xref: /openbmc/linux/drivers/spi/spi-bcm-qspi.c (revision cf9441ad)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
4  *
5  * Copyright 2016 Broadcom
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/ioport.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_irq.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/spi/spi.h>
22 #include <linux/spi/spi-mem.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 #include "spi-bcm-qspi.h"
26 
27 #define DRIVER_NAME "bcm_qspi"
28 
29 
30 /* BSPI register offsets */
31 #define BSPI_REVISION_ID			0x000
32 #define BSPI_SCRATCH				0x004
33 #define BSPI_MAST_N_BOOT_CTRL			0x008
34 #define BSPI_BUSY_STATUS			0x00c
35 #define BSPI_INTR_STATUS			0x010
36 #define BSPI_B0_STATUS				0x014
37 #define BSPI_B0_CTRL				0x018
38 #define BSPI_B1_STATUS				0x01c
39 #define BSPI_B1_CTRL				0x020
40 #define BSPI_STRAP_OVERRIDE_CTRL		0x024
41 #define BSPI_FLEX_MODE_ENABLE			0x028
42 #define BSPI_BITS_PER_CYCLE			0x02c
43 #define BSPI_BITS_PER_PHASE			0x030
44 #define BSPI_CMD_AND_MODE_BYTE			0x034
45 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE	0x038
46 #define BSPI_BSPI_XOR_VALUE			0x03c
47 #define BSPI_BSPI_XOR_ENABLE			0x040
48 #define BSPI_BSPI_PIO_MODE_ENABLE		0x044
49 #define BSPI_BSPI_PIO_IODIR			0x048
50 #define BSPI_BSPI_PIO_DATA			0x04c
51 
52 /* RAF register offsets */
53 #define BSPI_RAF_START_ADDR			0x100
54 #define BSPI_RAF_NUM_WORDS			0x104
55 #define BSPI_RAF_CTRL				0x108
56 #define BSPI_RAF_FULLNESS			0x10c
57 #define BSPI_RAF_WATERMARK			0x110
58 #define BSPI_RAF_STATUS			0x114
59 #define BSPI_RAF_READ_DATA			0x118
60 #define BSPI_RAF_WORD_CNT			0x11c
61 #define BSPI_RAF_CURR_ADDR			0x120
62 
63 /* Override mode masks */
64 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE	BIT(0)
65 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL	BIT(1)
66 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE	BIT(2)
67 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD	BIT(3)
68 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE	BIT(4)
69 
70 #define BSPI_ADDRLEN_3BYTES			3
71 #define BSPI_ADDRLEN_4BYTES			4
72 
73 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK	BIT(1)
74 
75 #define BSPI_RAF_CTRL_START_MASK		BIT(0)
76 #define BSPI_RAF_CTRL_CLEAR_MASK		BIT(1)
77 
78 #define BSPI_BPP_MODE_SELECT_MASK		BIT(8)
79 #define BSPI_BPP_ADDR_SELECT_MASK		BIT(16)
80 
81 #define BSPI_READ_LENGTH			256
82 
83 /* MSPI register offsets */
84 #define MSPI_SPCR0_LSB				0x000
85 #define MSPI_SPCR0_MSB				0x004
86 #define MSPI_SPCR1_LSB				0x008
87 #define MSPI_SPCR1_MSB				0x00c
88 #define MSPI_NEWQP				0x010
89 #define MSPI_ENDQP				0x014
90 #define MSPI_SPCR2				0x018
91 #define MSPI_MSPI_STATUS			0x020
92 #define MSPI_CPTQP				0x024
93 #define MSPI_SPCR3				0x028
94 #define MSPI_TXRAM				0x040
95 #define MSPI_RXRAM				0x0c0
96 #define MSPI_CDRAM				0x140
97 #define MSPI_WRITE_LOCK			0x180
98 
99 #define MSPI_MASTER_BIT			BIT(7)
100 
101 #define MSPI_NUM_CDRAM				16
102 #define MSPI_CDRAM_CONT_BIT			BIT(7)
103 #define MSPI_CDRAM_BITSE_BIT			BIT(6)
104 #define MSPI_CDRAM_PCS				0xf
105 
106 #define MSPI_SPCR2_SPE				BIT(6)
107 #define MSPI_SPCR2_CONT_AFTER_CMD		BIT(7)
108 
109 #define MSPI_MSPI_STATUS_SPIF			BIT(0)
110 
111 #define INTR_BASE_BIT_SHIFT			0x02
112 #define INTR_COUNT				0x07
113 
114 #define NUM_CHIPSELECT				4
115 #define QSPI_SPBR_MIN				8U
116 #define QSPI_SPBR_MAX				255U
117 
118 #define OPCODE_DIOR				0xBB
119 #define OPCODE_QIOR				0xEB
120 #define OPCODE_DIOR_4B				0xBC
121 #define OPCODE_QIOR_4B				0xEC
122 
123 #define MAX_CMD_SIZE				6
124 
125 #define ADDR_4MB_MASK				GENMASK(22, 0)
126 
127 /* stop at end of transfer, no other reason */
128 #define TRANS_STATUS_BREAK_NONE		0
129 /* stop at end of spi_message */
130 #define TRANS_STATUS_BREAK_EOM			1
131 /* stop at end of spi_transfer if delay */
132 #define TRANS_STATUS_BREAK_DELAY		2
133 /* stop at end of spi_transfer if cs_change */
134 #define TRANS_STATUS_BREAK_CS_CHANGE		4
135 /* stop if we run out of bytes */
136 #define TRANS_STATUS_BREAK_NO_BYTES		8
137 
138 /* events that make us stop filling TX slots */
139 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |		\
140 			       TRANS_STATUS_BREAK_DELAY |		\
141 			       TRANS_STATUS_BREAK_CS_CHANGE)
142 
143 /* events that make us deassert CS */
144 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |		\
145 				     TRANS_STATUS_BREAK_CS_CHANGE)
146 
147 struct bcm_qspi_parms {
148 	u32 speed_hz;
149 	u8 mode;
150 	u8 bits_per_word;
151 };
152 
153 struct bcm_xfer_mode {
154 	bool flex_mode;
155 	unsigned int width;
156 	unsigned int addrlen;
157 	unsigned int hp;
158 };
159 
160 enum base_type {
161 	MSPI,
162 	BSPI,
163 	CHIP_SELECT,
164 	BASEMAX,
165 };
166 
167 enum irq_source {
168 	SINGLE_L2,
169 	MUXED_L1,
170 };
171 
172 struct bcm_qspi_irq {
173 	const char *irq_name;
174 	const irq_handler_t irq_handler;
175 	int irq_source;
176 	u32 mask;
177 };
178 
179 struct bcm_qspi_dev_id {
180 	const struct bcm_qspi_irq *irqp;
181 	void *dev;
182 };
183 
184 
185 struct qspi_trans {
186 	struct spi_transfer *trans;
187 	int byte;
188 	bool mspi_last_trans;
189 };
190 
191 struct bcm_qspi {
192 	struct platform_device *pdev;
193 	struct spi_master *master;
194 	struct clk *clk;
195 	u32 base_clk;
196 	u32 max_speed_hz;
197 	void __iomem *base[BASEMAX];
198 
199 	/* Some SoCs provide custom interrupt status register(s) */
200 	struct bcm_qspi_soc_intc	*soc_intc;
201 
202 	struct bcm_qspi_parms last_parms;
203 	struct qspi_trans  trans_pos;
204 	int curr_cs;
205 	int bspi_maj_rev;
206 	int bspi_min_rev;
207 	int bspi_enabled;
208 	const struct spi_mem_op *bspi_rf_op;
209 	u32 bspi_rf_op_idx;
210 	u32 bspi_rf_op_len;
211 	u32 bspi_rf_op_status;
212 	struct bcm_xfer_mode xfer_mode;
213 	u32 s3_strap_override_ctrl;
214 	bool bspi_mode;
215 	bool big_endian;
216 	int num_irqs;
217 	struct bcm_qspi_dev_id *dev_ids;
218 	struct completion mspi_done;
219 	struct completion bspi_done;
220 };
221 
222 static inline bool has_bspi(struct bcm_qspi *qspi)
223 {
224 	return qspi->bspi_mode;
225 }
226 
227 /* Read qspi controller register*/
228 static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
229 				unsigned int offset)
230 {
231 	return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
232 }
233 
234 /* Write qspi controller register*/
235 static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
236 				  unsigned int offset, unsigned int data)
237 {
238 	bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
239 }
240 
241 /* BSPI helpers */
242 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
243 {
244 	int i;
245 
246 	/* this should normally finish within 10us */
247 	for (i = 0; i < 1000; i++) {
248 		if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
249 			return 0;
250 		udelay(1);
251 	}
252 	dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
253 	return -EIO;
254 }
255 
256 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
257 {
258 	if (qspi->bspi_maj_rev < 4)
259 		return true;
260 	return false;
261 }
262 
263 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
264 {
265 	bcm_qspi_bspi_busy_poll(qspi);
266 	/* Force rising edge for the b0/b1 'flush' field */
267 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
268 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
269 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
270 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
271 }
272 
273 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
274 {
275 	return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
276 				BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
277 }
278 
279 static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
280 {
281 	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
282 
283 	/* BSPI v3 LR is LE only, convert data to host endianness */
284 	if (bcm_qspi_bspi_ver_three(qspi))
285 		data = le32_to_cpu(data);
286 
287 	return data;
288 }
289 
290 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
291 {
292 	bcm_qspi_bspi_busy_poll(qspi);
293 	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
294 		       BSPI_RAF_CTRL_START_MASK);
295 }
296 
297 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
298 {
299 	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
300 		       BSPI_RAF_CTRL_CLEAR_MASK);
301 	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
302 }
303 
304 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
305 {
306 	u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
307 	u32 data = 0;
308 
309 	dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
310 		qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
311 	while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
312 		data = bcm_qspi_bspi_lr_read_fifo(qspi);
313 		if (likely(qspi->bspi_rf_op_len >= 4) &&
314 		    IS_ALIGNED((uintptr_t)buf, 4)) {
315 			buf[qspi->bspi_rf_op_idx++] = data;
316 			qspi->bspi_rf_op_len -= 4;
317 		} else {
318 			/* Read out remaining bytes, make sure*/
319 			u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
320 
321 			data = cpu_to_le32(data);
322 			while (qspi->bspi_rf_op_len) {
323 				*cbuf++ = (u8)data;
324 				data >>= 8;
325 				qspi->bspi_rf_op_len--;
326 			}
327 		}
328 	}
329 }
330 
331 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
332 					  int bpp, int bpc, int flex_mode)
333 {
334 	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
335 	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
336 	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
337 	bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
338 	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
339 }
340 
341 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
342 				       const struct spi_mem_op *op, int hp)
343 {
344 	int bpc = 0, bpp = 0;
345 	u8 command = op->cmd.opcode;
346 	int width  = op->cmd.buswidth ? op->cmd.buswidth : SPI_NBITS_SINGLE;
347 	int addrlen = op->addr.nbytes;
348 	int flex_mode = 1;
349 
350 	dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
351 		width, addrlen, hp);
352 
353 	if (addrlen == BSPI_ADDRLEN_4BYTES)
354 		bpp = BSPI_BPP_ADDR_SELECT_MASK;
355 
356 	bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
357 
358 	switch (width) {
359 	case SPI_NBITS_SINGLE:
360 		if (addrlen == BSPI_ADDRLEN_3BYTES)
361 			/* default mode, does not need flex_cmd */
362 			flex_mode = 0;
363 		break;
364 	case SPI_NBITS_DUAL:
365 		bpc = 0x00000001;
366 		if (hp) {
367 			bpc |= 0x00010100; /* address and mode are 2-bit */
368 			bpp = BSPI_BPP_MODE_SELECT_MASK;
369 		}
370 		break;
371 	case SPI_NBITS_QUAD:
372 		bpc = 0x00000002;
373 		if (hp) {
374 			bpc |= 0x00020200; /* address and mode are 4-bit */
375 			bpp |= BSPI_BPP_MODE_SELECT_MASK;
376 		}
377 		break;
378 	default:
379 		return -EINVAL;
380 	}
381 
382 	bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
383 
384 	return 0;
385 }
386 
387 static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
388 				      const struct spi_mem_op *op, int hp)
389 {
390 	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
391 	int addrlen = op->addr.nbytes;
392 	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
393 
394 	dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
395 		width, addrlen, hp);
396 
397 	switch (width) {
398 	case SPI_NBITS_SINGLE:
399 		/* clear quad/dual mode */
400 		data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
401 			  BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
402 		break;
403 	case SPI_NBITS_QUAD:
404 		/* clear dual mode and set quad mode */
405 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
406 		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
407 		break;
408 	case SPI_NBITS_DUAL:
409 		/* clear quad mode set dual mode */
410 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
411 		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
412 		break;
413 	default:
414 		return -EINVAL;
415 	}
416 
417 	if (addrlen == BSPI_ADDRLEN_4BYTES)
418 		/* set 4byte mode*/
419 		data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
420 	else
421 		/* clear 4 byte mode */
422 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
423 
424 	/* set the override mode */
425 	data |=	BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
426 	bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
427 	bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
428 
429 	return 0;
430 }
431 
432 static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
433 				  const struct spi_mem_op *op, int hp)
434 {
435 	int error = 0;
436 	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
437 	int addrlen = op->addr.nbytes;
438 
439 	/* default mode */
440 	qspi->xfer_mode.flex_mode = true;
441 
442 	if (!bcm_qspi_bspi_ver_three(qspi)) {
443 		u32 val, mask;
444 
445 		val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
446 		mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
447 		if (val & mask || qspi->s3_strap_override_ctrl & mask) {
448 			qspi->xfer_mode.flex_mode = false;
449 			bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
450 			error = bcm_qspi_bspi_set_override(qspi, op, hp);
451 		}
452 	}
453 
454 	if (qspi->xfer_mode.flex_mode)
455 		error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
456 
457 	if (error) {
458 		dev_warn(&qspi->pdev->dev,
459 			 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
460 			 width, addrlen, hp);
461 	} else if (qspi->xfer_mode.width != width ||
462 		   qspi->xfer_mode.addrlen != addrlen ||
463 		   qspi->xfer_mode.hp != hp) {
464 		qspi->xfer_mode.width = width;
465 		qspi->xfer_mode.addrlen = addrlen;
466 		qspi->xfer_mode.hp = hp;
467 		dev_dbg(&qspi->pdev->dev,
468 			"cs:%d %d-lane output, %d-byte address%s\n",
469 			qspi->curr_cs,
470 			qspi->xfer_mode.width,
471 			qspi->xfer_mode.addrlen,
472 			qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
473 	}
474 
475 	return error;
476 }
477 
478 static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
479 {
480 	if (!has_bspi(qspi))
481 		return;
482 
483 	qspi->bspi_enabled = 1;
484 	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
485 		return;
486 
487 	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
488 	udelay(1);
489 	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
490 	udelay(1);
491 }
492 
493 static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
494 {
495 	if (!has_bspi(qspi))
496 		return;
497 
498 	qspi->bspi_enabled = 0;
499 	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
500 		return;
501 
502 	bcm_qspi_bspi_busy_poll(qspi);
503 	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
504 	udelay(1);
505 }
506 
507 static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
508 {
509 	u32 rd = 0;
510 	u32 wr = 0;
511 
512 	if (qspi->base[CHIP_SELECT]) {
513 		rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
514 		wr = (rd & ~0xff) | (1 << cs);
515 		if (rd == wr)
516 			return;
517 		bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
518 		usleep_range(10, 20);
519 	}
520 
521 	dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
522 	qspi->curr_cs = cs;
523 }
524 
525 /* MSPI helpers */
526 static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
527 				  const struct bcm_qspi_parms *xp)
528 {
529 	u32 spcr, spbr = 0;
530 
531 	if (xp->speed_hz)
532 		spbr = qspi->base_clk / (2 * xp->speed_hz);
533 
534 	spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
535 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
536 
537 	spcr = MSPI_MASTER_BIT;
538 	/* for 16 bit the data should be zero */
539 	if (xp->bits_per_word != 16)
540 		spcr |= xp->bits_per_word << 2;
541 	spcr |= xp->mode & 3;
542 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
543 
544 	qspi->last_parms = *xp;
545 }
546 
547 static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
548 				  struct spi_device *spi,
549 				  struct spi_transfer *trans)
550 {
551 	struct bcm_qspi_parms xp;
552 
553 	xp.speed_hz = trans->speed_hz;
554 	xp.bits_per_word = trans->bits_per_word;
555 	xp.mode = spi->mode;
556 
557 	bcm_qspi_hw_set_parms(qspi, &xp);
558 }
559 
560 static int bcm_qspi_setup(struct spi_device *spi)
561 {
562 	struct bcm_qspi_parms *xp;
563 
564 	if (spi->bits_per_word > 16)
565 		return -EINVAL;
566 
567 	xp = spi_get_ctldata(spi);
568 	if (!xp) {
569 		xp = kzalloc(sizeof(*xp), GFP_KERNEL);
570 		if (!xp)
571 			return -ENOMEM;
572 		spi_set_ctldata(spi, xp);
573 	}
574 	xp->speed_hz = spi->max_speed_hz;
575 	xp->mode = spi->mode;
576 
577 	if (spi->bits_per_word)
578 		xp->bits_per_word = spi->bits_per_word;
579 	else
580 		xp->bits_per_word = 8;
581 
582 	return 0;
583 }
584 
585 static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
586 					   struct qspi_trans *qt)
587 {
588 	if (qt->mspi_last_trans &&
589 	    spi_transfer_is_last(qspi->master, qt->trans))
590 		return true;
591 	else
592 		return false;
593 }
594 
595 static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
596 					struct qspi_trans *qt, int flags)
597 {
598 	int ret = TRANS_STATUS_BREAK_NONE;
599 
600 	/* count the last transferred bytes */
601 	if (qt->trans->bits_per_word <= 8)
602 		qt->byte++;
603 	else
604 		qt->byte += 2;
605 
606 	if (qt->byte >= qt->trans->len) {
607 		/* we're at the end of the spi_transfer */
608 		/* in TX mode, need to pause for a delay or CS change */
609 		if (qt->trans->delay_usecs &&
610 		    (flags & TRANS_STATUS_BREAK_DELAY))
611 			ret |= TRANS_STATUS_BREAK_DELAY;
612 		if (qt->trans->cs_change &&
613 		    (flags & TRANS_STATUS_BREAK_CS_CHANGE))
614 			ret |= TRANS_STATUS_BREAK_CS_CHANGE;
615 		if (ret)
616 			goto done;
617 
618 		dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
619 		if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
620 			ret = TRANS_STATUS_BREAK_EOM;
621 		else
622 			ret = TRANS_STATUS_BREAK_NO_BYTES;
623 
624 		qt->trans = NULL;
625 	}
626 
627 done:
628 	dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
629 		qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
630 	return ret;
631 }
632 
633 static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
634 {
635 	u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
636 
637 	/* mask out reserved bits */
638 	return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
639 }
640 
641 static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
642 {
643 	u32 reg_offset = MSPI_RXRAM;
644 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
645 	u32 msb_offset = reg_offset + (slot << 3);
646 
647 	return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
648 		((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
649 }
650 
651 static void read_from_hw(struct bcm_qspi *qspi, int slots)
652 {
653 	struct qspi_trans tp;
654 	int slot;
655 
656 	bcm_qspi_disable_bspi(qspi);
657 
658 	if (slots > MSPI_NUM_CDRAM) {
659 		/* should never happen */
660 		dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
661 		return;
662 	}
663 
664 	tp = qspi->trans_pos;
665 
666 	for (slot = 0; slot < slots; slot++) {
667 		if (tp.trans->bits_per_word <= 8) {
668 			u8 *buf = tp.trans->rx_buf;
669 
670 			if (buf)
671 				buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
672 			dev_dbg(&qspi->pdev->dev, "RD %02x\n",
673 				buf ? buf[tp.byte] : 0xff);
674 		} else {
675 			u16 *buf = tp.trans->rx_buf;
676 
677 			if (buf)
678 				buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
679 								      slot);
680 			dev_dbg(&qspi->pdev->dev, "RD %04x\n",
681 				buf ? buf[tp.byte] : 0xffff);
682 		}
683 
684 		update_qspi_trans_byte_count(qspi, &tp,
685 					     TRANS_STATUS_BREAK_NONE);
686 	}
687 
688 	qspi->trans_pos = tp;
689 }
690 
691 static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
692 				       u8 val)
693 {
694 	u32 reg_offset = MSPI_TXRAM + (slot << 3);
695 
696 	/* mask out reserved bits */
697 	bcm_qspi_write(qspi, MSPI, reg_offset, val);
698 }
699 
700 static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
701 					u16 val)
702 {
703 	u32 reg_offset = MSPI_TXRAM;
704 	u32 msb_offset = reg_offset + (slot << 3);
705 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
706 
707 	bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
708 	bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
709 }
710 
711 static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
712 {
713 	return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
714 }
715 
716 static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
717 {
718 	bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
719 }
720 
721 /* Return number of slots written */
722 static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
723 {
724 	struct qspi_trans tp;
725 	int slot = 0, tstatus = 0;
726 	u32 mspi_cdram = 0;
727 
728 	bcm_qspi_disable_bspi(qspi);
729 	tp = qspi->trans_pos;
730 	bcm_qspi_update_parms(qspi, spi, tp.trans);
731 
732 	/* Run until end of transfer or reached the max data */
733 	while (!tstatus && slot < MSPI_NUM_CDRAM) {
734 		if (tp.trans->bits_per_word <= 8) {
735 			const u8 *buf = tp.trans->tx_buf;
736 			u8 val = buf ? buf[tp.byte] : 0xff;
737 
738 			write_txram_slot_u8(qspi, slot, val);
739 			dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
740 		} else {
741 			const u16 *buf = tp.trans->tx_buf;
742 			u16 val = buf ? buf[tp.byte / 2] : 0xffff;
743 
744 			write_txram_slot_u16(qspi, slot, val);
745 			dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
746 		}
747 		mspi_cdram = MSPI_CDRAM_CONT_BIT;
748 
749 		if (has_bspi(qspi))
750 			mspi_cdram &= ~1;
751 		else
752 			mspi_cdram |= (~(1 << spi->chip_select) &
753 				       MSPI_CDRAM_PCS);
754 
755 		mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
756 				MSPI_CDRAM_BITSE_BIT);
757 
758 		write_cdram_slot(qspi, slot, mspi_cdram);
759 
760 		tstatus = update_qspi_trans_byte_count(qspi, &tp,
761 						       TRANS_STATUS_BREAK_TX);
762 		slot++;
763 	}
764 
765 	if (!slot) {
766 		dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
767 		goto done;
768 	}
769 
770 	dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
771 	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
772 	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
773 
774 	if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
775 		mspi_cdram = read_cdram_slot(qspi, slot - 1) &
776 			~MSPI_CDRAM_CONT_BIT;
777 		write_cdram_slot(qspi, slot - 1, mspi_cdram);
778 	}
779 
780 	if (has_bspi(qspi))
781 		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
782 
783 	/* Must flush previous writes before starting MSPI operation */
784 	mb();
785 	/* Set cont | spe | spifie */
786 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
787 
788 done:
789 	return slot;
790 }
791 
792 static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
793 				     const struct spi_mem_op *op)
794 {
795 	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
796 	u32 addr = 0, len, rdlen, len_words, from = 0;
797 	int ret = 0;
798 	unsigned long timeo = msecs_to_jiffies(100);
799 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
800 
801 	if (bcm_qspi_bspi_ver_three(qspi))
802 		if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
803 			return -EIO;
804 
805 	from = op->addr.val;
806 	bcm_qspi_chip_select(qspi, spi->chip_select);
807 	bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
808 
809 	/*
810 	 * when using flex mode we need to send
811 	 * the upper address byte to bspi
812 	 */
813 	if (bcm_qspi_bspi_ver_three(qspi) == false) {
814 		addr = from & 0xff000000;
815 		bcm_qspi_write(qspi, BSPI,
816 			       BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
817 	}
818 
819 	if (!qspi->xfer_mode.flex_mode)
820 		addr = from;
821 	else
822 		addr = from & 0x00ffffff;
823 
824 	if (bcm_qspi_bspi_ver_three(qspi) == true)
825 		addr = (addr + 0xc00000) & 0xffffff;
826 
827 	/*
828 	 * read into the entire buffer by breaking the reads
829 	 * into RAF buffer read lengths
830 	 */
831 	len = op->data.nbytes;
832 	qspi->bspi_rf_op_idx = 0;
833 
834 	do {
835 		if (len > BSPI_READ_LENGTH)
836 			rdlen = BSPI_READ_LENGTH;
837 		else
838 			rdlen = len;
839 
840 		reinit_completion(&qspi->bspi_done);
841 		bcm_qspi_enable_bspi(qspi);
842 		len_words = (rdlen + 3) >> 2;
843 		qspi->bspi_rf_op = op;
844 		qspi->bspi_rf_op_status = 0;
845 		qspi->bspi_rf_op_len = rdlen;
846 		dev_dbg(&qspi->pdev->dev,
847 			"bspi xfr addr 0x%x len 0x%x", addr, rdlen);
848 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
849 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
850 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
851 		if (qspi->soc_intc) {
852 			/*
853 			 * clear soc MSPI and BSPI interrupts and enable
854 			 * BSPI interrupts.
855 			 */
856 			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
857 			soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
858 		}
859 
860 		/* Must flush previous writes before starting BSPI operation */
861 		mb();
862 		bcm_qspi_bspi_lr_start(qspi);
863 		if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
864 			dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
865 			ret = -ETIMEDOUT;
866 			break;
867 		}
868 
869 		/* set msg return length */
870 		addr += rdlen;
871 		len -= rdlen;
872 	} while (len);
873 
874 	return ret;
875 }
876 
877 static int bcm_qspi_transfer_one(struct spi_master *master,
878 				 struct spi_device *spi,
879 				 struct spi_transfer *trans)
880 {
881 	struct bcm_qspi *qspi = spi_master_get_devdata(master);
882 	int slots;
883 	unsigned long timeo = msecs_to_jiffies(100);
884 
885 	bcm_qspi_chip_select(qspi, spi->chip_select);
886 	qspi->trans_pos.trans = trans;
887 	qspi->trans_pos.byte = 0;
888 
889 	while (qspi->trans_pos.byte < trans->len) {
890 		reinit_completion(&qspi->mspi_done);
891 
892 		slots = write_to_hw(qspi, spi);
893 		if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
894 			dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
895 			return -ETIMEDOUT;
896 		}
897 
898 		read_from_hw(qspi, slots);
899 	}
900 
901 	return 0;
902 }
903 
904 static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
905 				     const struct spi_mem_op *op)
906 {
907 	struct spi_master *master = spi->master;
908 	struct bcm_qspi *qspi = spi_master_get_devdata(master);
909 	struct spi_transfer t[2];
910 	u8 cmd[6] = { };
911 	int ret, i;
912 
913 	memset(cmd, 0, sizeof(cmd));
914 	memset(t, 0, sizeof(t));
915 
916 	/* tx */
917 	/* opcode is in cmd[0] */
918 	cmd[0] = op->cmd.opcode;
919 	for (i = 0; i < op->addr.nbytes; i++)
920 		cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
921 
922 	t[0].tx_buf = cmd;
923 	t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
924 	t[0].bits_per_word = spi->bits_per_word;
925 	t[0].tx_nbits = op->cmd.buswidth;
926 	/* lets mspi know that this is not last transfer */
927 	qspi->trans_pos.mspi_last_trans = false;
928 	ret = bcm_qspi_transfer_one(master, spi, &t[0]);
929 
930 	/* rx */
931 	qspi->trans_pos.mspi_last_trans = true;
932 	if (!ret) {
933 		/* rx */
934 		t[1].rx_buf = op->data.buf.in;
935 		t[1].len = op->data.nbytes;
936 		t[1].rx_nbits =  op->data.buswidth;
937 		t[1].bits_per_word = spi->bits_per_word;
938 		ret = bcm_qspi_transfer_one(master, spi, &t[1]);
939 	}
940 
941 	return ret;
942 }
943 
944 static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
945 				const struct spi_mem_op *op)
946 {
947 	struct spi_device *spi = mem->spi;
948 	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
949 	int ret = 0;
950 	bool mspi_read = false;
951 	u32 addr = 0, len;
952 	u_char *buf;
953 
954 	if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
955 	    op->data.dir != SPI_MEM_DATA_IN)
956 		return -ENOTSUPP;
957 
958 	buf = op->data.buf.in;
959 	addr = op->addr.val;
960 	len = op->data.nbytes;
961 
962 	if (bcm_qspi_bspi_ver_three(qspi) == true) {
963 		/*
964 		 * The address coming into this function is a raw flash offset.
965 		 * But for BSPI <= V3, we need to convert it to a remapped BSPI
966 		 * address. If it crosses a 4MB boundary, just revert back to
967 		 * using MSPI.
968 		 */
969 		addr = (addr + 0xc00000) & 0xffffff;
970 
971 		if ((~ADDR_4MB_MASK & addr) ^
972 		    (~ADDR_4MB_MASK & (addr + len - 1)))
973 			mspi_read = true;
974 	}
975 
976 	/* non-aligned and very short transfers are handled by MSPI */
977 	if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
978 	    len < 4)
979 		mspi_read = true;
980 
981 	if (mspi_read)
982 		return bcm_qspi_mspi_exec_mem_op(spi, op);
983 
984 	ret = bcm_qspi_bspi_set_mode(qspi, op, -1);
985 
986 	if (!ret)
987 		ret = bcm_qspi_bspi_exec_mem_op(spi, op);
988 
989 	return ret;
990 }
991 
992 static void bcm_qspi_cleanup(struct spi_device *spi)
993 {
994 	struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
995 
996 	kfree(xp);
997 }
998 
999 static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1000 {
1001 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1002 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1003 	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1004 
1005 	if (status & MSPI_MSPI_STATUS_SPIF) {
1006 		struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1007 		/* clear interrupt */
1008 		status &= ~MSPI_MSPI_STATUS_SPIF;
1009 		bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1010 		if (qspi->soc_intc)
1011 			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1012 		complete(&qspi->mspi_done);
1013 		return IRQ_HANDLED;
1014 	}
1015 
1016 	return IRQ_NONE;
1017 }
1018 
1019 static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1020 {
1021 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1022 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1023 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1024 	u32 status = qspi_dev_id->irqp->mask;
1025 
1026 	if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1027 		bcm_qspi_bspi_lr_data_read(qspi);
1028 		if (qspi->bspi_rf_op_len == 0) {
1029 			qspi->bspi_rf_op = NULL;
1030 			if (qspi->soc_intc) {
1031 				/* disable soc BSPI interrupt */
1032 				soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1033 							   false);
1034 				/* indicate done */
1035 				status = INTR_BSPI_LR_SESSION_DONE_MASK;
1036 			}
1037 
1038 			if (qspi->bspi_rf_op_status)
1039 				bcm_qspi_bspi_lr_clear(qspi);
1040 			else
1041 				bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1042 		}
1043 
1044 		if (qspi->soc_intc)
1045 			/* clear soc BSPI interrupt */
1046 			soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1047 	}
1048 
1049 	status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1050 	if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1051 		complete(&qspi->bspi_done);
1052 
1053 	return IRQ_HANDLED;
1054 }
1055 
1056 static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1057 {
1058 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1059 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1060 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1061 
1062 	dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1063 	qspi->bspi_rf_op_status = -EIO;
1064 	if (qspi->soc_intc)
1065 		/* clear soc interrupt */
1066 		soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1067 
1068 	complete(&qspi->bspi_done);
1069 	return IRQ_HANDLED;
1070 }
1071 
1072 static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1073 {
1074 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1075 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1076 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1077 	irqreturn_t ret = IRQ_NONE;
1078 
1079 	if (soc_intc) {
1080 		u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1081 
1082 		if (status & MSPI_DONE)
1083 			ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1084 		else if (status & BSPI_DONE)
1085 			ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1086 		else if (status & BSPI_ERR)
1087 			ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1088 	}
1089 
1090 	return ret;
1091 }
1092 
1093 static const struct bcm_qspi_irq qspi_irq_tab[] = {
1094 	{
1095 		.irq_name = "spi_lr_fullness_reached",
1096 		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1097 		.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1098 	},
1099 	{
1100 		.irq_name = "spi_lr_session_aborted",
1101 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1102 		.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1103 	},
1104 	{
1105 		.irq_name = "spi_lr_impatient",
1106 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1107 		.mask = INTR_BSPI_LR_IMPATIENT_MASK,
1108 	},
1109 	{
1110 		.irq_name = "spi_lr_session_done",
1111 		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1112 		.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1113 	},
1114 #ifdef QSPI_INT_DEBUG
1115 	/* this interrupt is for debug purposes only, dont request irq */
1116 	{
1117 		.irq_name = "spi_lr_overread",
1118 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1119 		.mask = INTR_BSPI_LR_OVERREAD_MASK,
1120 	},
1121 #endif
1122 	{
1123 		.irq_name = "mspi_done",
1124 		.irq_handler = bcm_qspi_mspi_l2_isr,
1125 		.mask = INTR_MSPI_DONE_MASK,
1126 	},
1127 	{
1128 		.irq_name = "mspi_halted",
1129 		.irq_handler = bcm_qspi_mspi_l2_isr,
1130 		.mask = INTR_MSPI_HALTED_MASK,
1131 	},
1132 	{
1133 		/* single muxed L1 interrupt source */
1134 		.irq_name = "spi_l1_intr",
1135 		.irq_handler = bcm_qspi_l1_isr,
1136 		.irq_source = MUXED_L1,
1137 		.mask = QSPI_INTERRUPTS_ALL,
1138 	},
1139 };
1140 
1141 static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1142 {
1143 	u32 val = 0;
1144 
1145 	val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1146 	qspi->bspi_maj_rev = (val >> 8) & 0xff;
1147 	qspi->bspi_min_rev = val & 0xff;
1148 	if (!(bcm_qspi_bspi_ver_three(qspi))) {
1149 		/* Force mapping of BSPI address -> flash offset */
1150 		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1151 		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1152 	}
1153 	qspi->bspi_enabled = 1;
1154 	bcm_qspi_disable_bspi(qspi);
1155 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1156 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1157 }
1158 
1159 static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1160 {
1161 	struct bcm_qspi_parms parms;
1162 
1163 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1164 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1165 	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1166 	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1167 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1168 
1169 	parms.mode = SPI_MODE_3;
1170 	parms.bits_per_word = 8;
1171 	parms.speed_hz = qspi->max_speed_hz;
1172 	bcm_qspi_hw_set_parms(qspi, &parms);
1173 
1174 	if (has_bspi(qspi))
1175 		bcm_qspi_bspi_init(qspi);
1176 }
1177 
1178 static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1179 {
1180 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1181 	if (has_bspi(qspi))
1182 		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1183 
1184 }
1185 
1186 static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1187 	.exec_op = bcm_qspi_exec_mem_op,
1188 };
1189 
1190 static const struct of_device_id bcm_qspi_of_match[] = {
1191 	{ .compatible = "brcm,spi-bcm-qspi" },
1192 	{},
1193 };
1194 MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1195 
1196 int bcm_qspi_probe(struct platform_device *pdev,
1197 		   struct bcm_qspi_soc_intc *soc_intc)
1198 {
1199 	struct device *dev = &pdev->dev;
1200 	struct bcm_qspi *qspi;
1201 	struct spi_master *master;
1202 	struct resource *res;
1203 	int irq, ret = 0, num_ints = 0;
1204 	u32 val;
1205 	const char *name = NULL;
1206 	int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1207 
1208 	/* We only support device-tree instantiation */
1209 	if (!dev->of_node)
1210 		return -ENODEV;
1211 
1212 	if (!of_match_node(bcm_qspi_of_match, dev->of_node))
1213 		return -ENODEV;
1214 
1215 	master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
1216 	if (!master) {
1217 		dev_err(dev, "error allocating spi_master\n");
1218 		return -ENOMEM;
1219 	}
1220 
1221 	qspi = spi_master_get_devdata(master);
1222 	qspi->pdev = pdev;
1223 	qspi->trans_pos.trans = NULL;
1224 	qspi->trans_pos.byte = 0;
1225 	qspi->trans_pos.mspi_last_trans = true;
1226 	qspi->master = master;
1227 
1228 	master->bus_num = -1;
1229 	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
1230 	master->setup = bcm_qspi_setup;
1231 	master->transfer_one = bcm_qspi_transfer_one;
1232 	master->mem_ops = &bcm_qspi_mem_ops;
1233 	master->cleanup = bcm_qspi_cleanup;
1234 	master->dev.of_node = dev->of_node;
1235 	master->num_chipselect = NUM_CHIPSELECT;
1236 
1237 	qspi->big_endian = of_device_is_big_endian(dev->of_node);
1238 
1239 	if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1240 		master->num_chipselect = val;
1241 
1242 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1243 	if (!res)
1244 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1245 						   "mspi");
1246 
1247 	if (res) {
1248 		qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1249 		if (IS_ERR(qspi->base[MSPI])) {
1250 			ret = PTR_ERR(qspi->base[MSPI]);
1251 			goto qspi_resource_err;
1252 		}
1253 	} else {
1254 		goto qspi_resource_err;
1255 	}
1256 
1257 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1258 	if (res) {
1259 		qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1260 		if (IS_ERR(qspi->base[BSPI])) {
1261 			ret = PTR_ERR(qspi->base[BSPI]);
1262 			goto qspi_resource_err;
1263 		}
1264 		qspi->bspi_mode = true;
1265 	} else {
1266 		qspi->bspi_mode = false;
1267 	}
1268 
1269 	dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1270 
1271 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1272 	if (res) {
1273 		qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1274 		if (IS_ERR(qspi->base[CHIP_SELECT])) {
1275 			ret = PTR_ERR(qspi->base[CHIP_SELECT]);
1276 			goto qspi_resource_err;
1277 		}
1278 	}
1279 
1280 	qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1281 				GFP_KERNEL);
1282 	if (!qspi->dev_ids) {
1283 		ret = -ENOMEM;
1284 		goto qspi_resource_err;
1285 	}
1286 
1287 	for (val = 0; val < num_irqs; val++) {
1288 		irq = -1;
1289 		name = qspi_irq_tab[val].irq_name;
1290 		if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1291 			/* get the l2 interrupts */
1292 			irq = platform_get_irq_byname(pdev, name);
1293 		} else if (!num_ints && soc_intc) {
1294 			/* all mspi, bspi intrs muxed to one L1 intr */
1295 			irq = platform_get_irq(pdev, 0);
1296 		}
1297 
1298 		if (irq  >= 0) {
1299 			ret = devm_request_irq(&pdev->dev, irq,
1300 					       qspi_irq_tab[val].irq_handler, 0,
1301 					       name,
1302 					       &qspi->dev_ids[val]);
1303 			if (ret < 0) {
1304 				dev_err(&pdev->dev, "IRQ %s not found\n", name);
1305 				goto qspi_probe_err;
1306 			}
1307 
1308 			qspi->dev_ids[val].dev = qspi;
1309 			qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1310 			num_ints++;
1311 			dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1312 				qspi_irq_tab[val].irq_name,
1313 				irq);
1314 		}
1315 	}
1316 
1317 	if (!num_ints) {
1318 		dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1319 		ret = -EINVAL;
1320 		goto qspi_probe_err;
1321 	}
1322 
1323 	/*
1324 	 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1325 	 * in specific ways
1326 	 */
1327 	if (soc_intc) {
1328 		qspi->soc_intc = soc_intc;
1329 		soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1330 	} else {
1331 		qspi->soc_intc = NULL;
1332 	}
1333 
1334 	qspi->clk = devm_clk_get(&pdev->dev, NULL);
1335 	if (IS_ERR(qspi->clk)) {
1336 		dev_warn(dev, "unable to get clock\n");
1337 		ret = PTR_ERR(qspi->clk);
1338 		goto qspi_probe_err;
1339 	}
1340 
1341 	ret = clk_prepare_enable(qspi->clk);
1342 	if (ret) {
1343 		dev_err(dev, "failed to prepare clock\n");
1344 		goto qspi_probe_err;
1345 	}
1346 
1347 	qspi->base_clk = clk_get_rate(qspi->clk);
1348 	qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
1349 
1350 	bcm_qspi_hw_init(qspi);
1351 	init_completion(&qspi->mspi_done);
1352 	init_completion(&qspi->bspi_done);
1353 	qspi->curr_cs = -1;
1354 
1355 	platform_set_drvdata(pdev, qspi);
1356 
1357 	qspi->xfer_mode.width = -1;
1358 	qspi->xfer_mode.addrlen = -1;
1359 	qspi->xfer_mode.hp = -1;
1360 
1361 	ret = devm_spi_register_master(&pdev->dev, master);
1362 	if (ret < 0) {
1363 		dev_err(dev, "can't register master\n");
1364 		goto qspi_reg_err;
1365 	}
1366 
1367 	return 0;
1368 
1369 qspi_reg_err:
1370 	bcm_qspi_hw_uninit(qspi);
1371 	clk_disable_unprepare(qspi->clk);
1372 qspi_probe_err:
1373 	kfree(qspi->dev_ids);
1374 qspi_resource_err:
1375 	spi_master_put(master);
1376 	return ret;
1377 }
1378 /* probe function to be called by SoC specific platform driver probe */
1379 EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1380 
1381 int bcm_qspi_remove(struct platform_device *pdev)
1382 {
1383 	struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1384 
1385 	bcm_qspi_hw_uninit(qspi);
1386 	clk_disable_unprepare(qspi->clk);
1387 	kfree(qspi->dev_ids);
1388 	spi_unregister_master(qspi->master);
1389 
1390 	return 0;
1391 }
1392 /* function to be called by SoC specific platform driver remove() */
1393 EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1394 
1395 static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1396 {
1397 	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1398 
1399 	/* store the override strap value */
1400 	if (!bcm_qspi_bspi_ver_three(qspi))
1401 		qspi->s3_strap_override_ctrl =
1402 			bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1403 
1404 	spi_master_suspend(qspi->master);
1405 	clk_disable(qspi->clk);
1406 	bcm_qspi_hw_uninit(qspi);
1407 
1408 	return 0;
1409 };
1410 
1411 static int __maybe_unused bcm_qspi_resume(struct device *dev)
1412 {
1413 	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1414 	int ret = 0;
1415 
1416 	bcm_qspi_hw_init(qspi);
1417 	bcm_qspi_chip_select(qspi, qspi->curr_cs);
1418 	if (qspi->soc_intc)
1419 		/* enable MSPI interrupt */
1420 		qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1421 						 true);
1422 
1423 	ret = clk_enable(qspi->clk);
1424 	if (!ret)
1425 		spi_master_resume(qspi->master);
1426 
1427 	return ret;
1428 }
1429 
1430 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1431 
1432 /* pm_ops to be called by SoC specific platform driver */
1433 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1434 
1435 MODULE_AUTHOR("Kamal Dasu");
1436 MODULE_DESCRIPTION("Broadcom QSPI driver");
1437 MODULE_LICENSE("GPL v2");
1438 MODULE_ALIAS("platform:" DRIVER_NAME);
1439