xref: /openbmc/linux/drivers/spi/spi-bcm2835.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Broadcom BCM2835 SPI Controllers
4  *
5  * Copyright (C) 2012 Chris Boot
6  * Copyright (C) 2013 Stephen Warren
7  * Copyright (C) 2015 Martin Sperl
8  *
9  * This driver is inspired by:
10  * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
11  * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/completion.h>
16 #include <linux/debugfs.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmaengine.h>
20 #include <linux/err.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_device.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/gpio/machine.h> /* FIXME: using chip internals */
30 #include <linux/gpio/driver.h> /* FIXME: using chip internals */
31 #include <linux/of_irq.h>
32 #include <linux/spi/spi.h>
33 
34 /* SPI register offsets */
35 #define BCM2835_SPI_CS			0x00
36 #define BCM2835_SPI_FIFO		0x04
37 #define BCM2835_SPI_CLK			0x08
38 #define BCM2835_SPI_DLEN		0x0c
39 #define BCM2835_SPI_LTOH		0x10
40 #define BCM2835_SPI_DC			0x14
41 
42 /* Bitfields in CS */
43 #define BCM2835_SPI_CS_LEN_LONG		0x02000000
44 #define BCM2835_SPI_CS_DMA_LEN		0x01000000
45 #define BCM2835_SPI_CS_CSPOL2		0x00800000
46 #define BCM2835_SPI_CS_CSPOL1		0x00400000
47 #define BCM2835_SPI_CS_CSPOL0		0x00200000
48 #define BCM2835_SPI_CS_RXF		0x00100000
49 #define BCM2835_SPI_CS_RXR		0x00080000
50 #define BCM2835_SPI_CS_TXD		0x00040000
51 #define BCM2835_SPI_CS_RXD		0x00020000
52 #define BCM2835_SPI_CS_DONE		0x00010000
53 #define BCM2835_SPI_CS_LEN		0x00002000
54 #define BCM2835_SPI_CS_REN		0x00001000
55 #define BCM2835_SPI_CS_ADCS		0x00000800
56 #define BCM2835_SPI_CS_INTR		0x00000400
57 #define BCM2835_SPI_CS_INTD		0x00000200
58 #define BCM2835_SPI_CS_DMAEN		0x00000100
59 #define BCM2835_SPI_CS_TA		0x00000080
60 #define BCM2835_SPI_CS_CSPOL		0x00000040
61 #define BCM2835_SPI_CS_CLEAR_RX		0x00000020
62 #define BCM2835_SPI_CS_CLEAR_TX		0x00000010
63 #define BCM2835_SPI_CS_CPOL		0x00000008
64 #define BCM2835_SPI_CS_CPHA		0x00000004
65 #define BCM2835_SPI_CS_CS_10		0x00000002
66 #define BCM2835_SPI_CS_CS_01		0x00000001
67 
68 #define BCM2835_SPI_FIFO_SIZE		64
69 #define BCM2835_SPI_FIFO_SIZE_3_4	48
70 #define BCM2835_SPI_DMA_MIN_LENGTH	96
71 #define BCM2835_SPI_MODE_BITS	(SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
72 				| SPI_NO_CS | SPI_3WIRE)
73 
74 #define DRV_NAME	"spi-bcm2835"
75 
76 /* define polling limits */
77 static unsigned int polling_limit_us = 30;
78 module_param(polling_limit_us, uint, 0664);
79 MODULE_PARM_DESC(polling_limit_us,
80 		 "time in us to run a transfer in polling mode\n");
81 
82 /**
83  * struct bcm2835_spi - BCM2835 SPI controller
84  * @regs: base address of register map
85  * @clk: core clock, divided to calculate serial clock
86  * @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
87  * @tfr: SPI transfer currently processed
88  * @ctlr: SPI controller reverse lookup
89  * @tx_buf: pointer whence next transmitted byte is read
90  * @rx_buf: pointer where next received byte is written
91  * @tx_len: remaining bytes to transmit
92  * @rx_len: remaining bytes to receive
93  * @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
94  *	length is not a multiple of 4 (to overcome hardware limitation)
95  * @rx_prologue: bytes received without DMA if first RX sglist entry's
96  *	length is not a multiple of 4 (to overcome hardware limitation)
97  * @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
98  * @debugfs_dir: the debugfs directory - neede to remove debugfs when
99  *      unloading the module
100  * @count_transfer_polling: count of how often polling mode is used
101  * @count_transfer_irq: count of how often interrupt mode is used
102  * @count_transfer_irq_after_polling: count of how often we fall back to
103  *      interrupt mode after starting in polling mode.
104  *      These are counted as well in @count_transfer_polling and
105  *      @count_transfer_irq
106  * @count_transfer_dma: count how often dma mode is used
107  * @slv: SPI slave currently selected
108  *	(used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
109  * @tx_dma_active: whether a TX DMA descriptor is in progress
110  * @rx_dma_active: whether a RX DMA descriptor is in progress
111  *	(used by bcm2835_spi_dma_tx_done() to handle a race)
112  * @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
113  *	(cyclically copies from zero page to TX FIFO)
114  * @fill_tx_addr: bus address of zero page
115  */
116 struct bcm2835_spi {
117 	void __iomem *regs;
118 	struct clk *clk;
119 	int irq;
120 	struct spi_transfer *tfr;
121 	struct spi_controller *ctlr;
122 	const u8 *tx_buf;
123 	u8 *rx_buf;
124 	int tx_len;
125 	int rx_len;
126 	int tx_prologue;
127 	int rx_prologue;
128 	unsigned int tx_spillover;
129 
130 	struct dentry *debugfs_dir;
131 	u64 count_transfer_polling;
132 	u64 count_transfer_irq;
133 	u64 count_transfer_irq_after_polling;
134 	u64 count_transfer_dma;
135 
136 	struct bcm2835_spidev *slv;
137 	unsigned int tx_dma_active;
138 	unsigned int rx_dma_active;
139 	struct dma_async_tx_descriptor *fill_tx_desc;
140 	dma_addr_t fill_tx_addr;
141 };
142 
143 /**
144  * struct bcm2835_spidev - BCM2835 SPI slave
145  * @prepare_cs: precalculated CS register value for ->prepare_message()
146  *	(uses slave-specific clock polarity and phase settings)
147  * @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
148  *	(cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
149  * @clear_rx_addr: bus address of @clear_rx_cs
150  * @clear_rx_cs: precalculated CS register value to clear RX FIFO
151  *	(uses slave-specific clock polarity and phase settings)
152  */
153 struct bcm2835_spidev {
154 	u32 prepare_cs;
155 	struct dma_async_tx_descriptor *clear_rx_desc;
156 	dma_addr_t clear_rx_addr;
157 	u32 clear_rx_cs ____cacheline_aligned;
158 };
159 
160 #if defined(CONFIG_DEBUG_FS)
161 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
162 				   const char *dname)
163 {
164 	char name[64];
165 	struct dentry *dir;
166 
167 	/* get full name */
168 	snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
169 
170 	/* the base directory */
171 	dir = debugfs_create_dir(name, NULL);
172 	bs->debugfs_dir = dir;
173 
174 	/* the counters */
175 	debugfs_create_u64("count_transfer_polling", 0444, dir,
176 			   &bs->count_transfer_polling);
177 	debugfs_create_u64("count_transfer_irq", 0444, dir,
178 			   &bs->count_transfer_irq);
179 	debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
180 			   &bs->count_transfer_irq_after_polling);
181 	debugfs_create_u64("count_transfer_dma", 0444, dir,
182 			   &bs->count_transfer_dma);
183 }
184 
185 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
186 {
187 	debugfs_remove_recursive(bs->debugfs_dir);
188 	bs->debugfs_dir = NULL;
189 }
190 #else
191 static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
192 				   const char *dname)
193 {
194 }
195 
196 static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
197 {
198 }
199 #endif /* CONFIG_DEBUG_FS */
200 
201 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
202 {
203 	return readl(bs->regs + reg);
204 }
205 
206 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
207 {
208 	writel(val, bs->regs + reg);
209 }
210 
211 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
212 {
213 	u8 byte;
214 
215 	while ((bs->rx_len) &&
216 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
217 		byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
218 		if (bs->rx_buf)
219 			*bs->rx_buf++ = byte;
220 		bs->rx_len--;
221 	}
222 }
223 
224 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
225 {
226 	u8 byte;
227 
228 	while ((bs->tx_len) &&
229 	       (bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
230 		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
231 		bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
232 		bs->tx_len--;
233 	}
234 }
235 
236 /**
237  * bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
238  * @bs: BCM2835 SPI controller
239  * @count: bytes to read from RX FIFO
240  *
241  * The caller must ensure that @bs->rx_len is greater than or equal to @count,
242  * that the RX FIFO contains at least @count bytes and that the DMA Enable flag
243  * in the CS register is set (such that a read from the FIFO register receives
244  * 32-bit instead of just 8-bit).  Moreover @bs->rx_buf must not be %NULL.
245  */
246 static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
247 {
248 	u32 val;
249 	int len;
250 
251 	bs->rx_len -= count;
252 
253 	do {
254 		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
255 		len = min(count, 4);
256 		memcpy(bs->rx_buf, &val, len);
257 		bs->rx_buf += len;
258 		count -= 4;
259 	} while (count > 0);
260 }
261 
262 /**
263  * bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
264  * @bs: BCM2835 SPI controller
265  * @count: bytes to write to TX FIFO
266  *
267  * The caller must ensure that @bs->tx_len is greater than or equal to @count,
268  * that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
269  * in the CS register is set (such that a write to the FIFO register transmits
270  * 32-bit instead of just 8-bit).
271  */
272 static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
273 {
274 	u32 val;
275 	int len;
276 
277 	bs->tx_len -= count;
278 
279 	do {
280 		if (bs->tx_buf) {
281 			len = min(count, 4);
282 			memcpy(&val, bs->tx_buf, len);
283 			bs->tx_buf += len;
284 		} else {
285 			val = 0;
286 		}
287 		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
288 		count -= 4;
289 	} while (count > 0);
290 }
291 
292 /**
293  * bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
294  * @bs: BCM2835 SPI controller
295  *
296  * The caller must ensure that the RX FIFO can accommodate as many bytes
297  * as have been written to the TX FIFO:  Transmission is halted once the
298  * RX FIFO is full, causing this function to spin forever.
299  */
300 static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
301 {
302 	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
303 		cpu_relax();
304 }
305 
306 /**
307  * bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
308  * @bs: BCM2835 SPI controller
309  * @count: bytes available for reading in RX FIFO
310  */
311 static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
312 {
313 	u8 val;
314 
315 	count = min(count, bs->rx_len);
316 	bs->rx_len -= count;
317 
318 	do {
319 		val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
320 		if (bs->rx_buf)
321 			*bs->rx_buf++ = val;
322 	} while (--count);
323 }
324 
325 /**
326  * bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
327  * @bs: BCM2835 SPI controller
328  * @count: bytes available for writing in TX FIFO
329  */
330 static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
331 {
332 	u8 val;
333 
334 	count = min(count, bs->tx_len);
335 	bs->tx_len -= count;
336 
337 	do {
338 		val = bs->tx_buf ? *bs->tx_buf++ : 0;
339 		bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
340 	} while (--count);
341 }
342 
343 static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
344 {
345 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
346 
347 	/* Disable SPI interrupts and transfer */
348 	cs &= ~(BCM2835_SPI_CS_INTR |
349 		BCM2835_SPI_CS_INTD |
350 		BCM2835_SPI_CS_DMAEN |
351 		BCM2835_SPI_CS_TA);
352 	/*
353 	 * Transmission sometimes breaks unless the DONE bit is written at the
354 	 * end of every transfer.  The spec says it's a RO bit.  Either the
355 	 * spec is wrong and the bit is actually of type RW1C, or it's a
356 	 * hardware erratum.
357 	 */
358 	cs |= BCM2835_SPI_CS_DONE;
359 	/* and reset RX/TX FIFOS */
360 	cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
361 
362 	/* and reset the SPI_HW */
363 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
364 	/* as well as DLEN */
365 	bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
366 }
367 
368 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
369 {
370 	struct bcm2835_spi *bs = dev_id;
371 	u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
372 
373 	/*
374 	 * An interrupt is signaled either if DONE is set (TX FIFO empty)
375 	 * or if RXR is set (RX FIFO >= ¾ full).
376 	 */
377 	if (cs & BCM2835_SPI_CS_RXF)
378 		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
379 	else if (cs & BCM2835_SPI_CS_RXR)
380 		bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
381 
382 	if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
383 		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
384 
385 	/* Read as many bytes as possible from FIFO */
386 	bcm2835_rd_fifo(bs);
387 	/* Write as many bytes as possible to FIFO */
388 	bcm2835_wr_fifo(bs);
389 
390 	if (!bs->rx_len) {
391 		/* Transfer complete - reset SPI HW */
392 		bcm2835_spi_reset_hw(bs);
393 		/* wake up the framework */
394 		spi_finalize_current_transfer(bs->ctlr);
395 	}
396 
397 	return IRQ_HANDLED;
398 }
399 
400 static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
401 					struct spi_device *spi,
402 					struct spi_transfer *tfr,
403 					u32 cs, bool fifo_empty)
404 {
405 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
406 
407 	/* update usage statistics */
408 	bs->count_transfer_irq++;
409 
410 	/*
411 	 * Enable HW block, but with interrupts still disabled.
412 	 * Otherwise the empty TX FIFO would immediately trigger an interrupt.
413 	 */
414 	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
415 
416 	/* fill TX FIFO as much as possible */
417 	if (fifo_empty)
418 		bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
419 	bcm2835_wr_fifo(bs);
420 
421 	/* enable interrupts */
422 	cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
423 	bcm2835_wr(bs, BCM2835_SPI_CS, cs);
424 
425 	/* signal that we need to wait for completion */
426 	return 1;
427 }
428 
429 /**
430  * bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
431  * @ctlr: SPI master controller
432  * @tfr: SPI transfer
433  * @bs: BCM2835 SPI controller
434  * @cs: CS register
435  *
436  * A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
437  * Only the final write access is permitted to transmit less than 4 bytes, the
438  * SPI controller deduces its intended size from the DLEN register.
439  *
440  * If a TX or RX sglist contains multiple entries, one per page, and the first
441  * entry starts in the middle of a page, that first entry's length may not be
442  * a multiple of 4.  Subsequent entries are fine because they span an entire
443  * page, hence do have a length that's a multiple of 4.
444  *
445  * This cannot happen with kmalloc'ed buffers (which is what most clients use)
446  * because they are contiguous in physical memory and therefore not split on
447  * page boundaries by spi_map_buf().  But it *can* happen with vmalloc'ed
448  * buffers.
449  *
450  * The DMA engine is incapable of combining sglist entries into a continuous
451  * stream of 4 byte chunks, it treats every entry separately:  A TX entry is
452  * rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
453  * entry is rounded up by throwing away received bytes.
454  *
455  * Overcome this limitation by transferring the first few bytes without DMA:
456  * E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
457  * write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
458  * The residue of 1 byte in the RX FIFO is picked up by DMA.  Together with
459  * the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
460  *
461  * Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
462  * write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
463  * Caution, the additional 4 bytes spill over to the second TX sglist entry
464  * if the length of the first is *exactly* 1.
465  *
466  * At most 6 bytes are written and at most 3 bytes read.  Do we know the
467  * transfer has this many bytes?  Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
468  *
469  * The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
470  * by the DMA engine.  Toggling the DMA Enable flag in the CS register switches
471  * the width but also garbles the FIFO's contents.  The prologue must therefore
472  * be transmitted in 32-bit width to ensure that the following DMA transfer can
473  * pick up the residue in the RX FIFO in ungarbled form.
474  */
475 static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
476 					  struct spi_transfer *tfr,
477 					  struct bcm2835_spi *bs,
478 					  u32 cs)
479 {
480 	int tx_remaining;
481 
482 	bs->tfr		 = tfr;
483 	bs->tx_prologue  = 0;
484 	bs->rx_prologue  = 0;
485 	bs->tx_spillover = false;
486 
487 	if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
488 		bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
489 
490 	if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
491 		bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
492 
493 		if (bs->rx_prologue > bs->tx_prologue) {
494 			if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
495 				bs->tx_prologue  = bs->rx_prologue;
496 			} else {
497 				bs->tx_prologue += 4;
498 				bs->tx_spillover =
499 					!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
500 			}
501 		}
502 	}
503 
504 	/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
505 	if (!bs->tx_prologue)
506 		return;
507 
508 	/* Write and read RX prologue.  Adjust first entry in RX sglist. */
509 	if (bs->rx_prologue) {
510 		bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
511 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
512 						  | BCM2835_SPI_CS_DMAEN);
513 		bcm2835_wr_fifo_count(bs, bs->rx_prologue);
514 		bcm2835_wait_tx_fifo_empty(bs);
515 		bcm2835_rd_fifo_count(bs, bs->rx_prologue);
516 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
517 						  | BCM2835_SPI_CS_CLEAR_TX
518 						  | BCM2835_SPI_CS_DONE);
519 
520 		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
521 					   sg_dma_address(&tfr->rx_sg.sgl[0]),
522 					   bs->rx_prologue, DMA_FROM_DEVICE);
523 
524 		sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
525 		sg_dma_len(&tfr->rx_sg.sgl[0])     -= bs->rx_prologue;
526 	}
527 
528 	if (!bs->tx_buf)
529 		return;
530 
531 	/*
532 	 * Write remaining TX prologue.  Adjust first entry in TX sglist.
533 	 * Also adjust second entry if prologue spills over to it.
534 	 */
535 	tx_remaining = bs->tx_prologue - bs->rx_prologue;
536 	if (tx_remaining) {
537 		bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
538 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
539 						  | BCM2835_SPI_CS_DMAEN);
540 		bcm2835_wr_fifo_count(bs, tx_remaining);
541 		bcm2835_wait_tx_fifo_empty(bs);
542 		bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
543 						  | BCM2835_SPI_CS_DONE);
544 	}
545 
546 	if (likely(!bs->tx_spillover)) {
547 		sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
548 		sg_dma_len(&tfr->tx_sg.sgl[0])     -= bs->tx_prologue;
549 	} else {
550 		sg_dma_len(&tfr->tx_sg.sgl[0])      = 0;
551 		sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
552 		sg_dma_len(&tfr->tx_sg.sgl[1])     -= 4;
553 	}
554 }
555 
556 /**
557  * bcm2835_spi_undo_prologue() - reconstruct original sglist state
558  * @bs: BCM2835 SPI controller
559  *
560  * Undo changes which were made to an SPI transfer's sglist when transmitting
561  * the prologue.  This is necessary to ensure the same memory ranges are
562  * unmapped that were originally mapped.
563  */
564 static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
565 {
566 	struct spi_transfer *tfr = bs->tfr;
567 
568 	if (!bs->tx_prologue)
569 		return;
570 
571 	if (bs->rx_prologue) {
572 		sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
573 		sg_dma_len(&tfr->rx_sg.sgl[0])     += bs->rx_prologue;
574 	}
575 
576 	if (!bs->tx_buf)
577 		goto out;
578 
579 	if (likely(!bs->tx_spillover)) {
580 		sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
581 		sg_dma_len(&tfr->tx_sg.sgl[0])     += bs->tx_prologue;
582 	} else {
583 		sg_dma_len(&tfr->tx_sg.sgl[0])      = bs->tx_prologue - 4;
584 		sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
585 		sg_dma_len(&tfr->tx_sg.sgl[1])     += 4;
586 	}
587 out:
588 	bs->tx_prologue = 0;
589 }
590 
591 /**
592  * bcm2835_spi_dma_rx_done() - callback for DMA RX channel
593  * @data: SPI master controller
594  *
595  * Used for bidirectional and RX-only transfers.
596  */
597 static void bcm2835_spi_dma_rx_done(void *data)
598 {
599 	struct spi_controller *ctlr = data;
600 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
601 
602 	/* terminate tx-dma as we do not have an irq for it
603 	 * because when the rx dma will terminate and this callback
604 	 * is called the tx-dma must have finished - can't get to this
605 	 * situation otherwise...
606 	 */
607 	dmaengine_terminate_async(ctlr->dma_tx);
608 	bs->tx_dma_active = false;
609 	bs->rx_dma_active = false;
610 	bcm2835_spi_undo_prologue(bs);
611 
612 	/* reset fifo and HW */
613 	bcm2835_spi_reset_hw(bs);
614 
615 	/* and mark as completed */;
616 	spi_finalize_current_transfer(ctlr);
617 }
618 
619 /**
620  * bcm2835_spi_dma_tx_done() - callback for DMA TX channel
621  * @data: SPI master controller
622  *
623  * Used for TX-only transfers.
624  */
625 static void bcm2835_spi_dma_tx_done(void *data)
626 {
627 	struct spi_controller *ctlr = data;
628 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
629 
630 	/* busy-wait for TX FIFO to empty */
631 	while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
632 		bcm2835_wr(bs, BCM2835_SPI_CS, bs->slv->clear_rx_cs);
633 
634 	bs->tx_dma_active = false;
635 	smp_wmb();
636 
637 	/*
638 	 * In case of a very short transfer, RX DMA may not have been
639 	 * issued yet.  The onus is then on bcm2835_spi_transfer_one_dma()
640 	 * to terminate it immediately after issuing.
641 	 */
642 	if (cmpxchg(&bs->rx_dma_active, true, false))
643 		dmaengine_terminate_async(ctlr->dma_rx);
644 
645 	bcm2835_spi_undo_prologue(bs);
646 	bcm2835_spi_reset_hw(bs);
647 	spi_finalize_current_transfer(ctlr);
648 }
649 
650 /**
651  * bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
652  * @ctlr: SPI master controller
653  * @tfr: SPI transfer
654  * @bs: BCM2835 SPI controller
655  * @slv: BCM2835 SPI slave
656  * @is_tx: whether to submit DMA descriptor for TX or RX sglist
657  *
658  * Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
659  * Return 0 on success or a negative error number.
660  */
661 static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
662 				  struct spi_transfer *tfr,
663 				  struct bcm2835_spi *bs,
664 				  struct bcm2835_spidev *slv,
665 				  bool is_tx)
666 {
667 	struct dma_chan *chan;
668 	struct scatterlist *sgl;
669 	unsigned int nents;
670 	enum dma_transfer_direction dir;
671 	unsigned long flags;
672 
673 	struct dma_async_tx_descriptor *desc;
674 	dma_cookie_t cookie;
675 
676 	if (is_tx) {
677 		dir   = DMA_MEM_TO_DEV;
678 		chan  = ctlr->dma_tx;
679 		nents = tfr->tx_sg.nents;
680 		sgl   = tfr->tx_sg.sgl;
681 		flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
682 	} else {
683 		dir   = DMA_DEV_TO_MEM;
684 		chan  = ctlr->dma_rx;
685 		nents = tfr->rx_sg.nents;
686 		sgl   = tfr->rx_sg.sgl;
687 		flags = DMA_PREP_INTERRUPT;
688 	}
689 	/* prepare the channel */
690 	desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
691 	if (!desc)
692 		return -EINVAL;
693 
694 	/*
695 	 * Completion is signaled by the RX channel for bidirectional and
696 	 * RX-only transfers; else by the TX channel for TX-only transfers.
697 	 */
698 	if (!is_tx) {
699 		desc->callback = bcm2835_spi_dma_rx_done;
700 		desc->callback_param = ctlr;
701 	} else if (!tfr->rx_buf) {
702 		desc->callback = bcm2835_spi_dma_tx_done;
703 		desc->callback_param = ctlr;
704 		bs->slv = slv;
705 	}
706 
707 	/* submit it to DMA-engine */
708 	cookie = dmaengine_submit(desc);
709 
710 	return dma_submit_error(cookie);
711 }
712 
713 /**
714  * bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
715  * @ctlr: SPI master controller
716  * @tfr: SPI transfer
717  * @slv: BCM2835 SPI slave
718  * @cs: CS register
719  *
720  * For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
721  * the TX and RX DMA channel to copy between memory and FIFO register.
722  *
723  * For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
724  * memory is pointless.  However not reading the RX FIFO isn't an option either
725  * because transmission is halted once it's full.  As a workaround, cyclically
726  * clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
727  *
728  * The CS register value is precalculated in bcm2835_spi_setup().  Normally
729  * this is called only once, on slave registration.  A DMA descriptor to write
730  * this value is preallocated in bcm2835_dma_init().  All that's left to do
731  * when performing a TX-only transfer is to submit this descriptor to the RX
732  * DMA channel.  Latency is thereby minimized.  The descriptor does not
733  * generate any interrupts while running.  It must be terminated once the
734  * TX DMA channel is done.
735  *
736  * Clearing the RX FIFO is paced by the DREQ signal.  The signal is asserted
737  * when the RX FIFO becomes half full, i.e. 32 bytes.  (Tuneable with the DC
738  * register.)  Reading 32 bytes from the RX FIFO would normally require 8 bus
739  * accesses, whereas clearing it requires only 1 bus access.  So an 8-fold
740  * reduction in bus traffic and thus energy consumption is achieved.
741  *
742  * For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
743  * copying from the zero page.  The DMA descriptor to do this is preallocated
744  * in bcm2835_dma_init().  It must be terminated once the RX DMA channel is
745  * done and can then be reused.
746  *
747  * The BCM2835 DMA driver autodetects when a transaction copies from the zero
748  * page and utilizes the DMA controller's ability to synthesize zeroes instead
749  * of copying them from memory.  This reduces traffic on the memory bus.  The
750  * feature is not available on so-called "lite" channels, but normally TX DMA
751  * is backed by a full-featured channel.
752  *
753  * Zero-filling the TX FIFO is paced by the DREQ signal.  Unfortunately the
754  * BCM2835 SPI controller continues to assert DREQ even after the DLEN register
755  * has been counted down to zero (hardware erratum).  Thus, when the transfer
756  * has finished, the DMA engine zero-fills the TX FIFO until it is half full.
757  * (Tuneable with the DC register.)  So up to 9 gratuitous bus accesses are
758  * performed at the end of an RX-only transfer.
759  */
760 static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
761 					struct spi_transfer *tfr,
762 					struct bcm2835_spidev *slv,
763 					u32 cs)
764 {
765 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
766 	dma_cookie_t cookie;
767 	int ret;
768 
769 	/* update usage statistics */
770 	bs->count_transfer_dma++;
771 
772 	/*
773 	 * Transfer first few bytes without DMA if length of first TX or RX
774 	 * sglist entry is not a multiple of 4 bytes (hardware limitation).
775 	 */
776 	bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
777 
778 	/* setup tx-DMA */
779 	if (bs->tx_buf) {
780 		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, slv, true);
781 	} else {
782 		cookie = dmaengine_submit(bs->fill_tx_desc);
783 		ret = dma_submit_error(cookie);
784 	}
785 	if (ret)
786 		goto err_reset_hw;
787 
788 	/* set the DMA length */
789 	bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
790 
791 	/* start the HW */
792 	bcm2835_wr(bs, BCM2835_SPI_CS,
793 		   cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
794 
795 	bs->tx_dma_active = true;
796 	smp_wmb();
797 
798 	/* start TX early */
799 	dma_async_issue_pending(ctlr->dma_tx);
800 
801 	/* setup rx-DMA late - to run transfers while
802 	 * mapping of the rx buffers still takes place
803 	 * this saves 10us or more.
804 	 */
805 	if (bs->rx_buf) {
806 		ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, slv, false);
807 	} else {
808 		cookie = dmaengine_submit(slv->clear_rx_desc);
809 		ret = dma_submit_error(cookie);
810 	}
811 	if (ret) {
812 		/* need to reset on errors */
813 		dmaengine_terminate_sync(ctlr->dma_tx);
814 		bs->tx_dma_active = false;
815 		goto err_reset_hw;
816 	}
817 
818 	/* start rx dma late */
819 	dma_async_issue_pending(ctlr->dma_rx);
820 	bs->rx_dma_active = true;
821 	smp_mb();
822 
823 	/*
824 	 * In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
825 	 * may run before RX DMA is issued.  Terminate RX DMA if so.
826 	 */
827 	if (!bs->rx_buf && !bs->tx_dma_active &&
828 	    cmpxchg(&bs->rx_dma_active, true, false)) {
829 		dmaengine_terminate_async(ctlr->dma_rx);
830 		bcm2835_spi_reset_hw(bs);
831 	}
832 
833 	/* wait for wakeup in framework */
834 	return 1;
835 
836 err_reset_hw:
837 	bcm2835_spi_reset_hw(bs);
838 	bcm2835_spi_undo_prologue(bs);
839 	return ret;
840 }
841 
842 static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
843 				struct spi_device *spi,
844 				struct spi_transfer *tfr)
845 {
846 	/* we start DMA efforts only on bigger transfers */
847 	if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
848 		return false;
849 
850 	/* return OK */
851 	return true;
852 }
853 
854 static void bcm2835_dma_release(struct spi_controller *ctlr,
855 				struct bcm2835_spi *bs)
856 {
857 	if (ctlr->dma_tx) {
858 		dmaengine_terminate_sync(ctlr->dma_tx);
859 
860 		if (bs->fill_tx_desc)
861 			dmaengine_desc_free(bs->fill_tx_desc);
862 
863 		if (bs->fill_tx_addr)
864 			dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
865 					     bs->fill_tx_addr, sizeof(u32),
866 					     DMA_TO_DEVICE,
867 					     DMA_ATTR_SKIP_CPU_SYNC);
868 
869 		dma_release_channel(ctlr->dma_tx);
870 		ctlr->dma_tx = NULL;
871 	}
872 
873 	if (ctlr->dma_rx) {
874 		dmaengine_terminate_sync(ctlr->dma_rx);
875 		dma_release_channel(ctlr->dma_rx);
876 		ctlr->dma_rx = NULL;
877 	}
878 }
879 
880 static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
881 			    struct bcm2835_spi *bs)
882 {
883 	struct dma_slave_config slave_config;
884 	const __be32 *addr;
885 	dma_addr_t dma_reg_base;
886 	int ret;
887 
888 	/* base address in dma-space */
889 	addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
890 	if (!addr) {
891 		dev_err(dev, "could not get DMA-register address - not using dma mode\n");
892 		/* Fall back to interrupt mode */
893 		return 0;
894 	}
895 	dma_reg_base = be32_to_cpup(addr);
896 
897 	/* get tx/rx dma */
898 	ctlr->dma_tx = dma_request_chan(dev, "tx");
899 	if (IS_ERR(ctlr->dma_tx)) {
900 		dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
901 		ret = PTR_ERR(ctlr->dma_tx);
902 		ctlr->dma_tx = NULL;
903 		goto err;
904 	}
905 	ctlr->dma_rx = dma_request_chan(dev, "rx");
906 	if (IS_ERR(ctlr->dma_rx)) {
907 		dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
908 		ret = PTR_ERR(ctlr->dma_rx);
909 		ctlr->dma_rx = NULL;
910 		goto err_release;
911 	}
912 
913 	/*
914 	 * The TX DMA channel either copies a transfer's TX buffer to the FIFO
915 	 * or, in case of an RX-only transfer, cyclically copies from the zero
916 	 * page to the FIFO using a preallocated, reusable descriptor.
917 	 */
918 	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
919 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
920 
921 	ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
922 	if (ret)
923 		goto err_config;
924 
925 	bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
926 					      ZERO_PAGE(0), 0, sizeof(u32),
927 					      DMA_TO_DEVICE,
928 					      DMA_ATTR_SKIP_CPU_SYNC);
929 	if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
930 		dev_err(dev, "cannot map zero page - not using DMA mode\n");
931 		bs->fill_tx_addr = 0;
932 		ret = -ENOMEM;
933 		goto err_release;
934 	}
935 
936 	bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
937 						     bs->fill_tx_addr,
938 						     sizeof(u32), 0,
939 						     DMA_MEM_TO_DEV, 0);
940 	if (!bs->fill_tx_desc) {
941 		dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
942 		ret = -ENOMEM;
943 		goto err_release;
944 	}
945 
946 	ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
947 	if (ret) {
948 		dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
949 		goto err_release;
950 	}
951 
952 	/*
953 	 * The RX DMA channel is used bidirectionally:  It either reads the
954 	 * RX FIFO or, in case of a TX-only transfer, cyclically writes a
955 	 * precalculated value to the CS register to clear the RX FIFO.
956 	 */
957 	slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
958 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
959 	slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
960 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
961 
962 	ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
963 	if (ret)
964 		goto err_config;
965 
966 	/* all went well, so set can_dma */
967 	ctlr->can_dma = bcm2835_spi_can_dma;
968 
969 	return 0;
970 
971 err_config:
972 	dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
973 		ret);
974 err_release:
975 	bcm2835_dma_release(ctlr, bs);
976 err:
977 	/*
978 	 * Only report error for deferred probing, otherwise fall back to
979 	 * interrupt mode
980 	 */
981 	if (ret != -EPROBE_DEFER)
982 		ret = 0;
983 
984 	return ret;
985 }
986 
987 static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
988 					 struct spi_device *spi,
989 					 struct spi_transfer *tfr,
990 					 u32 cs)
991 {
992 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
993 	unsigned long timeout;
994 
995 	/* update usage statistics */
996 	bs->count_transfer_polling++;
997 
998 	/* enable HW block without interrupts */
999 	bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
1000 
1001 	/* fill in the fifo before timeout calculations
1002 	 * if we are interrupted here, then the data is
1003 	 * getting transferred by the HW while we are interrupted
1004 	 */
1005 	bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
1006 
1007 	/* set the timeout to at least 2 jiffies */
1008 	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
1009 
1010 	/* loop until finished the transfer */
1011 	while (bs->rx_len) {
1012 		/* fill in tx fifo with remaining data */
1013 		bcm2835_wr_fifo(bs);
1014 
1015 		/* read from fifo as much as possible */
1016 		bcm2835_rd_fifo(bs);
1017 
1018 		/* if there is still data pending to read
1019 		 * then check the timeout
1020 		 */
1021 		if (bs->rx_len && time_after(jiffies, timeout)) {
1022 			dev_dbg_ratelimited(&spi->dev,
1023 					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
1024 					    jiffies - timeout,
1025 					    bs->tx_len, bs->rx_len);
1026 			/* fall back to interrupt mode */
1027 
1028 			/* update usage statistics */
1029 			bs->count_transfer_irq_after_polling++;
1030 
1031 			return bcm2835_spi_transfer_one_irq(ctlr, spi,
1032 							    tfr, cs, false);
1033 		}
1034 	}
1035 
1036 	/* Transfer complete - reset SPI HW */
1037 	bcm2835_spi_reset_hw(bs);
1038 	/* and return without waiting for completion */
1039 	return 0;
1040 }
1041 
1042 static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
1043 				    struct spi_device *spi,
1044 				    struct spi_transfer *tfr)
1045 {
1046 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1047 	struct bcm2835_spidev *slv = spi_get_ctldata(spi);
1048 	unsigned long spi_hz, clk_hz, cdiv;
1049 	unsigned long hz_per_byte, byte_limit;
1050 	u32 cs = slv->prepare_cs;
1051 
1052 	/* set clock */
1053 	spi_hz = tfr->speed_hz;
1054 	clk_hz = clk_get_rate(bs->clk);
1055 
1056 	if (spi_hz >= clk_hz / 2) {
1057 		cdiv = 2; /* clk_hz/2 is the fastest we can go */
1058 	} else if (spi_hz) {
1059 		/* CDIV must be a multiple of two */
1060 		cdiv = DIV_ROUND_UP(clk_hz, spi_hz);
1061 		cdiv += (cdiv % 2);
1062 
1063 		if (cdiv >= 65536)
1064 			cdiv = 0; /* 0 is the slowest we can go */
1065 	} else {
1066 		cdiv = 0; /* 0 is the slowest we can go */
1067 	}
1068 	tfr->effective_speed_hz = cdiv ? (clk_hz / cdiv) : (clk_hz / 65536);
1069 	bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
1070 
1071 	/* handle all the 3-wire mode */
1072 	if (spi->mode & SPI_3WIRE && tfr->rx_buf)
1073 		cs |= BCM2835_SPI_CS_REN;
1074 
1075 	/* set transmit buffers and length */
1076 	bs->tx_buf = tfr->tx_buf;
1077 	bs->rx_buf = tfr->rx_buf;
1078 	bs->tx_len = tfr->len;
1079 	bs->rx_len = tfr->len;
1080 
1081 	/* Calculate the estimated time in us the transfer runs.  Note that
1082 	 * there is 1 idle clocks cycles after each byte getting transferred
1083 	 * so we have 9 cycles/byte.  This is used to find the number of Hz
1084 	 * per byte per polling limit.  E.g., we can transfer 1 byte in 30 us
1085 	 * per 300,000 Hz of bus clock.
1086 	 */
1087 	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
1088 	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
1089 
1090 	/* run in polling mode for short transfers */
1091 	if (tfr->len < byte_limit)
1092 		return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
1093 
1094 	/* run in dma mode if conditions are right
1095 	 * Note that unlike poll or interrupt mode DMA mode does not have
1096 	 * this 1 idle clock cycle pattern but runs the spi clock without gaps
1097 	 */
1098 	if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
1099 		return bcm2835_spi_transfer_one_dma(ctlr, tfr, slv, cs);
1100 
1101 	/* run in interrupt-mode */
1102 	return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
1103 }
1104 
1105 static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
1106 				       struct spi_message *msg)
1107 {
1108 	struct spi_device *spi = msg->spi;
1109 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1110 	struct bcm2835_spidev *slv = spi_get_ctldata(spi);
1111 	int ret;
1112 
1113 	if (ctlr->can_dma) {
1114 		/*
1115 		 * DMA transfers are limited to 16 bit (0 to 65535 bytes) by
1116 		 * the SPI HW due to DLEN. Split up transfers (32-bit FIFO
1117 		 * aligned) if the limit is exceeded.
1118 		 */
1119 		ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
1120 						  GFP_KERNEL | GFP_DMA);
1121 		if (ret)
1122 			return ret;
1123 	}
1124 
1125 	/*
1126 	 * Set up clock polarity before spi_transfer_one_message() asserts
1127 	 * chip select to avoid a gratuitous clock signal edge.
1128 	 */
1129 	bcm2835_wr(bs, BCM2835_SPI_CS, slv->prepare_cs);
1130 
1131 	return 0;
1132 }
1133 
1134 static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
1135 				   struct spi_message *msg)
1136 {
1137 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1138 
1139 	/* if an error occurred and we have an active dma, then terminate */
1140 	dmaengine_terminate_sync(ctlr->dma_tx);
1141 	bs->tx_dma_active = false;
1142 	dmaengine_terminate_sync(ctlr->dma_rx);
1143 	bs->rx_dma_active = false;
1144 	bcm2835_spi_undo_prologue(bs);
1145 
1146 	/* and reset */
1147 	bcm2835_spi_reset_hw(bs);
1148 }
1149 
1150 static int chip_match_name(struct gpio_chip *chip, void *data)
1151 {
1152 	return !strcmp(chip->label, data);
1153 }
1154 
1155 static void bcm2835_spi_cleanup(struct spi_device *spi)
1156 {
1157 	struct bcm2835_spidev *slv = spi_get_ctldata(spi);
1158 	struct spi_controller *ctlr = spi->controller;
1159 
1160 	if (slv->clear_rx_desc)
1161 		dmaengine_desc_free(slv->clear_rx_desc);
1162 
1163 	if (slv->clear_rx_addr)
1164 		dma_unmap_single(ctlr->dma_rx->device->dev,
1165 				 slv->clear_rx_addr,
1166 				 sizeof(u32),
1167 				 DMA_TO_DEVICE);
1168 
1169 	kfree(slv);
1170 }
1171 
1172 static int bcm2835_spi_setup_dma(struct spi_controller *ctlr,
1173 				 struct spi_device *spi,
1174 				 struct bcm2835_spi *bs,
1175 				 struct bcm2835_spidev *slv)
1176 {
1177 	int ret;
1178 
1179 	if (!ctlr->dma_rx)
1180 		return 0;
1181 
1182 	slv->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
1183 					    &slv->clear_rx_cs,
1184 					    sizeof(u32),
1185 					    DMA_TO_DEVICE);
1186 	if (dma_mapping_error(ctlr->dma_rx->device->dev, slv->clear_rx_addr)) {
1187 		dev_err(&spi->dev, "cannot map clear_rx_cs\n");
1188 		slv->clear_rx_addr = 0;
1189 		return -ENOMEM;
1190 	}
1191 
1192 	slv->clear_rx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
1193 						       slv->clear_rx_addr,
1194 						       sizeof(u32), 0,
1195 						       DMA_MEM_TO_DEV, 0);
1196 	if (!slv->clear_rx_desc) {
1197 		dev_err(&spi->dev, "cannot prepare clear_rx_desc\n");
1198 		return -ENOMEM;
1199 	}
1200 
1201 	ret = dmaengine_desc_set_reuse(slv->clear_rx_desc);
1202 	if (ret) {
1203 		dev_err(&spi->dev, "cannot reuse clear_rx_desc\n");
1204 		return ret;
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 static int bcm2835_spi_setup(struct spi_device *spi)
1211 {
1212 	struct spi_controller *ctlr = spi->controller;
1213 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1214 	struct bcm2835_spidev *slv = spi_get_ctldata(spi);
1215 	struct gpio_chip *chip;
1216 	int ret;
1217 	u32 cs;
1218 
1219 	if (!slv) {
1220 		slv = kzalloc(ALIGN(sizeof(*slv), dma_get_cache_alignment()),
1221 			      GFP_KERNEL);
1222 		if (!slv)
1223 			return -ENOMEM;
1224 
1225 		spi_set_ctldata(spi, slv);
1226 
1227 		ret = bcm2835_spi_setup_dma(ctlr, spi, bs, slv);
1228 		if (ret)
1229 			goto err_cleanup;
1230 	}
1231 
1232 	/*
1233 	 * Precalculate SPI slave's CS register value for ->prepare_message():
1234 	 * The driver always uses software-controlled GPIO chip select, hence
1235 	 * set the hardware-controlled native chip select to an invalid value
1236 	 * to prevent it from interfering.
1237 	 */
1238 	cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
1239 	if (spi->mode & SPI_CPOL)
1240 		cs |= BCM2835_SPI_CS_CPOL;
1241 	if (spi->mode & SPI_CPHA)
1242 		cs |= BCM2835_SPI_CS_CPHA;
1243 	slv->prepare_cs = cs;
1244 
1245 	/*
1246 	 * Precalculate SPI slave's CS register value to clear RX FIFO
1247 	 * in case of a TX-only DMA transfer.
1248 	 */
1249 	if (ctlr->dma_rx) {
1250 		slv->clear_rx_cs = cs | BCM2835_SPI_CS_TA |
1251 					BCM2835_SPI_CS_DMAEN |
1252 					BCM2835_SPI_CS_CLEAR_RX;
1253 		dma_sync_single_for_device(ctlr->dma_rx->device->dev,
1254 					   slv->clear_rx_addr,
1255 					   sizeof(u32),
1256 					   DMA_TO_DEVICE);
1257 	}
1258 
1259 	/*
1260 	 * sanity checking the native-chipselects
1261 	 */
1262 	if (spi->mode & SPI_NO_CS)
1263 		return 0;
1264 	/*
1265 	 * The SPI core has successfully requested the CS GPIO line from the
1266 	 * device tree, so we are done.
1267 	 */
1268 	if (spi->cs_gpiod)
1269 		return 0;
1270 	if (spi->chip_select > 1) {
1271 		/* error in the case of native CS requested with CS > 1
1272 		 * officially there is a CS2, but it is not documented
1273 		 * which GPIO is connected with that...
1274 		 */
1275 		dev_err(&spi->dev,
1276 			"setup: only two native chip-selects are supported\n");
1277 		ret = -EINVAL;
1278 		goto err_cleanup;
1279 	}
1280 
1281 	/*
1282 	 * Translate native CS to GPIO
1283 	 *
1284 	 * FIXME: poking around in the gpiolib internals like this is
1285 	 * not very good practice. Find a way to locate the real problem
1286 	 * and fix it. Why is the GPIO descriptor in spi->cs_gpiod
1287 	 * sometimes not assigned correctly? Erroneous device trees?
1288 	 */
1289 
1290 	/* get the gpio chip for the base */
1291 	chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
1292 	if (!chip)
1293 		return 0;
1294 
1295 	spi->cs_gpiod = gpiochip_request_own_desc(chip, 8 - spi->chip_select,
1296 						  DRV_NAME,
1297 						  GPIO_LOOKUP_FLAGS_DEFAULT,
1298 						  GPIOD_OUT_LOW);
1299 	if (IS_ERR(spi->cs_gpiod)) {
1300 		ret = PTR_ERR(spi->cs_gpiod);
1301 		goto err_cleanup;
1302 	}
1303 
1304 	/* and set up the "mode" and level */
1305 	dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
1306 		 spi->chip_select);
1307 
1308 	return 0;
1309 
1310 err_cleanup:
1311 	bcm2835_spi_cleanup(spi);
1312 	return ret;
1313 }
1314 
1315 static int bcm2835_spi_probe(struct platform_device *pdev)
1316 {
1317 	struct spi_controller *ctlr;
1318 	struct bcm2835_spi *bs;
1319 	int err;
1320 
1321 	ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*bs));
1322 	if (!ctlr)
1323 		return -ENOMEM;
1324 
1325 	platform_set_drvdata(pdev, ctlr);
1326 
1327 	ctlr->use_gpio_descriptors = true;
1328 	ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
1329 	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1330 	ctlr->num_chipselect = 3;
1331 	ctlr->setup = bcm2835_spi_setup;
1332 	ctlr->cleanup = bcm2835_spi_cleanup;
1333 	ctlr->transfer_one = bcm2835_spi_transfer_one;
1334 	ctlr->handle_err = bcm2835_spi_handle_err;
1335 	ctlr->prepare_message = bcm2835_spi_prepare_message;
1336 	ctlr->dev.of_node = pdev->dev.of_node;
1337 
1338 	bs = spi_controller_get_devdata(ctlr);
1339 	bs->ctlr = ctlr;
1340 
1341 	bs->regs = devm_platform_ioremap_resource(pdev, 0);
1342 	if (IS_ERR(bs->regs))
1343 		return PTR_ERR(bs->regs);
1344 
1345 	bs->clk = devm_clk_get(&pdev->dev, NULL);
1346 	if (IS_ERR(bs->clk))
1347 		return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
1348 				     "could not get clk\n");
1349 
1350 	ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2;
1351 
1352 	bs->irq = platform_get_irq(pdev, 0);
1353 	if (bs->irq <= 0)
1354 		return bs->irq ? bs->irq : -ENODEV;
1355 
1356 	clk_prepare_enable(bs->clk);
1357 
1358 	err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
1359 	if (err)
1360 		goto out_clk_disable;
1361 
1362 	/* initialise the hardware with the default polarities */
1363 	bcm2835_wr(bs, BCM2835_SPI_CS,
1364 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1365 
1366 	err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
1367 			       dev_name(&pdev->dev), bs);
1368 	if (err) {
1369 		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
1370 		goto out_dma_release;
1371 	}
1372 
1373 	err = spi_register_controller(ctlr);
1374 	if (err) {
1375 		dev_err(&pdev->dev, "could not register SPI controller: %d\n",
1376 			err);
1377 		goto out_dma_release;
1378 	}
1379 
1380 	bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
1381 
1382 	return 0;
1383 
1384 out_dma_release:
1385 	bcm2835_dma_release(ctlr, bs);
1386 out_clk_disable:
1387 	clk_disable_unprepare(bs->clk);
1388 	return err;
1389 }
1390 
1391 static int bcm2835_spi_remove(struct platform_device *pdev)
1392 {
1393 	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1394 	struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
1395 
1396 	bcm2835_debugfs_remove(bs);
1397 
1398 	spi_unregister_controller(ctlr);
1399 
1400 	bcm2835_dma_release(ctlr, bs);
1401 
1402 	/* Clear FIFOs, and disable the HW block */
1403 	bcm2835_wr(bs, BCM2835_SPI_CS,
1404 		   BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
1405 
1406 	clk_disable_unprepare(bs->clk);
1407 
1408 	return 0;
1409 }
1410 
1411 static void bcm2835_spi_shutdown(struct platform_device *pdev)
1412 {
1413 	int ret;
1414 
1415 	ret = bcm2835_spi_remove(pdev);
1416 	if (ret)
1417 		dev_err(&pdev->dev, "failed to shutdown\n");
1418 }
1419 
1420 static const struct of_device_id bcm2835_spi_match[] = {
1421 	{ .compatible = "brcm,bcm2835-spi", },
1422 	{}
1423 };
1424 MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
1425 
1426 static struct platform_driver bcm2835_spi_driver = {
1427 	.driver		= {
1428 		.name		= DRV_NAME,
1429 		.of_match_table	= bcm2835_spi_match,
1430 	},
1431 	.probe		= bcm2835_spi_probe,
1432 	.remove		= bcm2835_spi_remove,
1433 	.shutdown	= bcm2835_spi_shutdown,
1434 };
1435 module_platform_driver(bcm2835_spi_driver);
1436 
1437 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
1438 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
1439 MODULE_LICENSE("GPL");
1440