(dev, "no tx-dma configuration found - not using dma mode\n"); 912 ret = PTR_ERR(ctlr->dma_tx); 913 ctlr->dma_tx = NULL; 914 goto err; 915 } 916 ctlr->dma_rx = dma_request_chan(dev, "rx"); 917 if (IS_ERR(ctlr->dma_rx)) { 918 dev_err(dev, "no rx-dma configuration found - not using dma mode\n"); 919 ret = PTR_ERR(ctlr->dma_rx); 920 ctlr->dma_rx = NULL; 921 goto err_release; 922 } 923 924 /* 925 * The TX DMA channel either copies a transfer's TX buffer to the FIFO 926 * or, in case of an RX-only transfer, cyclically copies from the zero 927 * page to the FIFO using a preallocated, reusable descriptor. 928 */ 929 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO); 930 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 931 932 ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config); 933 if (ret) 934 goto err_config; 935 936 bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev, 937 ZERO_PAGE(0), 0, sizeof(u32), 938 DMA_TO_DEVICE, 939 DMA_ATTR_SKIP_CPU_SYNC); 940 if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) { 941 dev_err(dev, "cannot map zero page - not using DMA mode\n"); 942 bs->fill_tx_addr = 0; 943 ret = -ENOMEM; 944 goto err_release; 945 } 946 947 bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx, 948 bs->fill_tx_addr, 949 sizeof(u32), 0, 950 DMA_MEM_TO_DEV, 0); 951 if (!bs->fill_tx_desc) { 952 dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n"); 953 ret = -ENOMEM; 954 goto err_release; 955 } 956 957 ret = dmaengine_desc_set_reuse(bs->fill_tx_desc); 958 if (ret) { 959 dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n"); 960 goto err_release; 961 } 962 963 /* 964 * The RX DMA channel is used bidirectionally: It either reads the 965 * RX FIFO or, in case of a TX-only transfer, cyclically writes a 966 * precalculated value to the CS register to clear the RX FIFO. 967 */ 968 slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO); 969 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 970 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS); 971 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 972 973 ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config); 974 if (ret) 975 goto err_config; 976 977 bs->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev, 978 bs->clear_rx_cs, 979 sizeof(bs->clear_rx_cs), 980 DMA_TO_DEVICE); 981 if (dma_mapping_error(ctlr->dma_rx->device->dev, bs->clear_rx_addr)) { 982 dev_err(dev, "cannot map clear_rx_cs - not using DMA mode\n"); 983 bs->clear_rx_addr = 0; 984 ret = -ENOMEM; 985 goto err_release; 986 } 987 988 for (i = 0; i < BCM2835_SPI_NUM_CS; i++) { 989 bs->clear_rx_desc[i] = dmaengine_prep_dma_cyclic(ctlr->dma_rx, 990 bs->clear_rx_addr + i * sizeof(u32), 991 sizeof(u32), 0, 992 DMA_MEM_TO_DEV, 0); 993 if (!bs->clear_rx_desc[i]) { 994 dev_err(dev, "cannot prepare clear_rx_desc - not using DMA mode\n"); 995 ret = -ENOMEM; 996 goto err_release; 997 } 998 999 ret = dmaengine_desc_set_reuse(bs->clear_rx_desc[i]); 1000 if (ret) { 1001 dev_err(dev, "cannot reuse clear_rx_desc - not using DMA mode\n"); 1002 goto err_release; 1003 } 1004 } 1005 1006 /* all went well, so set can_dma */ 1007 ctlr->can_dma = bcm2835_spi_can_dma; 1008 1009 return 0; 1010 1011 err_config: 1012 dev_err(dev, "issue configuring dma: %d - not using DMA mode\n", 1013 ret); 1014 err_release: 1015 bcm2835_dma_release(ctlr, bs); 1016 err: 1017 /* 1018 * Only report error for deferred probing, otherwise fall back to 1019 * interrupt mode 1020 */ 1021 if (ret != -EPROBE_DEFER) 1022 ret = 0; 1023 1024 return ret; 1025 } 1026 1027 static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr, 1028 struct spi_device *spi, 1029 struct spi_transfer *tfr, 1030 u32 cs) 1031 { 1032 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 1033 unsigned long timeout; 1034 1035 /* update usage statistics */ 1036 bs->count_transfer_polling++; 1037 1038 /* enable HW block without interrupts */ 1039 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA); 1040 1041 /* fill in the fifo before timeout calculations 1042 * if we are interrupted here, then the data is 1043 * getting transferred by the HW while we are interrupted 1044 */ 1045 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); 1046 1047 /* set the timeout to at least 2 jiffies */ 1048 timeout = jiffies + 2 + HZ * polling_limit_us / 1000000; 1049 1050 /* loop until finished the transfer */ 1051 while (bs->rx_len) { 1052 /* fill in tx fifo with remaining data */ 1053 bcm2835_wr_fifo(bs); 1054 1055 /* read from fifo as much as possible */ 1056 bcm2835_rd_fifo(bs); 1057 1058 /* if there is still data pending to read 1059 * then check the timeout 1060 */ 1061 if (bs->rx_len && time_after(jiffies, timeout)) { 1062 dev_dbg_ratelimited(&spi->dev, 1063 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n", 1064 jiffies - timeout, 1065 bs->tx_len, bs->rx_len); 1066 /* fall back to interrupt mode */ 1067 1068 /* update usage statistics */ 1069 bs->count_transfer_irq_after_polling++; 1070 1071 return bcm2835_spi_transfer_one_irq(ctlr, spi, 1072 tfr, cs, false); 1073 } 1074 } 1075 1076 /* Transfer complete - reset SPI HW */ 1077 bcm2835_spi_reset_hw(ctlr); 1078 /* and return without waiting for completion */ 1079 return 0; 1080 } 1081 1082 static int bcm2835_spi_transfer_one(struct spi_controller *ctlr, 1083 struct spi_device *spi, 1084 struct spi_transfer *tfr) 1085 { 1086 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 1087 unsigned long spi_hz, clk_hz, cdiv, spi_used_hz; 1088 unsigned long hz_per_byte, byte_limit; 1089 u32 cs = bs->prepare_cs[spi->chip_select]; 1090 1091 /* set clock */ 1092 spi_hz = tfr->speed_hz; 1093 clk_hz = clk_get_rate(bs->clk); 1094 1095 if (spi_hz >= clk_hz / 2) { 1096 cdiv = 2; /* clk_hz/2 is the fastest we can go */ 1097 } else if (spi_hz) { 1098 /* CDIV must be a multiple of two */ 1099 cdiv = DIV_ROUND_UP(clk_hz, spi_hz); 1100 cdiv += (cdiv % 2); 1101 1102 if (cdiv >= 65536) 1103 cdiv = 0; /* 0 is the slowest we can go */ 1104 } else { 1105 cdiv = 0; /* 0 is the slowest we can go */ 1106 } 1107 spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536); 1108 bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv); 1109 1110 /* handle all the 3-wire mode */ 1111 if (spi->mode & SPI_3WIRE && tfr->rx_buf) 1112 cs |= BCM2835_SPI_CS_REN; 1113 1114 /* set transmit buffers and length */ 1115 bs->tx_buf = tfr->tx_buf; 1116 bs->rx_buf = tfr->rx_buf; 1117 bs->tx_len = tfr->len; 1118 bs->rx_len = tfr->len; 1119 1120 /* Calculate the estimated time in us the transfer runs. Note that 1121 * there is 1 idle clocks cycles after each byte getting transferred 1122 * so we have 9 cycles/byte. This is used to find the number of Hz 1123 * per byte per polling limit. E.g., we can transfer 1 byte in 30 us 1124 * per 300,000 Hz of bus clock. 1125 */ 1126 hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0; 1127 byte_limit = hz_per_byte ? spi_used_hz / hz_per_byte : 1; 1128 1129 /* run in polling mode for short transfers */ 1130 if (tfr->len < byte_limit) 1131 return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs); 1132 1133 /* run in dma mode if conditions are right 1134 * Note that unlike poll or interrupt mode DMA mode does not have 1135 * this 1 idle clock cycle pattern but runs the spi clock without gaps 1136 */ 1137 if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr)) 1138 return bcm2835_spi_transfer_one_dma(ctlr, spi, tfr, cs); 1139 1140 /* run in interrupt-mode */ 1141 return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true); 1142 } 1143 1144 static int bcm2835_spi_prepare_message(struct spi_controller *ctlr, 1145 struct spi_message *msg) 1146 { 1147 struct spi_device *spi = msg->spi; 1148 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 1149 int ret; 1150 1151 if (ctlr->can_dma) { 1152 /* 1153 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by 1154 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO 1155 * aligned) if the limit is exceeded. 1156 */ 1157 ret = spi_split_transfers_maxsize(ctlr, msg, 65532, 1158 GFP_KERNEL | GFP_DMA); 1159 if (ret) 1160 return ret; 1161 } 1162 1163 /* 1164 * Set up clock polarity before spi_transfer_one_message() asserts 1165 * chip select to avoid a gratuitous clock signal edge. 1166 */ 1167 bcm2835_wr(bs, BCM2835_SPI_CS, bs->prepare_cs[spi->chip_select]); 1168 1169 return 0; 1170 } 1171 1172 static void bcm2835_spi_handle_err(struct spi_controller *ctlr, 1173 struct spi_message *msg) 1174 { 1175 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 1176 1177 /* if an error occurred and we have an active dma, then terminate */ 1178 dmaengine_terminate_sync(ctlr->dma_tx); 1179 bs->tx_dma_active = false; 1180 dmaengine_terminate_sync(ctlr->dma_rx); 1181 bs->rx_dma_active = false; 1182 bcm2835_spi_undo_prologue(bs); 1183 1184 /* and reset */ 1185 bcm2835_spi_reset_hw(ctlr); 1186 } 1187 1188 static int chip_match_name(struct gpio_chip *chip, void *data) 1189 { 1190 return !strcmp(chip->label, data); 1191 } 1192 1193 static int bcm2835_spi_setup(struct spi_device *spi) 1194 { 1195 struct spi_controller *ctlr = spi->controller; 1196 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 1197 struct gpio_chip *chip; 1198 enum gpio_lookup_flags lflags; 1199 u32 cs; 1200 1201 /* 1202 * Precalculate SPI slave's CS register value for ->prepare_message(): 1203 * The driver always uses software-controlled GPIO chip select, hence 1204 * set the hardware-controlled native chip select to an invalid value 1205 * to prevent it from interfering. 1206 */ 1207 cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01; 1208 if (spi->mode & SPI_CPOL) 1209 cs |= BCM2835_SPI_CS_CPOL; 1210 if (spi->mode & SPI_CPHA) 1211 cs |= BCM2835_SPI_CS_CPHA; 1212 bs->prepare_cs[spi->chip_select] = cs; 1213 1214 /* 1215 * Precalculate SPI slave's CS register value to clear RX FIFO 1216 * in case of a TX-only DMA transfer. 1217 */ 1218 if (ctlr->dma_rx) { 1219 bs->clear_rx_cs[spi->chip_select] = cs | 1220 BCM2835_SPI_CS_TA | 1221 BCM2835_SPI_CS_DMAEN | 1222 BCM2835_SPI_CS_CLEAR_RX; 1223 dma_sync_single_for_device(ctlr->dma_rx->device->dev, 1224 bs->clear_rx_addr, 1225 sizeof(bs->clear_rx_cs), 1226 DMA_TO_DEVICE); 1227 } 1228 1229 /* 1230 * sanity checking the native-chipselects 1231 */ 1232 if (spi->mode & SPI_NO_CS) 1233 return 0; 1234 /* 1235 * The SPI core has successfully requested the CS GPIO line from the 1236 * device tree, so we are done. 1237 */ 1238 if (spi->cs_gpiod) 1239 return 0; 1240 if (spi->chip_select > 1) { 1241 /* error in the case of native CS requested with CS > 1 1242 * officially there is a CS2, but it is not documented 1243 * which GPIO is connected with that... 1244 */ 1245 dev_err(&spi->dev, 1246 "setup: only two native chip-selects are supported\n"); 1247 return -EINVAL; 1248 } 1249 1250 /* 1251 * Translate native CS to GPIO 1252 * 1253 * FIXME: poking around in the gpiolib internals like this is 1254 * not very good practice. Find a way to locate the real problem 1255 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod 1256 * sometimes not assigned correctly? Erroneous device trees? 1257 */ 1258 1259 /* get the gpio chip for the base */ 1260 chip = gpiochip_find("pinctrl-bcm2835", chip_match_name); 1261 if (!chip) 1262 return 0; 1263 1264 /* 1265 * Retrieve the corresponding GPIO line used for CS. 1266 * The inversion semantics will be handled by the GPIO core 1267 * code, so we pass GPIOD_OUT_LOW for "unasserted" and 1268 * the correct flag for inversion semantics. The SPI_CS_HIGH 1269 * on spi->mode cannot be checked for polarity in this case 1270 * as the flag use_gpio_descriptors enforces SPI_CS_HIGH. 1271 */ 1272 if (of_property_read_bool(spi->dev.of_node, "spi-cs-high")) 1273 lflags = GPIO_ACTIVE_HIGH; 1274 else 1275 lflags = GPIO_ACTIVE_LOW; 1276 spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select, 1277 DRV_NAME, 1278 lflags, 1279 GPIOD_OUT_LOW); 1280 if (IS_ERR(spi->cs_gpiod)) 1281 return PTR_ERR(spi->cs_gpiod); 1282 1283 /* and set up the "mode" and level */ 1284 dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n", 1285 spi->chip_select); 1286 1287 return 0; 1288 } 1289 1290 static int bcm2835_spi_probe(struct platform_device *pdev) 1291 { 1292 struct spi_controller *ctlr; 1293 struct bcm2835_spi *bs; 1294 int err; 1295 1296 ctlr = spi_alloc_master(&pdev->dev, ALIGN(sizeof(*bs), 1297 dma_get_cache_alignment())); 1298 if (!ctlr) 1299 return -ENOMEM; 1300 1301 platform_set_drvdata(pdev, ctlr); 1302 1303 ctlr->use_gpio_descriptors = true; 1304 ctlr->mode_bits = BCM2835_SPI_MODE_BITS; 1305 ctlr->bits_per_word_mask = SPI_BPW_MASK(8); 1306 ctlr->num_chipselect = BCM2835_SPI_NUM_CS; 1307 ctlr->setup = bcm2835_spi_setup; 1308 ctlr->transfer_one = bcm2835_spi_transfer_one; 1309 ctlr->handle_err = bcm2835_spi_handle_err; 1310 ctlr->prepare_message = bcm2835_spi_prepare_message; 1311 ctlr->dev.of_node = pdev->dev.of_node; 1312 1313 bs = spi_controller_get_devdata(ctlr); 1314 1315 bs->regs = devm_platform_ioremap_resource(pdev, 0); 1316 if (IS_ERR(bs->regs)) { 1317 err = PTR_ERR(bs->regs); 1318 goto out_controller_put; 1319 } 1320 1321 bs->clk = devm_clk_get(&pdev->dev, NULL); 1322 if (IS_ERR(bs->clk)) { 1323 err = PTR_ERR(bs->clk); 1324 if (err == -EPROBE_DEFER) 1325 dev_dbg(&pdev->dev, "could not get clk: %d\n", err); 1326 else 1327 dev_err(&pdev->dev, "could not get clk: %d\n", err); 1328 goto out_controller_put; 1329 } 1330 1331 bs->irq = platform_get_irq(pdev, 0); 1332 if (bs->irq <= 0) { 1333 err = bs->irq ? bs->irq : -ENODEV; 1334 goto out_controller_put; 1335 } 1336 1337 clk_prepare_enable(bs->clk); 1338 1339 err = bcm2835_dma_init(ctlr, &pdev->dev, bs); 1340 if (err) 1341 goto out_clk_disable; 1342 1343 /* initialise the hardware with the default polarities */ 1344 bcm2835_wr(bs, BCM2835_SPI_CS, 1345 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX); 1346 1347 err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0, 1348 dev_name(&pdev->dev), ctlr); 1349 if (err) { 1350 dev_err(&pdev->dev, "could not request IRQ: %d\n", err); 1351 goto out_dma_release; 1352 } 1353 1354 err = spi_register_controller(ctlr); 1355 if (err) { 1356 dev_err(&pdev->dev, "could not register SPI controller: %d\n", 1357 err); 1358 goto out_dma_release; 1359 } 1360 1361 bcm2835_debugfs_create(bs, dev_name(&pdev->dev)); 1362 1363 return 0; 1364 1365 out_dma_release: 1366 bcm2835_dma_release(ctlr, bs); 1367 out_clk_disable: 1368 clk_disable_unprepare(bs->clk); 1369 out_controller_put: 1370 spi_controller_put(ctlr); 1371 return err; 1372 } 1373 1374 static int bcm2835_spi_remove(struct platform_device *pdev) 1375 { 1376 struct spi_controller *ctlr = platform_get_drvdata(pdev); 1377 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 1378 1379 bcm2835_debugfs_remove(bs); 1380 1381 spi_unregister_controller(ctlr); 1382 1383 bcm2835_dma_release(ctlr, bs); 1384 1385 /* Clear FIFOs, and disable the HW block */ 1386 bcm2835_wr(bs, BCM2835_SPI_CS, 1387 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX); 1388 1389 clk_disable_unprepare(bs->clk); 1390 1391 return 0; 1392 } 1393 1394 static void bcm2835_spi_shutdown(struct platform_device *pdev) 1395 { 1396 int ret; 1397 1398 ret = bcm2835_spi_remove(pdev); 1399 if (ret) 1400 dev_err(&pdev->dev, "failed to shutdown\n"); 1401 } 1402 1403 static const struct of_device_id bcm2835_spi_match[] = { 1404 { .compatible = "brcm,bcm2835-spi", }, 1405 {} 1406 }; 1407 MODULE_DEVICE_TABLE(of, bcm2835_spi_match); 1408 1409 static struct platform_driver bcm2835_spi_driver = { 1410 .driver = { 1411 .name = DRV_NAME, 1412 .of_match_table = bcm2835_spi_match, 1413 }, 1414 .probe = bcm2835_spi_probe, 1415 .remove = bcm2835_spi_remove, 1416 .shutdown = bcm2835_spi_shutdown, 1417 }; 1418 module_platform_driver(bcm2835_spi_driver); 1419 1420 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835"); 1421 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>"); 1422 MODULE_LICENSE("GPL"); 1423