xref: /openbmc/linux/drivers/spi/spi-bcm2835.c (revision 92b19ff5)
1 /*
2  * Driver for Broadcom BCM2835 SPI Controllers
3  *
4  * Copyright (C) 2012 Chris Boot
5  * Copyright (C) 2013 Stephen Warren
6  * Copyright (C) 2015 Martin Sperl
7  *
8  * This driver is inspired by:
9  * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
10  * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  */
22 
23 #include <asm/page.h>
24 #include <linux/clk.h>
25 #include <linux/completion.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/err.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/of.h>
35 #include <linux/of_address.h>
36 #include <linux/of_device.h>
37 #include <linux/of_gpio.h>
38 #include <linux/of_irq.h>
39 #include <linux/spi/spi.h>
40 
41 /* SPI register offsets */
42 #define BCM2835_SPI_CS			0x00
43 #define BCM2835_SPI_FIFO		0x04
44 #define BCM2835_SPI_CLK			0x08
45 #define BCM2835_SPI_DLEN		0x0c
46 #define BCM2835_SPI_LTOH		0x10
47 #define BCM2835_SPI_DC			0x14
48 
49 /* Bitfields in CS */
50 #define BCM2835_SPI_CS_LEN_LONG		0x02000000
51 #define BCM2835_SPI_CS_DMA_LEN		0x01000000
52 #define BCM2835_SPI_CS_CSPOL2		0x00800000
53 #define BCM2835_SPI_CS_CSPOL1		0x00400000
54 #define BCM2835_SPI_CS_CSPOL0		0x00200000
55 #define BCM2835_SPI_CS_RXF		0x00100000
56 #define BCM2835_SPI_CS_RXR		0x00080000
57 #define BCM2835_SPI_CS_TXD		0x00040000
58 #define BCM2835_SPI_CS_RXD		0x00020000
59 #define BCM2835_SPI_CS_DONE		0x00010000
60 #define BCM2835_SPI_CS_LEN		0x00002000
61 #define BCM2835_SPI_CS_REN		0x00001000
62 #define BCM2835_SPI_CS_ADCS		0x00000800
63 #define BCM2835_SPI_CS_INTR		0x00000400
64 #define BCM2835_SPI_CS_INTD		0x00000200
65 #define BCM2835_SPI_CS_DMAEN		0x00000100
66 #define BCM2835_SPI_CS_TA		0x00000080
67 #define BCM2835_SPI_CS_CSPOL		0x00000040
68 #define BCM2835_SPI_CS_CLEAR_RX		0x00000020
69 #define BCM2835_SPI_CS_CLEAR_TX		0x00000010
70 #define BCM2835_SPI_CS_CPOL		0x00000008
71 #define BCM2835_SPI_CS_CPHA		0x00000004
72 #define BCM2835_SPI_CS_CS_10		0x00000002
73 #define BCM2835_SPI_CS_CS_01		0x00000001
74 
75 #define BCM2835_SPI_POLLING_LIMIT_US	30
76 #define BCM2835_SPI_POLLING_JIFFIES	2
77 #define BCM2835_SPI_DMA_MIN_LENGTH	96
78 #define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
79 				| SPI_NO_CS | SPI_3WIRE)
80 
81 #define DRV_NAME	"spi-bcm2835"
82 
83 struct bcm2835_spi {
84 	void __iomem *regs;
85 	struct clk *clk;
86 	int irq;
87 	const u8 *tx_buf;
88 	u8 *rx_buf;
89 	int tx_len;
90 	int rx_len;
91 	bool dma_pending;
92 };
93 
94 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg)
95 {
96 	return readl(bs->regs + reg);
97 }
98 
99 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val)
100 {
101 	writel(val, bs->regs + reg);
102 }
103 
104 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
105 {
106 	u8 byte;
107 
108 	while ((bs->rx_len) &&
109 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
110 		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
111 		if (bs->rx_buf)
112 			*bs->rx_buf++ = byte;
113 		bs->rx_len--;
114 	}
115 }
116 
117 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
118 {
119 	u8 byte;
120 
121 	while ((bs->tx_len) &&
122 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
123 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
124 		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
125 		bs->tx_len--;
126 	}
127 }
128 
129 static void bcm2835_spi_reset_hw(struct spi_master *master)
130 {
131 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
132 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
133 
134 	/* Disable SPI interrupts and transfer */
135 	cs &= ~(BCM2835_SPI_CS_INTR |
136 		BCM2835_SPI_CS_INTD |
137 		BCM2835_SPI_CS_DMAEN |
138 		BCM2835_SPI_CS_TA);
139 	/* and reset RX/TX FIFOS */
140 	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
141 
142 	/* and reset the SPI_HW */
143 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
144 	/* as well as DLEN */
145 	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
146 }
147 
148 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
149 {
150 	struct spi_master *master = dev_id;
151 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
152 
153 	/* Read as many bytes as possible from FIFO */
154 	bcm2835_rd_fifo(bs);
155 	/* Write as many bytes as possible to FIFO */
156 	bcm2835_wr_fifo(bs);
157 
158 	/* based on flags decide if we can finish the transfer */
159 	if (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE) {
160 		/* Transfer complete - reset SPI HW */
161 		bcm2835_spi_reset_hw(master);
162 		/* wake up the framework */
163 		complete(&master->xfer_completion);
164 	}
165 
166 	return IRQ_HANDLED;
167 }
168 
169 static int bcm2835_spi_transfer_one_irq(struct spi_master *master,
170 					struct spi_device *spi,
171 					struct spi_transfer *tfr,
172 					u32 cs)
173 {
174 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
175 
176 	/* fill in fifo if we have gpio-cs
177 	 * note that there have been rare events where the native-CS
178 	 * flapped for <1us which may change the behaviour
179 	 * with gpio-cs this does not happen, so it is implemented
180 	 * only for this case
181 	 */
182 	if (gpio_is_valid(spi->cs_gpio)) {
183 		/* enable HW block, but without interrupts enabled
184 		 * this would triggern an immediate interrupt
185 		 */
186 		bcm2835_wr(bs, BCM2835_SPI_CS,
187 			   cs | BCM2835_SPI_CS_TA);
188 		/* fill in tx fifo as much as possible */
189 		bcm2835_wr_fifo(bs);
190 	}
191 
192 	/*
193 	 * Enable the HW block. This will immediately trigger a DONE (TX
194 	 * empty) interrupt, upon which we will fill the TX FIFO with the
195 	 * first TX bytes. Pre-filling the TX FIFO here to avoid the
196 	 * interrupt doesn't work:-(
197 	 */
198 	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
199 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
200 
201 	/* signal that we need to wait for completion */
202 	return 1;
203 }
204 
205 /*
206  * DMA support
207  *
208  * this implementation has currently a few issues in so far as it does
209  * not work arrount limitations of the HW.
210  *
211  * the main one being that DMA transfers are limited to 16 bit
212  * (so 0 to 65535 bytes) by the SPI HW due to BCM2835_SPI_DLEN
213  *
214  * also we currently assume that the scatter-gather fragments are
215  * all multiple of 4 (except the last) - otherwise we would need
216  * to reset the FIFO before subsequent transfers...
217  * this also means that tx/rx transfers sg's need to be of equal size!
218  *
219  * there may be a few more border-cases we may need to address as well
220  * but unfortunately this would mean splitting up the scatter-gather
221  * list making it slightly unpractical...
222  */
223 static void bcm2835_spi_dma_done(void *data)
224 {
225 	struct spi_master *master = data;
226 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
227 
228 	/* reset fifo and HW */
229 	bcm2835_spi_reset_hw(master);
230 
231 	/* and terminate tx-dma as we do not have an irq for it
232 	 * because when the rx dma will terminate and this callback
233 	 * is called the tx-dma must have finished - can't get to this
234 	 * situation otherwise...
235 	 */
236 	dmaengine_terminate_all(master->dma_tx);
237 
238 	/* mark as no longer pending */
239 	bs->dma_pending = 0;
240 
241 	/* and mark as completed */;
242 	complete(&master->xfer_completion);
243 }
244 
245 static int bcm2835_spi_prepare_sg(struct spi_master *master,
246 				  struct spi_transfer *tfr,
247 				  bool is_tx)
248 {
249 	struct dma_chan *chan;
250 	struct scatterlist *sgl;
251 	unsigned int nents;
252 	enum dma_transfer_direction dir;
253 	unsigned long flags;
254 
255 	struct dma_async_tx_descriptor *desc;
256 	dma_cookie_t cookie;
257 
258 	if (is_tx) {
259 		dir   = DMA_MEM_TO_DEV;
260 		chan  = master->dma_tx;
261 		nents = tfr->tx_sg.nents;
262 		sgl   = tfr->tx_sg.sgl;
263 		flags = 0 /* no  tx interrupt */;
264 
265 	} else {
266 		dir   = DMA_DEV_TO_MEM;
267 		chan  = master->dma_rx;
268 		nents = tfr->rx_sg.nents;
269 		sgl   = tfr->rx_sg.sgl;
270 		flags = DMA_PREP_INTERRUPT;
271 	}
272 	/* prepare the channel */
273 	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
274 	if (!desc)
275 		return -EINVAL;
276 
277 	/* set callback for rx */
278 	if (!is_tx) {
279 		desc->callback = bcm2835_spi_dma_done;
280 		desc->callback_param = master;
281 	}
282 
283 	/* submit it to DMA-engine */
284 	cookie = dmaengine_submit(desc);
285 
286 	return dma_submit_error(cookie);
287 }
288 
289 static inline int bcm2835_check_sg_length(struct sg_table *sgt)
290 {
291 	int i;
292 	struct scatterlist *sgl;
293 
294 	/* check that the sg entries are word-sized (except for last) */
295 	for_each_sg(sgt->sgl, sgl, (int)sgt->nents - 1, i) {
296 		if (sg_dma_len(sgl) % 4)
297 			return -EFAULT;
298 	}
299 
300 	return 0;
301 }
302 
303 static int bcm2835_spi_transfer_one_dma(struct spi_master *master,
304 					struct spi_device *spi,
305 					struct spi_transfer *tfr,
306 					u32 cs)
307 {
308 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
309 	int ret;
310 
311 	/* check that the scatter gather segments are all a multiple of 4 */
312 	if (bcm2835_check_sg_length(&tfr->tx_sg) ||
313 	    bcm2835_check_sg_length(&tfr->rx_sg)) {
314 		dev_warn_once(&spi->dev,
315 			      "scatter gather segment length is not a multiple of 4 - falling back to interrupt mode\n");
316 		return bcm2835_spi_transfer_one_irq(master, spi, tfr, cs);
317 	}
318 
319 	/* setup tx-DMA */
320 	ret = bcm2835_spi_prepare_sg(master, tfr, true);
321 	if (ret)
322 		return ret;
323 
324 	/* start TX early */
325 	dma_async_issue_pending(master->dma_tx);
326 
327 	/* mark as dma pending */
328 	bs->dma_pending = 1;
329 
330 	/* set the DMA length */
331 	bcm2835_wr(bs, BCM2835_SPI_DLEN, tfr->len);
332 
333 	/* start the HW */
334 	bcm2835_wr(bs, BCM2835_SPI_CS,
335 		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
336 
337 	/* setup rx-DMA late - to run transfers while
338 	 * mapping of the rx buffers still takes place
339 	 * this saves 10us or more.
340 	 */
341 	ret = bcm2835_spi_prepare_sg(master, tfr, false);
342 	if (ret) {
343 		/* need to reset on errors */
344 		dmaengine_terminate_all(master->dma_tx);
345 		bcm2835_spi_reset_hw(master);
346 		return ret;
347 	}
348 
349 	/* start rx dma late */
350 	dma_async_issue_pending(master->dma_rx);
351 
352 	/* wait for wakeup in framework */
353 	return 1;
354 }
355 
356 static bool bcm2835_spi_can_dma(struct spi_master *master,
357 				struct spi_device *spi,
358 				struct spi_transfer *tfr)
359 {
360 	/* only run for gpio_cs */
361 	if (!gpio_is_valid(spi->cs_gpio))
362 		return false;
363 
364 	/* we start DMA efforts only on bigger transfers */
365 	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
366 		return false;
367 
368 	/* BCM2835_SPI_DLEN has defined a max transfer size as
369 	 * 16 bit, so max is 65535
370 	 * we can revisit this by using an alternative transfer
371 	 * method - ideally this would get done without any more
372 	 * interaction...
373 	 */
374 	if (tfr->len > 65535) {
375 		dev_warn_once(&spi->dev,
376 			      "transfer size of %d too big for dma-transfer\n",
377 			      tfr->len);
378 		return false;
379 	}
380 
381 	/* if we run rx/tx_buf with word aligned addresses then we are OK */
382 	if ((((size_t)tfr->rx_buf & 3) == 0) &&
383 	    (((size_t)tfr->tx_buf & 3) == 0))
384 		return true;
385 
386 	/* otherwise we only allow transfers within the same page
387 	 * to avoid wasting time on dma_mapping when it is not practical
388 	 */
389 	if (((size_t)tfr->tx_buf & PAGE_MASK) + tfr->len > PAGE_SIZE) {
390 		dev_warn_once(&spi->dev,
391 			      "Unaligned spi tx-transfer bridging page\n");
392 		return false;
393 	}
394 	if (((size_t)tfr->rx_buf & PAGE_MASK) + tfr->len > PAGE_SIZE) {
395 		dev_warn_once(&spi->dev,
396 			      "Unaligned spi tx-transfer bridging page\n");
397 		return false;
398 	}
399 
400 	/* return OK */
401 	return true;
402 }
403 
404 static void bcm2835_dma_release(struct spi_master *master)
405 {
406 	if (master->dma_tx) {
407 		dmaengine_terminate_all(master->dma_tx);
408 		dma_release_channel(master->dma_tx);
409 		master->dma_tx = NULL;
410 	}
411 	if (master->dma_rx) {
412 		dmaengine_terminate_all(master->dma_rx);
413 		dma_release_channel(master->dma_rx);
414 		master->dma_rx = NULL;
415 	}
416 }
417 
418 static void bcm2835_dma_init(struct spi_master *master, struct device *dev)
419 {
420 	struct dma_slave_config slave_config;
421 	const __be32 *addr;
422 	dma_addr_t dma_reg_base;
423 	int ret;
424 
425 	/* base address in dma-space */
426 	addr = of_get_address(master->dev.of_node, 0, NULL, NULL);
427 	if (!addr) {
428 		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
429 		goto err;
430 	}
431 	dma_reg_base = be32_to_cpup(addr);
432 
433 	/* get tx/rx dma */
434 	master->dma_tx = dma_request_slave_channel(dev, "tx");
435 	if (!master->dma_tx) {
436 		dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
437 		goto err;
438 	}
439 	master->dma_rx = dma_request_slave_channel(dev, "rx");
440 	if (!master->dma_rx) {
441 		dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
442 		goto err_release;
443 	}
444 
445 	/* configure DMAs */
446 	slave_config.direction = DMA_MEM_TO_DEV;
447 	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
448 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
449 
450 	ret = dmaengine_slave_config(master->dma_tx, &slave_config);
451 	if (ret)
452 		goto err_config;
453 
454 	slave_config.direction = DMA_DEV_TO_MEM;
455 	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
456 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
457 
458 	ret = dmaengine_slave_config(master->dma_rx, &slave_config);
459 	if (ret)
460 		goto err_config;
461 
462 	/* all went well, so set can_dma */
463 	master->can_dma = bcm2835_spi_can_dma;
464 	master->max_dma_len = 65535; /* limitation by BCM2835_SPI_DLEN */
465 	/* need to do TX AND RX DMA, so we need dummy buffers */
466 	master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
467 
468 	return;
469 
470 err_config:
471 	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
472 		ret);
473 err_release:
474 	bcm2835_dma_release(master);
475 err:
476 	return;
477 }
478 
479 static int bcm2835_spi_transfer_one_poll(struct spi_master *master,
480 					 struct spi_device *spi,
481 					 struct spi_transfer *tfr,
482 					 u32 cs,
483 					 unsigned long xfer_time_us)
484 {
485 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
486 	unsigned long timeout;
487 
488 	/* enable HW block without interrupts */
489 	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
490 
491 	/* fill in the fifo before timeout calculations
492 	 * if we are interrupted here, then the data is
493 	 * getting transferred by the HW while we are interrupted
494 	 */
495 	bcm2835_wr_fifo(bs);
496 
497 	/* set the timeout */
498 	timeout = jiffies + BCM2835_SPI_POLLING_JIFFIES;
499 
500 	/* loop until finished the transfer */
501 	while (bs->rx_len) {
502 		/* fill in tx fifo with remaining data */
503 		bcm2835_wr_fifo(bs);
504 
505 		/* read from fifo as much as possible */
506 		bcm2835_rd_fifo(bs);
507 
508 		/* if there is still data pending to read
509 		 * then check the timeout
510 		 */
511 		if (bs->rx_len && time_after(jiffies, timeout)) {
512 			dev_dbg_ratelimited(&spi->dev,
513 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
514 					    jiffies - timeout,
515 					    bs->tx_len, bs->rx_len);
516 			/* fall back to interrupt mode */
517 			return bcm2835_spi_transfer_one_irq(master, spi,
518 							    tfr, cs);
519 		}
520 	}
521 
522 	/* Transfer complete - reset SPI HW */
523 	bcm2835_spi_reset_hw(master);
524 	/* and return without waiting for completion */
525 	return 0;
526 }
527 
528 static int bcm2835_spi_transfer_one(struct spi_master *master,
529 				    struct spi_device *spi,
530 				    struct spi_transfer *tfr)
531 {
532 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
533 	unsigned long spi_hz, clk_hz, cdiv;
534 	unsigned long spi_used_hz, xfer_time_us;
535 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
536 
537 	/* set clock */
538 	spi_hz = tfr->speed_hz;
539 	clk_hz = clk_get_rate(bs->clk);
540 
541 	if (spi_hz >= clk_hz / 2) {
542 		cdiv = 2; /* clk_hz/2 is the fastest we can go */
543 	} else if (spi_hz) {
544 		/* CDIV must be a multiple of two */
545 		cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
546 		cdiv += (cdiv % 2);
547 
548 		if (cdiv >= 65536)
549 			cdiv = 0; /* 0 is the slowest we can go */
550 	} else {
551 		cdiv = 0; /* 0 is the slowest we can go */
552 	}
553 	spi_used_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
554 	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
555 
556 	/* handle all the modes */
557 	if ((spi->mode & SPI_3WIRE) && (tfr->rx_buf))
558 		cs |= BCM2835_SPI_CS_REN;
559 	if (spi->mode & SPI_CPOL)
560 		cs |= BCM2835_SPI_CS_CPOL;
561 	if (spi->mode & SPI_CPHA)
562 		cs |= BCM2835_SPI_CS_CPHA;
563 
564 	/* for gpio_cs set dummy CS so that no HW-CS get changed
565 	 * we can not run this in bcm2835_spi_set_cs, as it does
566 	 * not get called for cs_gpio cases, so we need to do it here
567 	 */
568 	if (gpio_is_valid(spi->cs_gpio) || (spi->mode & SPI_NO_CS))
569 		cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
570 
571 	/* set transmit buffers and length */
572 	bs->tx_buf = tfr->tx_buf;
573 	bs->rx_buf = tfr->rx_buf;
574 	bs->tx_len = tfr->len;
575 	bs->rx_len = tfr->len;
576 
577 	/* calculate the estimated time in us the transfer runs */
578 	xfer_time_us = tfr->len
579 		* 9 /* clocks/byte - SPI-HW waits 1 clock after each byte */
580 		* 1000000 / spi_used_hz;
581 
582 	/* for short requests run polling*/
583 	if (xfer_time_us <= BCM2835_SPI_POLLING_LIMIT_US)
584 		return bcm2835_spi_transfer_one_poll(master, spi, tfr,
585 						     cs, xfer_time_us);
586 
587 	/* run in dma mode if conditions are right */
588 	if (master->can_dma && bcm2835_spi_can_dma(master, spi, tfr))
589 		return bcm2835_spi_transfer_one_dma(master, spi, tfr, cs);
590 
591 	/* run in interrupt-mode */
592 	return bcm2835_spi_transfer_one_irq(master, spi, tfr, cs);
593 }
594 
595 static void bcm2835_spi_handle_err(struct spi_master *master,
596 				   struct spi_message *msg)
597 {
598 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
599 
600 	/* if an error occurred and we have an active dma, then terminate */
601 	if (bs->dma_pending) {
602 		dmaengine_terminate_all(master->dma_tx);
603 		dmaengine_terminate_all(master->dma_rx);
604 		bs->dma_pending = 0;
605 	}
606 	/* and reset */
607 	bcm2835_spi_reset_hw(master);
608 }
609 
610 static void bcm2835_spi_set_cs(struct spi_device *spi, bool gpio_level)
611 {
612 	/*
613 	 * we can assume that we are "native" as per spi_set_cs
614 	 *   calling us ONLY when cs_gpio is not set
615 	 * we can also assume that we are CS < 3 as per bcm2835_spi_setup
616 	 *   we would not get called because of error handling there.
617 	 * the level passed is the electrical level not enabled/disabled
618 	 *   so it has to get translated back to enable/disable
619 	 *   see spi_set_cs in spi.c for the implementation
620 	 */
621 
622 	struct spi_master *master = spi->master;
623 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
624 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
625 	bool enable;
626 
627 	/* calculate the enable flag from the passed gpio_level */
628 	enable = (spi->mode & SPI_CS_HIGH) ? gpio_level : !gpio_level;
629 
630 	/* set flags for "reverse" polarity in the registers */
631 	if (spi->mode & SPI_CS_HIGH) {
632 		/* set the correct CS-bits */
633 		cs |= BCM2835_SPI_CS_CSPOL;
634 		cs |= BCM2835_SPI_CS_CSPOL0 << spi->chip_select;
635 	} else {
636 		/* clean the CS-bits */
637 		cs &= ~BCM2835_SPI_CS_CSPOL;
638 		cs &= ~(BCM2835_SPI_CS_CSPOL0 << spi->chip_select);
639 	}
640 
641 	/* select the correct chip_select depending on disabled/enabled */
642 	if (enable) {
643 		/* set cs correctly */
644 		if (spi->mode & SPI_NO_CS) {
645 			/* use the "undefined" chip-select */
646 			cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
647 		} else {
648 			/* set the chip select */
649 			cs &= ~(BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01);
650 			cs |= spi->chip_select;
651 		}
652 	} else {
653 		/* disable CSPOL which puts HW-CS into deselected state */
654 		cs &= ~BCM2835_SPI_CS_CSPOL;
655 		/* use the "undefined" chip-select as precaution */
656 		cs |= BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
657 	}
658 
659 	/* finally set the calculated flags in SPI_CS */
660 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
661 }
662 
663 static int chip_match_name(struct gpio_chip *chip, void *data)
664 {
665 	return !strcmp(chip->label, data);
666 }
667 
668 static int bcm2835_spi_setup(struct spi_device *spi)
669 {
670 	int err;
671 	struct gpio_chip *chip;
672 	/*
673 	 * sanity checking the native-chipselects
674 	 */
675 	if (spi->mode & SPI_NO_CS)
676 		return 0;
677 	if (gpio_is_valid(spi->cs_gpio))
678 		return 0;
679 	if (spi->chip_select > 1) {
680 		/* error in the case of native CS requested with CS > 1
681 		 * officially there is a CS2, but it is not documented
682 		 * which GPIO is connected with that...
683 		 */
684 		dev_err(&spi->dev,
685 			"setup: only two native chip-selects are supported\n");
686 		return -EINVAL;
687 	}
688 	/* now translate native cs to GPIO */
689 
690 	/* get the gpio chip for the base */
691 	chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
692 	if (!chip)
693 		return 0;
694 
695 	/* and calculate the real CS */
696 	spi->cs_gpio = chip->base + 8 - spi->chip_select;
697 
698 	/* and set up the "mode" and level */
699 	dev_info(&spi->dev, "setting up native-CS%i as GPIO %i\n",
700 		 spi->chip_select, spi->cs_gpio);
701 
702 	/* set up GPIO as output and pull to the correct level */
703 	err = gpio_direction_output(spi->cs_gpio,
704 				    (spi->mode & SPI_CS_HIGH) ? 0 : 1);
705 	if (err) {
706 		dev_err(&spi->dev,
707 			"could not set CS%i gpio %i as output: %i",
708 			spi->chip_select, spi->cs_gpio, err);
709 		return err;
710 	}
711 	/* the implementation of pinctrl-bcm2835 currently does not
712 	 * set the GPIO value when using gpio_direction_output
713 	 * so we are setting it here explicitly
714 	 */
715 	gpio_set_value(spi->cs_gpio, (spi->mode & SPI_CS_HIGH) ? 0 : 1);
716 
717 	return 0;
718 }
719 
720 static int bcm2835_spi_probe(struct platform_device *pdev)
721 {
722 	struct spi_master *master;
723 	struct bcm2835_spi *bs;
724 	struct resource *res;
725 	int err;
726 
727 	master = spi_alloc_master(&pdev->dev, sizeof(*bs));
728 	if (!master) {
729 		dev_err(&pdev->dev, "spi_alloc_master() failed\n");
730 		return -ENOMEM;
731 	}
732 
733 	platform_set_drvdata(pdev, master);
734 
735 	master->mode_bits = BCM2835_SPI_MODE_BITS;
736 	master->bits_per_word_mask = SPI_BPW_MASK(8);
737 	master->num_chipselect = 3;
738 	master->setup = bcm2835_spi_setup;
739 	master->set_cs = bcm2835_spi_set_cs;
740 	master->transfer_one = bcm2835_spi_transfer_one;
741 	master->handle_err = bcm2835_spi_handle_err;
742 	master->dev.of_node = pdev->dev.of_node;
743 
744 	bs = spi_master_get_devdata(master);
745 
746 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
747 	bs->regs = devm_ioremap_resource(&pdev->dev, res);
748 	if (IS_ERR(bs->regs)) {
749 		err = PTR_ERR(bs->regs);
750 		goto out_master_put;
751 	}
752 
753 	bs->clk = devm_clk_get(&pdev->dev, NULL);
754 	if (IS_ERR(bs->clk)) {
755 		err = PTR_ERR(bs->clk);
756 		dev_err(&pdev->dev, "could not get clk: %d\n", err);
757 		goto out_master_put;
758 	}
759 
760 	bs->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
761 	if (bs->irq <= 0) {
762 		dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
763 		err = bs->irq ? bs->irq : -ENODEV;
764 		goto out_master_put;
765 	}
766 
767 	clk_prepare_enable(bs->clk);
768 
769 	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
770 			       dev_name(&pdev->dev), master);
771 	if (err) {
772 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
773 		goto out_clk_disable;
774 	}
775 
776 	bcm2835_dma_init(master, &pdev->dev);
777 
778 	/* initialise the hardware with the default polarities */
779 	bcm2835_wr(bs, BCM2835_SPI_CS,
780 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
781 
782 	err = devm_spi_register_master(&pdev->dev, master);
783 	if (err) {
784 		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
785 		goto out_clk_disable;
786 	}
787 
788 	return 0;
789 
790 out_clk_disable:
791 	clk_disable_unprepare(bs->clk);
792 out_master_put:
793 	spi_master_put(master);
794 	return err;
795 }
796 
797 static int bcm2835_spi_remove(struct platform_device *pdev)
798 {
799 	struct spi_master *master = platform_get_drvdata(pdev);
800 	struct bcm2835_spi *bs = spi_master_get_devdata(master);
801 
802 	/* Clear FIFOs, and disable the HW block */
803 	bcm2835_wr(bs, BCM2835_SPI_CS,
804 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
805 
806 	clk_disable_unprepare(bs->clk);
807 
808 	bcm2835_dma_release(master);
809 
810 	return 0;
811 }
812 
813 static const struct of_device_id bcm2835_spi_match[] = {
814 	{ .compatible = "brcm,bcm2835-spi", },
815 	{}
816 };
817 MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
818 
819 static struct platform_driver bcm2835_spi_driver = {
820 	.driver		= {
821 		.name		= DRV_NAME,
822 		.of_match_table	= bcm2835_spi_match,
823 	},
824 	.probe		= bcm2835_spi_probe,
825 	.remove		= bcm2835_spi_remove,
826 };
827 module_platform_driver(bcm2835_spi_driver);
828 
829 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
830 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
831 MODULE_LICENSE("GPL v2");
832