1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for Broadcom BCM2835 SPI Controllers 4 * 5 * Copyright (C) 2012 Chris Boot 6 * Copyright (C) 2013 Stephen Warren 7 * Copyright (C) 2015 Martin Sperl 8 * 9 * This driver is inspired by: 10 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org> 11 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/completion.h> 16 #include <linux/debugfs.h> 17 #include <linux/delay.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/dmaengine.h> 20 #include <linux/err.h> 21 #include <linux/interrupt.h> 22 #include <linux/io.h> 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_device.h> 28 #include <linux/gpio/consumer.h> 29 #include <linux/gpio/machine.h> /* FIXME: using chip internals */ 30 #include <linux/gpio/driver.h> /* FIXME: using chip internals */ 31 #include <linux/of_irq.h> 32 #include <linux/spi/spi.h> 33 34 /* SPI register offsets */ 35 #define BCM2835_SPI_CS 0x00 36 #define BCM2835_SPI_FIFO 0x04 37 #define BCM2835_SPI_CLK 0x08 38 #define BCM2835_SPI_DLEN 0x0c 39 #define BCM2835_SPI_LTOH 0x10 40 #define BCM2835_SPI_DC 0x14 41 42 /* Bitfields in CS */ 43 #define BCM2835_SPI_CS_LEN_LONG 0x02000000 44 #define BCM2835_SPI_CS_DMA_LEN 0x01000000 45 #define BCM2835_SPI_CS_CSPOL2 0x00800000 46 #define BCM2835_SPI_CS_CSPOL1 0x00400000 47 #define BCM2835_SPI_CS_CSPOL0 0x00200000 48 #define BCM2835_SPI_CS_RXF 0x00100000 49 #define BCM2835_SPI_CS_RXR 0x00080000 50 #define BCM2835_SPI_CS_TXD 0x00040000 51 #define BCM2835_SPI_CS_RXD 0x00020000 52 #define BCM2835_SPI_CS_DONE 0x00010000 53 #define BCM2835_SPI_CS_LEN 0x00002000 54 #define BCM2835_SPI_CS_REN 0x00001000 55 #define BCM2835_SPI_CS_ADCS 0x00000800 56 #define BCM2835_SPI_CS_INTR 0x00000400 57 #define BCM2835_SPI_CS_INTD 0x00000200 58 #define BCM2835_SPI_CS_DMAEN 0x00000100 59 #define BCM2835_SPI_CS_TA 0x00000080 60 #define BCM2835_SPI_CS_CSPOL 0x00000040 61 #define BCM2835_SPI_CS_CLEAR_RX 0x00000020 62 #define BCM2835_SPI_CS_CLEAR_TX 0x00000010 63 #define BCM2835_SPI_CS_CPOL 0x00000008 64 #define BCM2835_SPI_CS_CPHA 0x00000004 65 #define BCM2835_SPI_CS_CS_10 0x00000002 66 #define BCM2835_SPI_CS_CS_01 0x00000001 67 68 #define BCM2835_SPI_FIFO_SIZE 64 69 #define BCM2835_SPI_FIFO_SIZE_3_4 48 70 #define BCM2835_SPI_DMA_MIN_LENGTH 96 71 #define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \ 72 | SPI_NO_CS | SPI_3WIRE) 73 74 #define DRV_NAME "spi-bcm2835" 75 76 /* define polling limits */ 77 static unsigned int polling_limit_us = 30; 78 module_param(polling_limit_us, uint, 0664); 79 MODULE_PARM_DESC(polling_limit_us, 80 "time in us to run a transfer in polling mode\n"); 81 82 /** 83 * struct bcm2835_spi - BCM2835 SPI controller 84 * @regs: base address of register map 85 * @clk: core clock, divided to calculate serial clock 86 * @clk_hz: core clock cached speed 87 * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full 88 * @tfr: SPI transfer currently processed 89 * @ctlr: SPI controller reverse lookup 90 * @tx_buf: pointer whence next transmitted byte is read 91 * @rx_buf: pointer where next received byte is written 92 * @tx_len: remaining bytes to transmit 93 * @rx_len: remaining bytes to receive 94 * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's 95 * length is not a multiple of 4 (to overcome hardware limitation) 96 * @rx_prologue: bytes received without DMA if first RX sglist entry's 97 * length is not a multiple of 4 (to overcome hardware limitation) 98 * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry 99 * @debugfs_dir: the debugfs directory - neede to remove debugfs when 100 * unloading the module 101 * @count_transfer_polling: count of how often polling mode is used 102 * @count_transfer_irq: count of how often interrupt mode is used 103 * @count_transfer_irq_after_polling: count of how often we fall back to 104 * interrupt mode after starting in polling mode. 105 * These are counted as well in @count_transfer_polling and 106 * @count_transfer_irq 107 * @count_transfer_dma: count how often dma mode is used 108 * @slv: SPI slave currently selected 109 * (used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs) 110 * @tx_dma_active: whether a TX DMA descriptor is in progress 111 * @rx_dma_active: whether a RX DMA descriptor is in progress 112 * (used by bcm2835_spi_dma_tx_done() to handle a race) 113 * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers 114 * (cyclically copies from zero page to TX FIFO) 115 * @fill_tx_addr: bus address of zero page 116 */ 117 struct bcm2835_spi { 118 void __iomem *regs; 119 struct clk *clk; 120 unsigned long clk_hz; 121 int irq; 122 struct spi_transfer *tfr; 123 struct spi_controller *ctlr; 124 const u8 *tx_buf; 125 u8 *rx_buf; 126 int tx_len; 127 int rx_len; 128 int tx_prologue; 129 int rx_prologue; 130 unsigned int tx_spillover; 131 132 struct dentry *debugfs_dir; 133 u64 count_transfer_polling; 134 u64 count_transfer_irq; 135 u64 count_transfer_irq_after_polling; 136 u64 count_transfer_dma; 137 138 struct bcm2835_spidev *slv; 139 unsigned int tx_dma_active; 140 unsigned int rx_dma_active; 141 struct dma_async_tx_descriptor *fill_tx_desc; 142 dma_addr_t fill_tx_addr; 143 }; 144 145 /** 146 * struct bcm2835_spidev - BCM2835 SPI slave 147 * @prepare_cs: precalculated CS register value for ->prepare_message() 148 * (uses slave-specific clock polarity and phase settings) 149 * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers 150 * (cyclically clears RX FIFO by writing @clear_rx_cs to CS register) 151 * @clear_rx_addr: bus address of @clear_rx_cs 152 * @clear_rx_cs: precalculated CS register value to clear RX FIFO 153 * (uses slave-specific clock polarity and phase settings) 154 */ 155 struct bcm2835_spidev { 156 u32 prepare_cs; 157 struct dma_async_tx_descriptor *clear_rx_desc; 158 dma_addr_t clear_rx_addr; 159 u32 clear_rx_cs ____cacheline_aligned; 160 }; 161 162 #if defined(CONFIG_DEBUG_FS) 163 static void bcm2835_debugfs_create(struct bcm2835_spi *bs, 164 const char *dname) 165 { 166 char name[64]; 167 struct dentry *dir; 168 169 /* get full name */ 170 snprintf(name, sizeof(name), "spi-bcm2835-%s", dname); 171 172 /* the base directory */ 173 dir = debugfs_create_dir(name, NULL); 174 bs->debugfs_dir = dir; 175 176 /* the counters */ 177 debugfs_create_u64("count_transfer_polling", 0444, dir, 178 &bs->count_transfer_polling); 179 debugfs_create_u64("count_transfer_irq", 0444, dir, 180 &bs->count_transfer_irq); 181 debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir, 182 &bs->count_transfer_irq_after_polling); 183 debugfs_create_u64("count_transfer_dma", 0444, dir, 184 &bs->count_transfer_dma); 185 } 186 187 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs) 188 { 189 debugfs_remove_recursive(bs->debugfs_dir); 190 bs->debugfs_dir = NULL; 191 } 192 #else 193 static void bcm2835_debugfs_create(struct bcm2835_spi *bs, 194 const char *dname) 195 { 196 } 197 198 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs) 199 { 200 } 201 #endif /* CONFIG_DEBUG_FS */ 202 203 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg) 204 { 205 return readl(bs->regs + reg); 206 } 207 208 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val) 209 { 210 writel(val, bs->regs + reg); 211 } 212 213 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs) 214 { 215 u8 byte; 216 217 while ((bs->rx_len) && 218 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) { 219 byte = bcm2835_rd(bs, BCM2835_SPI_FIFO); 220 if (bs->rx_buf) 221 *bs->rx_buf++ = byte; 222 bs->rx_len--; 223 } 224 } 225 226 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs) 227 { 228 u8 byte; 229 230 while ((bs->tx_len) && 231 (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) { 232 byte = bs->tx_buf ? *bs->tx_buf++ : 0; 233 bcm2835_wr(bs, BCM2835_SPI_FIFO, byte); 234 bs->tx_len--; 235 } 236 } 237 238 /** 239 * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO 240 * @bs: BCM2835 SPI controller 241 * @count: bytes to read from RX FIFO 242 * 243 * The caller must ensure that @bs->rx_len is greater than or equal to @count, 244 * that the RX FIFO contains at least @count bytes and that the DMA Enable flag 245 * in the CS register is set (such that a read from the FIFO register receives 246 * 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL. 247 */ 248 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count) 249 { 250 u32 val; 251 int len; 252 253 bs->rx_len -= count; 254 255 do { 256 val = bcm2835_rd(bs, BCM2835_SPI_FIFO); 257 len = min(count, 4); 258 memcpy(bs->rx_buf, &val, len); 259 bs->rx_buf += len; 260 count -= 4; 261 } while (count > 0); 262 } 263 264 /** 265 * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO 266 * @bs: BCM2835 SPI controller 267 * @count: bytes to write to TX FIFO 268 * 269 * The caller must ensure that @bs->tx_len is greater than or equal to @count, 270 * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag 271 * in the CS register is set (such that a write to the FIFO register transmits 272 * 32-bit instead of just 8-bit). 273 */ 274 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count) 275 { 276 u32 val; 277 int len; 278 279 bs->tx_len -= count; 280 281 do { 282 if (bs->tx_buf) { 283 len = min(count, 4); 284 memcpy(&val, bs->tx_buf, len); 285 bs->tx_buf += len; 286 } else { 287 val = 0; 288 } 289 bcm2835_wr(bs, BCM2835_SPI_FIFO, val); 290 count -= 4; 291 } while (count > 0); 292 } 293 294 /** 295 * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty 296 * @bs: BCM2835 SPI controller 297 * 298 * The caller must ensure that the RX FIFO can accommodate as many bytes 299 * as have been written to the TX FIFO: Transmission is halted once the 300 * RX FIFO is full, causing this function to spin forever. 301 */ 302 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs) 303 { 304 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE)) 305 cpu_relax(); 306 } 307 308 /** 309 * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO 310 * @bs: BCM2835 SPI controller 311 * @count: bytes available for reading in RX FIFO 312 */ 313 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count) 314 { 315 u8 val; 316 317 count = min(count, bs->rx_len); 318 bs->rx_len -= count; 319 320 do { 321 val = bcm2835_rd(bs, BCM2835_SPI_FIFO); 322 if (bs->rx_buf) 323 *bs->rx_buf++ = val; 324 } while (--count); 325 } 326 327 /** 328 * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO 329 * @bs: BCM2835 SPI controller 330 * @count: bytes available for writing in TX FIFO 331 */ 332 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count) 333 { 334 u8 val; 335 336 count = min(count, bs->tx_len); 337 bs->tx_len -= count; 338 339 do { 340 val = bs->tx_buf ? *bs->tx_buf++ : 0; 341 bcm2835_wr(bs, BCM2835_SPI_FIFO, val); 342 } while (--count); 343 } 344 345 static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs) 346 { 347 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS); 348 349 /* Disable SPI interrupts and transfer */ 350 cs &= ~(BCM2835_SPI_CS_INTR | 351 BCM2835_SPI_CS_INTD | 352 BCM2835_SPI_CS_DMAEN | 353 BCM2835_SPI_CS_TA); 354 /* 355 * Transmission sometimes breaks unless the DONE bit is written at the 356 * end of every transfer. The spec says it's a RO bit. Either the 357 * spec is wrong and the bit is actually of type RW1C, or it's a 358 * hardware erratum. 359 */ 360 cs |= BCM2835_SPI_CS_DONE; 361 /* and reset RX/TX FIFOS */ 362 cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX; 363 364 /* and reset the SPI_HW */ 365 bcm2835_wr(bs, BCM2835_SPI_CS, cs); 366 /* as well as DLEN */ 367 bcm2835_wr(bs, BCM2835_SPI_DLEN, 0); 368 } 369 370 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id) 371 { 372 struct bcm2835_spi *bs = dev_id; 373 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS); 374 375 /* 376 * An interrupt is signaled either if DONE is set (TX FIFO empty) 377 * or if RXR is set (RX FIFO >= ¾ full). 378 */ 379 if (cs & BCM2835_SPI_CS_RXF) 380 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); 381 else if (cs & BCM2835_SPI_CS_RXR) 382 bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4); 383 384 if (bs->tx_len && cs & BCM2835_SPI_CS_DONE) 385 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); 386 387 /* Read as many bytes as possible from FIFO */ 388 bcm2835_rd_fifo(bs); 389 /* Write as many bytes as possible to FIFO */ 390 bcm2835_wr_fifo(bs); 391 392 if (!bs->rx_len) { 393 /* Transfer complete - reset SPI HW */ 394 bcm2835_spi_reset_hw(bs); 395 /* wake up the framework */ 396 spi_finalize_current_transfer(bs->ctlr); 397 } 398 399 return IRQ_HANDLED; 400 } 401 402 static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr, 403 struct spi_device *spi, 404 struct spi_transfer *tfr, 405 u32 cs, bool fifo_empty) 406 { 407 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 408 409 /* update usage statistics */ 410 bs->count_transfer_irq++; 411 412 /* 413 * Enable HW block, but with interrupts still disabled. 414 * Otherwise the empty TX FIFO would immediately trigger an interrupt. 415 */ 416 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA); 417 418 /* fill TX FIFO as much as possible */ 419 if (fifo_empty) 420 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); 421 bcm2835_wr_fifo(bs); 422 423 /* enable interrupts */ 424 cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA; 425 bcm2835_wr(bs, BCM2835_SPI_CS, cs); 426 427 /* signal that we need to wait for completion */ 428 return 1; 429 } 430 431 /** 432 * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA 433 * @ctlr: SPI master controller 434 * @tfr: SPI transfer 435 * @bs: BCM2835 SPI controller 436 * @cs: CS register 437 * 438 * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks. 439 * Only the final write access is permitted to transmit less than 4 bytes, the 440 * SPI controller deduces its intended size from the DLEN register. 441 * 442 * If a TX or RX sglist contains multiple entries, one per page, and the first 443 * entry starts in the middle of a page, that first entry's length may not be 444 * a multiple of 4. Subsequent entries are fine because they span an entire 445 * page, hence do have a length that's a multiple of 4. 446 * 447 * This cannot happen with kmalloc'ed buffers (which is what most clients use) 448 * because they are contiguous in physical memory and therefore not split on 449 * page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed 450 * buffers. 451 * 452 * The DMA engine is incapable of combining sglist entries into a continuous 453 * stream of 4 byte chunks, it treats every entry separately: A TX entry is 454 * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX 455 * entry is rounded up by throwing away received bytes. 456 * 457 * Overcome this limitation by transferring the first few bytes without DMA: 458 * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42, 459 * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO. 460 * The residue of 1 byte in the RX FIFO is picked up by DMA. Together with 461 * the rest of the first RX sglist entry it makes up a multiple of 4 bytes. 462 * 463 * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1, 464 * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO. 465 * Caution, the additional 4 bytes spill over to the second TX sglist entry 466 * if the length of the first is *exactly* 1. 467 * 468 * At most 6 bytes are written and at most 3 bytes read. Do we know the 469 * transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH. 470 * 471 * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width 472 * by the DMA engine. Toggling the DMA Enable flag in the CS register switches 473 * the width but also garbles the FIFO's contents. The prologue must therefore 474 * be transmitted in 32-bit width to ensure that the following DMA transfer can 475 * pick up the residue in the RX FIFO in ungarbled form. 476 */ 477 static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr, 478 struct spi_transfer *tfr, 479 struct bcm2835_spi *bs, 480 u32 cs) 481 { 482 int tx_remaining; 483 484 bs->tfr = tfr; 485 bs->tx_prologue = 0; 486 bs->rx_prologue = 0; 487 bs->tx_spillover = false; 488 489 if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0])) 490 bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3; 491 492 if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) { 493 bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3; 494 495 if (bs->rx_prologue > bs->tx_prologue) { 496 if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) { 497 bs->tx_prologue = bs->rx_prologue; 498 } else { 499 bs->tx_prologue += 4; 500 bs->tx_spillover = 501 !(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3); 502 } 503 } 504 } 505 506 /* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */ 507 if (!bs->tx_prologue) 508 return; 509 510 /* Write and read RX prologue. Adjust first entry in RX sglist. */ 511 if (bs->rx_prologue) { 512 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue); 513 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA 514 | BCM2835_SPI_CS_DMAEN); 515 bcm2835_wr_fifo_count(bs, bs->rx_prologue); 516 bcm2835_wait_tx_fifo_empty(bs); 517 bcm2835_rd_fifo_count(bs, bs->rx_prologue); 518 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX 519 | BCM2835_SPI_CS_CLEAR_TX 520 | BCM2835_SPI_CS_DONE); 521 522 dma_sync_single_for_device(ctlr->dma_rx->device->dev, 523 sg_dma_address(&tfr->rx_sg.sgl[0]), 524 bs->rx_prologue, DMA_FROM_DEVICE); 525 526 sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue; 527 sg_dma_len(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue; 528 } 529 530 if (!bs->tx_buf) 531 return; 532 533 /* 534 * Write remaining TX prologue. Adjust first entry in TX sglist. 535 * Also adjust second entry if prologue spills over to it. 536 */ 537 tx_remaining = bs->tx_prologue - bs->rx_prologue; 538 if (tx_remaining) { 539 bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining); 540 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA 541 | BCM2835_SPI_CS_DMAEN); 542 bcm2835_wr_fifo_count(bs, tx_remaining); 543 bcm2835_wait_tx_fifo_empty(bs); 544 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX 545 | BCM2835_SPI_CS_DONE); 546 } 547 548 if (likely(!bs->tx_spillover)) { 549 sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue; 550 sg_dma_len(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue; 551 } else { 552 sg_dma_len(&tfr->tx_sg.sgl[0]) = 0; 553 sg_dma_address(&tfr->tx_sg.sgl[1]) += 4; 554 sg_dma_len(&tfr->tx_sg.sgl[1]) -= 4; 555 } 556 } 557 558 /** 559 * bcm2835_spi_undo_prologue() - reconstruct original sglist state 560 * @bs: BCM2835 SPI controller 561 * 562 * Undo changes which were made to an SPI transfer's sglist when transmitting 563 * the prologue. This is necessary to ensure the same memory ranges are 564 * unmapped that were originally mapped. 565 */ 566 static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs) 567 { 568 struct spi_transfer *tfr = bs->tfr; 569 570 if (!bs->tx_prologue) 571 return; 572 573 if (bs->rx_prologue) { 574 sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue; 575 sg_dma_len(&tfr->rx_sg.sgl[0]) += bs->rx_prologue; 576 } 577 578 if (!bs->tx_buf) 579 goto out; 580 581 if (likely(!bs->tx_spillover)) { 582 sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue; 583 sg_dma_len(&tfr->tx_sg.sgl[0]) += bs->tx_prologue; 584 } else { 585 sg_dma_len(&tfr->tx_sg.sgl[0]) = bs->tx_prologue - 4; 586 sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4; 587 sg_dma_len(&tfr->tx_sg.sgl[1]) += 4; 588 } 589 out: 590 bs->tx_prologue = 0; 591 } 592 593 /** 594 * bcm2835_spi_dma_rx_done() - callback for DMA RX channel 595 * @data: SPI master controller 596 * 597 * Used for bidirectional and RX-only transfers. 598 */ 599 static void bcm2835_spi_dma_rx_done(void *data) 600 { 601 struct spi_controller *ctlr = data; 602 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 603 604 /* terminate tx-dma as we do not have an irq for it 605 * because when the rx dma will terminate and this callback 606 * is called the tx-dma must have finished - can't get to this 607 * situation otherwise... 608 */ 609 dmaengine_terminate_async(ctlr->dma_tx); 610 bs->tx_dma_active = false; 611 bs->rx_dma_active = false; 612 bcm2835_spi_undo_prologue(bs); 613 614 /* reset fifo and HW */ 615 bcm2835_spi_reset_hw(bs); 616 617 /* and mark as completed */; 618 spi_finalize_current_transfer(ctlr); 619 } 620 621 /** 622 * bcm2835_spi_dma_tx_done() - callback for DMA TX channel 623 * @data: SPI master controller 624 * 625 * Used for TX-only transfers. 626 */ 627 static void bcm2835_spi_dma_tx_done(void *data) 628 { 629 struct spi_controller *ctlr = data; 630 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 631 632 /* busy-wait for TX FIFO to empty */ 633 while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE)) 634 bcm2835_wr(bs, BCM2835_SPI_CS, bs->slv->clear_rx_cs); 635 636 bs->tx_dma_active = false; 637 smp_wmb(); 638 639 /* 640 * In case of a very short transfer, RX DMA may not have been 641 * issued yet. The onus is then on bcm2835_spi_transfer_one_dma() 642 * to terminate it immediately after issuing. 643 */ 644 if (cmpxchg(&bs->rx_dma_active, true, false)) 645 dmaengine_terminate_async(ctlr->dma_rx); 646 647 bcm2835_spi_undo_prologue(bs); 648 bcm2835_spi_reset_hw(bs); 649 spi_finalize_current_transfer(ctlr); 650 } 651 652 /** 653 * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist 654 * @ctlr: SPI master controller 655 * @tfr: SPI transfer 656 * @bs: BCM2835 SPI controller 657 * @slv: BCM2835 SPI slave 658 * @is_tx: whether to submit DMA descriptor for TX or RX sglist 659 * 660 * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr. 661 * Return 0 on success or a negative error number. 662 */ 663 static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr, 664 struct spi_transfer *tfr, 665 struct bcm2835_spi *bs, 666 struct bcm2835_spidev *slv, 667 bool is_tx) 668 { 669 struct dma_chan *chan; 670 struct scatterlist *sgl; 671 unsigned int nents; 672 enum dma_transfer_direction dir; 673 unsigned long flags; 674 675 struct dma_async_tx_descriptor *desc; 676 dma_cookie_t cookie; 677 678 if (is_tx) { 679 dir = DMA_MEM_TO_DEV; 680 chan = ctlr->dma_tx; 681 nents = tfr->tx_sg.nents; 682 sgl = tfr->tx_sg.sgl; 683 flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT; 684 } else { 685 dir = DMA_DEV_TO_MEM; 686 chan = ctlr->dma_rx; 687 nents = tfr->rx_sg.nents; 688 sgl = tfr->rx_sg.sgl; 689 flags = DMA_PREP_INTERRUPT; 690 } 691 /* prepare the channel */ 692 desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags); 693 if (!desc) 694 return -EINVAL; 695 696 /* 697 * Completion is signaled by the RX channel for bidirectional and 698 * RX-only transfers; else by the TX channel for TX-only transfers. 699 */ 700 if (!is_tx) { 701 desc->callback = bcm2835_spi_dma_rx_done; 702 desc->callback_param = ctlr; 703 } else if (!tfr->rx_buf) { 704 desc->callback = bcm2835_spi_dma_tx_done; 705 desc->callback_param = ctlr; 706 bs->slv = slv; 707 } 708 709 /* submit it to DMA-engine */ 710 cookie = dmaengine_submit(desc); 711 712 return dma_submit_error(cookie); 713 } 714 715 /** 716 * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine 717 * @ctlr: SPI master controller 718 * @tfr: SPI transfer 719 * @slv: BCM2835 SPI slave 720 * @cs: CS register 721 * 722 * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up 723 * the TX and RX DMA channel to copy between memory and FIFO register. 724 * 725 * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to 726 * memory is pointless. However not reading the RX FIFO isn't an option either 727 * because transmission is halted once it's full. As a workaround, cyclically 728 * clear the RX FIFO by setting the CLEAR_RX bit in the CS register. 729 * 730 * The CS register value is precalculated in bcm2835_spi_setup(). Normally 731 * this is called only once, on slave registration. A DMA descriptor to write 732 * this value is preallocated in bcm2835_dma_init(). All that's left to do 733 * when performing a TX-only transfer is to submit this descriptor to the RX 734 * DMA channel. Latency is thereby minimized. The descriptor does not 735 * generate any interrupts while running. It must be terminated once the 736 * TX DMA channel is done. 737 * 738 * Clearing the RX FIFO is paced by the DREQ signal. The signal is asserted 739 * when the RX FIFO becomes half full, i.e. 32 bytes. (Tuneable with the DC 740 * register.) Reading 32 bytes from the RX FIFO would normally require 8 bus 741 * accesses, whereas clearing it requires only 1 bus access. So an 8-fold 742 * reduction in bus traffic and thus energy consumption is achieved. 743 * 744 * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically 745 * copying from the zero page. The DMA descriptor to do this is preallocated 746 * in bcm2835_dma_init(). It must be terminated once the RX DMA channel is 747 * done and can then be reused. 748 * 749 * The BCM2835 DMA driver autodetects when a transaction copies from the zero 750 * page and utilizes the DMA controller's ability to synthesize zeroes instead 751 * of copying them from memory. This reduces traffic on the memory bus. The 752 * feature is not available on so-called "lite" channels, but normally TX DMA 753 * is backed by a full-featured channel. 754 * 755 * Zero-filling the TX FIFO is paced by the DREQ signal. Unfortunately the 756 * BCM2835 SPI controller continues to assert DREQ even after the DLEN register 757 * has been counted down to zero (hardware erratum). Thus, when the transfer 758 * has finished, the DMA engine zero-fills the TX FIFO until it is half full. 759 * (Tuneable with the DC register.) So up to 9 gratuitous bus accesses are 760 * performed at the end of an RX-only transfer. 761 */ 762 static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr, 763 struct spi_transfer *tfr, 764 struct bcm2835_spidev *slv, 765 u32 cs) 766 { 767 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 768 dma_cookie_t cookie; 769 int ret; 770 771 /* update usage statistics */ 772 bs->count_transfer_dma++; 773 774 /* 775 * Transfer first few bytes without DMA if length of first TX or RX 776 * sglist entry is not a multiple of 4 bytes (hardware limitation). 777 */ 778 bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs); 779 780 /* setup tx-DMA */ 781 if (bs->tx_buf) { 782 ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, slv, true); 783 } else { 784 cookie = dmaengine_submit(bs->fill_tx_desc); 785 ret = dma_submit_error(cookie); 786 } 787 if (ret) 788 goto err_reset_hw; 789 790 /* set the DMA length */ 791 bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len); 792 793 /* start the HW */ 794 bcm2835_wr(bs, BCM2835_SPI_CS, 795 cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN); 796 797 bs->tx_dma_active = true; 798 smp_wmb(); 799 800 /* start TX early */ 801 dma_async_issue_pending(ctlr->dma_tx); 802 803 /* setup rx-DMA late - to run transfers while 804 * mapping of the rx buffers still takes place 805 * this saves 10us or more. 806 */ 807 if (bs->rx_buf) { 808 ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, slv, false); 809 } else { 810 cookie = dmaengine_submit(slv->clear_rx_desc); 811 ret = dma_submit_error(cookie); 812 } 813 if (ret) { 814 /* need to reset on errors */ 815 dmaengine_terminate_sync(ctlr->dma_tx); 816 bs->tx_dma_active = false; 817 goto err_reset_hw; 818 } 819 820 /* start rx dma late */ 821 dma_async_issue_pending(ctlr->dma_rx); 822 bs->rx_dma_active = true; 823 smp_mb(); 824 825 /* 826 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done() 827 * may run before RX DMA is issued. Terminate RX DMA if so. 828 */ 829 if (!bs->rx_buf && !bs->tx_dma_active && 830 cmpxchg(&bs->rx_dma_active, true, false)) { 831 dmaengine_terminate_async(ctlr->dma_rx); 832 bcm2835_spi_reset_hw(bs); 833 } 834 835 /* wait for wakeup in framework */ 836 return 1; 837 838 err_reset_hw: 839 bcm2835_spi_reset_hw(bs); 840 bcm2835_spi_undo_prologue(bs); 841 return ret; 842 } 843 844 static bool bcm2835_spi_can_dma(struct spi_controller *ctlr, 845 struct spi_device *spi, 846 struct spi_transfer *tfr) 847 { 848 /* we start DMA efforts only on bigger transfers */ 849 if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH) 850 return false; 851 852 /* return OK */ 853 return true; 854 } 855 856 static void bcm2835_dma_release(struct spi_controller *ctlr, 857 struct bcm2835_spi *bs) 858 { 859 if (ctlr->dma_tx) { 860 dmaengine_terminate_sync(ctlr->dma_tx); 861 862 if (bs->fill_tx_desc) 863 dmaengine_desc_free(bs->fill_tx_desc); 864 865 if (bs->fill_tx_addr) 866 dma_unmap_page_attrs(ctlr->dma_tx->device->dev, 867 bs->fill_tx_addr, sizeof(u32), 868 DMA_TO_DEVICE, 869 DMA_ATTR_SKIP_CPU_SYNC); 870 871 dma_release_channel(ctlr->dma_tx); 872 ctlr->dma_tx = NULL; 873 } 874 875 if (ctlr->dma_rx) { 876 dmaengine_terminate_sync(ctlr->dma_rx); 877 dma_release_channel(ctlr->dma_rx); 878 ctlr->dma_rx = NULL; 879 } 880 } 881 882 static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev, 883 struct bcm2835_spi *bs) 884 { 885 struct dma_slave_config slave_config; 886 const __be32 *addr; 887 dma_addr_t dma_reg_base; 888 int ret; 889 890 /* base address in dma-space */ 891 addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL); 892 if (!addr) { 893 dev_err(dev, "could not get DMA-register address - not using dma mode\n"); 894 /* Fall back to interrupt mode */ 895 return 0; 896 } 897 dma_reg_base = be32_to_cpup(addr); 898 899 /* get tx/rx dma */ 900 ctlr->dma_tx = dma_request_chan(dev, "tx"); 901 if (IS_ERR(ctlr->dma_tx)) { 902 dev_err(dev, "no tx-dma configuration found - not using dma mode\n"); 903 ret = PTR_ERR(ctlr->dma_tx); 904 ctlr->dma_tx = NULL; 905 goto err; 906 } 907 ctlr->dma_rx = dma_request_chan(dev, "rx"); 908 if (IS_ERR(ctlr->dma_rx)) { 909 dev_err(dev, "no rx-dma configuration found - not using dma mode\n"); 910 ret = PTR_ERR(ctlr->dma_rx); 911 ctlr->dma_rx = NULL; 912 goto err_release; 913 } 914 915 /* 916 * The TX DMA channel either copies a transfer's TX buffer to the FIFO 917 * or, in case of an RX-only transfer, cyclically copies from the zero 918 * page to the FIFO using a preallocated, reusable descriptor. 919 */ 920 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO); 921 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 922 923 ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config); 924 if (ret) 925 goto err_config; 926 927 bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev, 928 ZERO_PAGE(0), 0, sizeof(u32), 929 DMA_TO_DEVICE, 930 DMA_ATTR_SKIP_CPU_SYNC); 931 if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) { 932 dev_err(dev, "cannot map zero page - not using DMA mode\n"); 933 bs->fill_tx_addr = 0; 934 ret = -ENOMEM; 935 goto err_release; 936 } 937 938 bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx, 939 bs->fill_tx_addr, 940 sizeof(u32), 0, 941 DMA_MEM_TO_DEV, 0); 942 if (!bs->fill_tx_desc) { 943 dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n"); 944 ret = -ENOMEM; 945 goto err_release; 946 } 947 948 ret = dmaengine_desc_set_reuse(bs->fill_tx_desc); 949 if (ret) { 950 dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n"); 951 goto err_release; 952 } 953 954 /* 955 * The RX DMA channel is used bidirectionally: It either reads the 956 * RX FIFO or, in case of a TX-only transfer, cyclically writes a 957 * precalculated value to the CS register to clear the RX FIFO. 958 */ 959 slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO); 960 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 961 slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS); 962 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 963 964 ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config); 965 if (ret) 966 goto err_config; 967 968 /* all went well, so set can_dma */ 969 ctlr->can_dma = bcm2835_spi_can_dma; 970 971 return 0; 972 973 err_config: 974 dev_err(dev, "issue configuring dma: %d - not using DMA mode\n", 975 ret); 976 err_release: 977 bcm2835_dma_release(ctlr, bs); 978 err: 979 /* 980 * Only report error for deferred probing, otherwise fall back to 981 * interrupt mode 982 */ 983 if (ret != -EPROBE_DEFER) 984 ret = 0; 985 986 return ret; 987 } 988 989 static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr, 990 struct spi_device *spi, 991 struct spi_transfer *tfr, 992 u32 cs) 993 { 994 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 995 unsigned long timeout; 996 997 /* update usage statistics */ 998 bs->count_transfer_polling++; 999 1000 /* enable HW block without interrupts */ 1001 bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA); 1002 1003 /* fill in the fifo before timeout calculations 1004 * if we are interrupted here, then the data is 1005 * getting transferred by the HW while we are interrupted 1006 */ 1007 bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE); 1008 1009 /* set the timeout to at least 2 jiffies */ 1010 timeout = jiffies + 2 + HZ * polling_limit_us / 1000000; 1011 1012 /* loop until finished the transfer */ 1013 while (bs->rx_len) { 1014 /* fill in tx fifo with remaining data */ 1015 bcm2835_wr_fifo(bs); 1016 1017 /* read from fifo as much as possible */ 1018 bcm2835_rd_fifo(bs); 1019 1020 /* if there is still data pending to read 1021 * then check the timeout 1022 */ 1023 if (bs->rx_len && time_after(jiffies, timeout)) { 1024 dev_dbg_ratelimited(&spi->dev, 1025 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n", 1026 jiffies - timeout, 1027 bs->tx_len, bs->rx_len); 1028 /* fall back to interrupt mode */ 1029 1030 /* update usage statistics */ 1031 bs->count_transfer_irq_after_polling++; 1032 1033 return bcm2835_spi_transfer_one_irq(ctlr, spi, 1034 tfr, cs, false); 1035 } 1036 } 1037 1038 /* Transfer complete - reset SPI HW */ 1039 bcm2835_spi_reset_hw(bs); 1040 /* and return without waiting for completion */ 1041 return 0; 1042 } 1043 1044 static int bcm2835_spi_transfer_one(struct spi_controller *ctlr, 1045 struct spi_device *spi, 1046 struct spi_transfer *tfr) 1047 { 1048 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 1049 struct bcm2835_spidev *slv = spi_get_ctldata(spi); 1050 unsigned long spi_hz, cdiv; 1051 unsigned long hz_per_byte, byte_limit; 1052 u32 cs = slv->prepare_cs; 1053 1054 /* set clock */ 1055 spi_hz = tfr->speed_hz; 1056 1057 if (spi_hz >= bs->clk_hz / 2) { 1058 cdiv = 2; /* clk_hz/2 is the fastest we can go */ 1059 } else if (spi_hz) { 1060 /* CDIV must be a multiple of two */ 1061 cdiv = DIV_ROUND_UP(bs->clk_hz, spi_hz); 1062 cdiv += (cdiv % 2); 1063 1064 if (cdiv >= 65536) 1065 cdiv = 0; /* 0 is the slowest we can go */ 1066 } else { 1067 cdiv = 0; /* 0 is the slowest we can go */ 1068 } 1069 tfr->effective_speed_hz = cdiv ? (bs->clk_hz / cdiv) : (bs->clk_hz / 65536); 1070 bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv); 1071 1072 /* handle all the 3-wire mode */ 1073 if (spi->mode & SPI_3WIRE && tfr->rx_buf) 1074 cs |= BCM2835_SPI_CS_REN; 1075 1076 /* set transmit buffers and length */ 1077 bs->tx_buf = tfr->tx_buf; 1078 bs->rx_buf = tfr->rx_buf; 1079 bs->tx_len = tfr->len; 1080 bs->rx_len = tfr->len; 1081 1082 /* Calculate the estimated time in us the transfer runs. Note that 1083 * there is 1 idle clocks cycles after each byte getting transferred 1084 * so we have 9 cycles/byte. This is used to find the number of Hz 1085 * per byte per polling limit. E.g., we can transfer 1 byte in 30 us 1086 * per 300,000 Hz of bus clock. 1087 */ 1088 hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0; 1089 byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1; 1090 1091 /* run in polling mode for short transfers */ 1092 if (tfr->len < byte_limit) 1093 return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs); 1094 1095 /* run in dma mode if conditions are right 1096 * Note that unlike poll or interrupt mode DMA mode does not have 1097 * this 1 idle clock cycle pattern but runs the spi clock without gaps 1098 */ 1099 if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr)) 1100 return bcm2835_spi_transfer_one_dma(ctlr, tfr, slv, cs); 1101 1102 /* run in interrupt-mode */ 1103 return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true); 1104 } 1105 1106 static int bcm2835_spi_prepare_message(struct spi_controller *ctlr, 1107 struct spi_message *msg) 1108 { 1109 struct spi_device *spi = msg->spi; 1110 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 1111 struct bcm2835_spidev *slv = spi_get_ctldata(spi); 1112 int ret; 1113 1114 if (ctlr->can_dma) { 1115 /* 1116 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by 1117 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO 1118 * aligned) if the limit is exceeded. 1119 */ 1120 ret = spi_split_transfers_maxsize(ctlr, msg, 65532, 1121 GFP_KERNEL | GFP_DMA); 1122 if (ret) 1123 return ret; 1124 } 1125 1126 /* 1127 * Set up clock polarity before spi_transfer_one_message() asserts 1128 * chip select to avoid a gratuitous clock signal edge. 1129 */ 1130 bcm2835_wr(bs, BCM2835_SPI_CS, slv->prepare_cs); 1131 1132 return 0; 1133 } 1134 1135 static void bcm2835_spi_handle_err(struct spi_controller *ctlr, 1136 struct spi_message *msg) 1137 { 1138 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 1139 1140 /* if an error occurred and we have an active dma, then terminate */ 1141 dmaengine_terminate_sync(ctlr->dma_tx); 1142 bs->tx_dma_active = false; 1143 dmaengine_terminate_sync(ctlr->dma_rx); 1144 bs->rx_dma_active = false; 1145 bcm2835_spi_undo_prologue(bs); 1146 1147 /* and reset */ 1148 bcm2835_spi_reset_hw(bs); 1149 } 1150 1151 static int chip_match_name(struct gpio_chip *chip, void *data) 1152 { 1153 return !strcmp(chip->label, data); 1154 } 1155 1156 static void bcm2835_spi_cleanup(struct spi_device *spi) 1157 { 1158 struct bcm2835_spidev *slv = spi_get_ctldata(spi); 1159 struct spi_controller *ctlr = spi->controller; 1160 1161 if (slv->clear_rx_desc) 1162 dmaengine_desc_free(slv->clear_rx_desc); 1163 1164 if (slv->clear_rx_addr) 1165 dma_unmap_single(ctlr->dma_rx->device->dev, 1166 slv->clear_rx_addr, 1167 sizeof(u32), 1168 DMA_TO_DEVICE); 1169 1170 kfree(slv); 1171 } 1172 1173 static int bcm2835_spi_setup_dma(struct spi_controller *ctlr, 1174 struct spi_device *spi, 1175 struct bcm2835_spi *bs, 1176 struct bcm2835_spidev *slv) 1177 { 1178 int ret; 1179 1180 if (!ctlr->dma_rx) 1181 return 0; 1182 1183 slv->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev, 1184 &slv->clear_rx_cs, 1185 sizeof(u32), 1186 DMA_TO_DEVICE); 1187 if (dma_mapping_error(ctlr->dma_rx->device->dev, slv->clear_rx_addr)) { 1188 dev_err(&spi->dev, "cannot map clear_rx_cs\n"); 1189 slv->clear_rx_addr = 0; 1190 return -ENOMEM; 1191 } 1192 1193 slv->clear_rx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_rx, 1194 slv->clear_rx_addr, 1195 sizeof(u32), 0, 1196 DMA_MEM_TO_DEV, 0); 1197 if (!slv->clear_rx_desc) { 1198 dev_err(&spi->dev, "cannot prepare clear_rx_desc\n"); 1199 return -ENOMEM; 1200 } 1201 1202 ret = dmaengine_desc_set_reuse(slv->clear_rx_desc); 1203 if (ret) { 1204 dev_err(&spi->dev, "cannot reuse clear_rx_desc\n"); 1205 return ret; 1206 } 1207 1208 return 0; 1209 } 1210 1211 static int bcm2835_spi_setup(struct spi_device *spi) 1212 { 1213 struct spi_controller *ctlr = spi->controller; 1214 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 1215 struct bcm2835_spidev *slv = spi_get_ctldata(spi); 1216 struct gpio_chip *chip; 1217 int ret; 1218 u32 cs; 1219 1220 if (!slv) { 1221 slv = kzalloc(ALIGN(sizeof(*slv), dma_get_cache_alignment()), 1222 GFP_KERNEL); 1223 if (!slv) 1224 return -ENOMEM; 1225 1226 spi_set_ctldata(spi, slv); 1227 1228 ret = bcm2835_spi_setup_dma(ctlr, spi, bs, slv); 1229 if (ret) 1230 goto err_cleanup; 1231 } 1232 1233 /* 1234 * Precalculate SPI slave's CS register value for ->prepare_message(): 1235 * The driver always uses software-controlled GPIO chip select, hence 1236 * set the hardware-controlled native chip select to an invalid value 1237 * to prevent it from interfering. 1238 */ 1239 cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01; 1240 if (spi->mode & SPI_CPOL) 1241 cs |= BCM2835_SPI_CS_CPOL; 1242 if (spi->mode & SPI_CPHA) 1243 cs |= BCM2835_SPI_CS_CPHA; 1244 slv->prepare_cs = cs; 1245 1246 /* 1247 * Precalculate SPI slave's CS register value to clear RX FIFO 1248 * in case of a TX-only DMA transfer. 1249 */ 1250 if (ctlr->dma_rx) { 1251 slv->clear_rx_cs = cs | BCM2835_SPI_CS_TA | 1252 BCM2835_SPI_CS_DMAEN | 1253 BCM2835_SPI_CS_CLEAR_RX; 1254 dma_sync_single_for_device(ctlr->dma_rx->device->dev, 1255 slv->clear_rx_addr, 1256 sizeof(u32), 1257 DMA_TO_DEVICE); 1258 } 1259 1260 /* 1261 * sanity checking the native-chipselects 1262 */ 1263 if (spi->mode & SPI_NO_CS) 1264 return 0; 1265 /* 1266 * The SPI core has successfully requested the CS GPIO line from the 1267 * device tree, so we are done. 1268 */ 1269 if (spi->cs_gpiod) 1270 return 0; 1271 if (spi->chip_select > 1) { 1272 /* error in the case of native CS requested with CS > 1 1273 * officially there is a CS2, but it is not documented 1274 * which GPIO is connected with that... 1275 */ 1276 dev_err(&spi->dev, 1277 "setup: only two native chip-selects are supported\n"); 1278 ret = -EINVAL; 1279 goto err_cleanup; 1280 } 1281 1282 /* 1283 * Translate native CS to GPIO 1284 * 1285 * FIXME: poking around in the gpiolib internals like this is 1286 * not very good practice. Find a way to locate the real problem 1287 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod 1288 * sometimes not assigned correctly? Erroneous device trees? 1289 */ 1290 1291 /* get the gpio chip for the base */ 1292 chip = gpiochip_find("pinctrl-bcm2835", chip_match_name); 1293 if (!chip) 1294 return 0; 1295 1296 spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select, 1297 DRV_NAME, 1298 GPIO_LOOKUP_FLAGS_DEFAULT, 1299 GPIOD_OUT_LOW); 1300 if (IS_ERR(spi->cs_gpiod)) { 1301 ret = PTR_ERR(spi->cs_gpiod); 1302 goto err_cleanup; 1303 } 1304 1305 /* and set up the "mode" and level */ 1306 dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n", 1307 spi->chip_select); 1308 1309 return 0; 1310 1311 err_cleanup: 1312 bcm2835_spi_cleanup(spi); 1313 return ret; 1314 } 1315 1316 static int bcm2835_spi_probe(struct platform_device *pdev) 1317 { 1318 struct spi_controller *ctlr; 1319 struct bcm2835_spi *bs; 1320 int err; 1321 1322 ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*bs)); 1323 if (!ctlr) 1324 return -ENOMEM; 1325 1326 platform_set_drvdata(pdev, ctlr); 1327 1328 ctlr->use_gpio_descriptors = true; 1329 ctlr->mode_bits = BCM2835_SPI_MODE_BITS; 1330 ctlr->bits_per_word_mask = SPI_BPW_MASK(8); 1331 ctlr->num_chipselect = 3; 1332 ctlr->setup = bcm2835_spi_setup; 1333 ctlr->cleanup = bcm2835_spi_cleanup; 1334 ctlr->transfer_one = bcm2835_spi_transfer_one; 1335 ctlr->handle_err = bcm2835_spi_handle_err; 1336 ctlr->prepare_message = bcm2835_spi_prepare_message; 1337 ctlr->dev.of_node = pdev->dev.of_node; 1338 1339 bs = spi_controller_get_devdata(ctlr); 1340 bs->ctlr = ctlr; 1341 1342 bs->regs = devm_platform_ioremap_resource(pdev, 0); 1343 if (IS_ERR(bs->regs)) 1344 return PTR_ERR(bs->regs); 1345 1346 bs->clk = devm_clk_get(&pdev->dev, NULL); 1347 if (IS_ERR(bs->clk)) 1348 return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk), 1349 "could not get clk\n"); 1350 1351 ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2; 1352 1353 bs->irq = platform_get_irq(pdev, 0); 1354 if (bs->irq <= 0) 1355 return bs->irq ? bs->irq : -ENODEV; 1356 1357 clk_prepare_enable(bs->clk); 1358 bs->clk_hz = clk_get_rate(bs->clk); 1359 1360 err = bcm2835_dma_init(ctlr, &pdev->dev, bs); 1361 if (err) 1362 goto out_clk_disable; 1363 1364 /* initialise the hardware with the default polarities */ 1365 bcm2835_wr(bs, BCM2835_SPI_CS, 1366 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX); 1367 1368 err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0, 1369 dev_name(&pdev->dev), bs); 1370 if (err) { 1371 dev_err(&pdev->dev, "could not request IRQ: %d\n", err); 1372 goto out_dma_release; 1373 } 1374 1375 err = spi_register_controller(ctlr); 1376 if (err) { 1377 dev_err(&pdev->dev, "could not register SPI controller: %d\n", 1378 err); 1379 goto out_dma_release; 1380 } 1381 1382 bcm2835_debugfs_create(bs, dev_name(&pdev->dev)); 1383 1384 return 0; 1385 1386 out_dma_release: 1387 bcm2835_dma_release(ctlr, bs); 1388 out_clk_disable: 1389 clk_disable_unprepare(bs->clk); 1390 return err; 1391 } 1392 1393 static int bcm2835_spi_remove(struct platform_device *pdev) 1394 { 1395 struct spi_controller *ctlr = platform_get_drvdata(pdev); 1396 struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr); 1397 1398 bcm2835_debugfs_remove(bs); 1399 1400 spi_unregister_controller(ctlr); 1401 1402 bcm2835_dma_release(ctlr, bs); 1403 1404 /* Clear FIFOs, and disable the HW block */ 1405 bcm2835_wr(bs, BCM2835_SPI_CS, 1406 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX); 1407 1408 clk_disable_unprepare(bs->clk); 1409 1410 return 0; 1411 } 1412 1413 static void bcm2835_spi_shutdown(struct platform_device *pdev) 1414 { 1415 int ret; 1416 1417 ret = bcm2835_spi_remove(pdev); 1418 if (ret) 1419 dev_err(&pdev->dev, "failed to shutdown\n"); 1420 } 1421 1422 static const struct of_device_id bcm2835_spi_match[] = { 1423 { .compatible = "brcm,bcm2835-spi", }, 1424 {} 1425 }; 1426 MODULE_DEVICE_TABLE(of, bcm2835_spi_match); 1427 1428 static struct platform_driver bcm2835_spi_driver = { 1429 .driver = { 1430 .name = DRV_NAME, 1431 .of_match_table = bcm2835_spi_match, 1432 }, 1433 .probe = bcm2835_spi_probe, 1434 .remove = bcm2835_spi_remove, 1435 .shutdown = bcm2835_spi_shutdown, 1436 }; 1437 module_platform_driver(bcm2835_spi_driver); 1438 1439 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835"); 1440 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>"); 1441 MODULE_LICENSE("GPL"); 1442