xref: /openbmc/linux/drivers/spi/spi-bcm-qspi.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
3  *
4  * Copyright 2016 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License, version 2, as
8  * published by the Free Software Foundation (the "GPL").
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 (GPLv2) for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * version 2 (GPLv2) along with this source code.
17  */
18 
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/ioport.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/mtd/spi-nor.h>
29 #include <linux/of.h>
30 #include <linux/of_irq.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/spi/spi.h>
34 #include <linux/sysfs.h>
35 #include <linux/types.h>
36 #include "spi-bcm-qspi.h"
37 
38 #define DRIVER_NAME "bcm_qspi"
39 
40 
41 /* BSPI register offsets */
42 #define BSPI_REVISION_ID			0x000
43 #define BSPI_SCRATCH				0x004
44 #define BSPI_MAST_N_BOOT_CTRL			0x008
45 #define BSPI_BUSY_STATUS			0x00c
46 #define BSPI_INTR_STATUS			0x010
47 #define BSPI_B0_STATUS				0x014
48 #define BSPI_B0_CTRL				0x018
49 #define BSPI_B1_STATUS				0x01c
50 #define BSPI_B1_CTRL				0x020
51 #define BSPI_STRAP_OVERRIDE_CTRL		0x024
52 #define BSPI_FLEX_MODE_ENABLE			0x028
53 #define BSPI_BITS_PER_CYCLE			0x02c
54 #define BSPI_BITS_PER_PHASE			0x030
55 #define BSPI_CMD_AND_MODE_BYTE			0x034
56 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE	0x038
57 #define BSPI_BSPI_XOR_VALUE			0x03c
58 #define BSPI_BSPI_XOR_ENABLE			0x040
59 #define BSPI_BSPI_PIO_MODE_ENABLE		0x044
60 #define BSPI_BSPI_PIO_IODIR			0x048
61 #define BSPI_BSPI_PIO_DATA			0x04c
62 
63 /* RAF register offsets */
64 #define BSPI_RAF_START_ADDR			0x100
65 #define BSPI_RAF_NUM_WORDS			0x104
66 #define BSPI_RAF_CTRL				0x108
67 #define BSPI_RAF_FULLNESS			0x10c
68 #define BSPI_RAF_WATERMARK			0x110
69 #define BSPI_RAF_STATUS			0x114
70 #define BSPI_RAF_READ_DATA			0x118
71 #define BSPI_RAF_WORD_CNT			0x11c
72 #define BSPI_RAF_CURR_ADDR			0x120
73 
74 /* Override mode masks */
75 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE	BIT(0)
76 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL	BIT(1)
77 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE	BIT(2)
78 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD	BIT(3)
79 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE	BIT(4)
80 
81 #define BSPI_ADDRLEN_3BYTES			3
82 #define BSPI_ADDRLEN_4BYTES			4
83 
84 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK	BIT(1)
85 
86 #define BSPI_RAF_CTRL_START_MASK		BIT(0)
87 #define BSPI_RAF_CTRL_CLEAR_MASK		BIT(1)
88 
89 #define BSPI_BPP_MODE_SELECT_MASK		BIT(8)
90 #define BSPI_BPP_ADDR_SELECT_MASK		BIT(16)
91 
92 #define BSPI_READ_LENGTH			256
93 
94 /* MSPI register offsets */
95 #define MSPI_SPCR0_LSB				0x000
96 #define MSPI_SPCR0_MSB				0x004
97 #define MSPI_SPCR1_LSB				0x008
98 #define MSPI_SPCR1_MSB				0x00c
99 #define MSPI_NEWQP				0x010
100 #define MSPI_ENDQP				0x014
101 #define MSPI_SPCR2				0x018
102 #define MSPI_MSPI_STATUS			0x020
103 #define MSPI_CPTQP				0x024
104 #define MSPI_SPCR3				0x028
105 #define MSPI_TXRAM				0x040
106 #define MSPI_RXRAM				0x0c0
107 #define MSPI_CDRAM				0x140
108 #define MSPI_WRITE_LOCK			0x180
109 
110 #define MSPI_MASTER_BIT			BIT(7)
111 
112 #define MSPI_NUM_CDRAM				16
113 #define MSPI_CDRAM_CONT_BIT			BIT(7)
114 #define MSPI_CDRAM_BITSE_BIT			BIT(6)
115 #define MSPI_CDRAM_PCS				0xf
116 
117 #define MSPI_SPCR2_SPE				BIT(6)
118 #define MSPI_SPCR2_CONT_AFTER_CMD		BIT(7)
119 
120 #define MSPI_MSPI_STATUS_SPIF			BIT(0)
121 
122 #define INTR_BASE_BIT_SHIFT			0x02
123 #define INTR_COUNT				0x07
124 
125 #define NUM_CHIPSELECT				4
126 #define QSPI_SPBR_MIN				8U
127 #define QSPI_SPBR_MAX				255U
128 
129 #define OPCODE_DIOR				0xBB
130 #define OPCODE_QIOR				0xEB
131 #define OPCODE_DIOR_4B				0xBC
132 #define OPCODE_QIOR_4B				0xEC
133 
134 #define MAX_CMD_SIZE				6
135 
136 #define ADDR_4MB_MASK				GENMASK(22, 0)
137 
138 /* stop at end of transfer, no other reason */
139 #define TRANS_STATUS_BREAK_NONE		0
140 /* stop at end of spi_message */
141 #define TRANS_STATUS_BREAK_EOM			1
142 /* stop at end of spi_transfer if delay */
143 #define TRANS_STATUS_BREAK_DELAY		2
144 /* stop at end of spi_transfer if cs_change */
145 #define TRANS_STATUS_BREAK_CS_CHANGE		4
146 /* stop if we run out of bytes */
147 #define TRANS_STATUS_BREAK_NO_BYTES		8
148 
149 /* events that make us stop filling TX slots */
150 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |		\
151 			       TRANS_STATUS_BREAK_DELAY |		\
152 			       TRANS_STATUS_BREAK_CS_CHANGE)
153 
154 /* events that make us deassert CS */
155 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |		\
156 				     TRANS_STATUS_BREAK_CS_CHANGE)
157 
158 struct bcm_qspi_parms {
159 	u32 speed_hz;
160 	u8 mode;
161 	u8 bits_per_word;
162 };
163 
164 struct bcm_xfer_mode {
165 	bool flex_mode;
166 	unsigned int width;
167 	unsigned int addrlen;
168 	unsigned int hp;
169 };
170 
171 enum base_type {
172 	MSPI,
173 	BSPI,
174 	CHIP_SELECT,
175 	BASEMAX,
176 };
177 
178 enum irq_source {
179 	SINGLE_L2,
180 	MUXED_L1,
181 };
182 
183 struct bcm_qspi_irq {
184 	const char *irq_name;
185 	const irq_handler_t irq_handler;
186 	int irq_source;
187 	u32 mask;
188 };
189 
190 struct bcm_qspi_dev_id {
191 	const struct bcm_qspi_irq *irqp;
192 	void *dev;
193 };
194 
195 struct qspi_trans {
196 	struct spi_transfer *trans;
197 	int byte;
198 };
199 
200 struct bcm_qspi {
201 	struct platform_device *pdev;
202 	struct spi_master *master;
203 	struct clk *clk;
204 	u32 base_clk;
205 	u32 max_speed_hz;
206 	void __iomem *base[BASEMAX];
207 
208 	/* Some SoCs provide custom interrupt status register(s) */
209 	struct bcm_qspi_soc_intc	*soc_intc;
210 
211 	struct bcm_qspi_parms last_parms;
212 	struct qspi_trans  trans_pos;
213 	int curr_cs;
214 	int bspi_maj_rev;
215 	int bspi_min_rev;
216 	int bspi_enabled;
217 	struct spi_flash_read_message *bspi_rf_msg;
218 	u32 bspi_rf_msg_idx;
219 	u32 bspi_rf_msg_len;
220 	u32 bspi_rf_msg_status;
221 	struct bcm_xfer_mode xfer_mode;
222 	u32 s3_strap_override_ctrl;
223 	bool bspi_mode;
224 	bool big_endian;
225 	int num_irqs;
226 	struct bcm_qspi_dev_id *dev_ids;
227 	struct completion mspi_done;
228 	struct completion bspi_done;
229 };
230 
231 static inline bool has_bspi(struct bcm_qspi *qspi)
232 {
233 	return qspi->bspi_mode;
234 }
235 
236 /* Read qspi controller register*/
237 static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
238 				unsigned int offset)
239 {
240 	return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
241 }
242 
243 /* Write qspi controller register*/
244 static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
245 				  unsigned int offset, unsigned int data)
246 {
247 	bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
248 }
249 
250 /* BSPI helpers */
251 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
252 {
253 	int i;
254 
255 	/* this should normally finish within 10us */
256 	for (i = 0; i < 1000; i++) {
257 		if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
258 			return 0;
259 		udelay(1);
260 	}
261 	dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
262 	return -EIO;
263 }
264 
265 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
266 {
267 	if (qspi->bspi_maj_rev < 4)
268 		return true;
269 	return false;
270 }
271 
272 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
273 {
274 	bcm_qspi_bspi_busy_poll(qspi);
275 	/* Force rising edge for the b0/b1 'flush' field */
276 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
277 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
278 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
279 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
280 }
281 
282 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
283 {
284 	return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
285 				BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
286 }
287 
288 static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
289 {
290 	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
291 
292 	/* BSPI v3 LR is LE only, convert data to host endianness */
293 	if (bcm_qspi_bspi_ver_three(qspi))
294 		data = le32_to_cpu(data);
295 
296 	return data;
297 }
298 
299 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
300 {
301 	bcm_qspi_bspi_busy_poll(qspi);
302 	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
303 		       BSPI_RAF_CTRL_START_MASK);
304 }
305 
306 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
307 {
308 	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
309 		       BSPI_RAF_CTRL_CLEAR_MASK);
310 	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
311 }
312 
313 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
314 {
315 	u32 *buf = (u32 *)qspi->bspi_rf_msg->buf;
316 	u32 data = 0;
317 
318 	dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_msg,
319 		qspi->bspi_rf_msg->buf, qspi->bspi_rf_msg_len);
320 	while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
321 		data = bcm_qspi_bspi_lr_read_fifo(qspi);
322 		if (likely(qspi->bspi_rf_msg_len >= 4) &&
323 		    IS_ALIGNED((uintptr_t)buf, 4)) {
324 			buf[qspi->bspi_rf_msg_idx++] = data;
325 			qspi->bspi_rf_msg_len -= 4;
326 		} else {
327 			/* Read out remaining bytes, make sure*/
328 			u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_msg_idx];
329 
330 			data = cpu_to_le32(data);
331 			while (qspi->bspi_rf_msg_len) {
332 				*cbuf++ = (u8)data;
333 				data >>= 8;
334 				qspi->bspi_rf_msg_len--;
335 			}
336 		}
337 	}
338 }
339 
340 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
341 					  int bpp, int bpc, int flex_mode)
342 {
343 	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
344 	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
345 	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
346 	bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
347 	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
348 }
349 
350 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi, int width,
351 				       int addrlen, int hp)
352 {
353 	int bpc = 0, bpp = 0;
354 	u8 command = SPINOR_OP_READ_FAST;
355 	int flex_mode = 1, rv = 0;
356 	bool spans_4byte = false;
357 
358 	dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
359 		width, addrlen, hp);
360 
361 	if (addrlen == BSPI_ADDRLEN_4BYTES) {
362 		bpp = BSPI_BPP_ADDR_SELECT_MASK;
363 		spans_4byte = true;
364 	}
365 
366 	bpp |= 8;
367 
368 	switch (width) {
369 	case SPI_NBITS_SINGLE:
370 		if (addrlen == BSPI_ADDRLEN_3BYTES)
371 			/* default mode, does not need flex_cmd */
372 			flex_mode = 0;
373 		else
374 			command = SPINOR_OP_READ4_FAST;
375 		break;
376 	case SPI_NBITS_DUAL:
377 		bpc = 0x00000001;
378 		if (hp) {
379 			bpc |= 0x00010100; /* address and mode are 2-bit */
380 			bpp = BSPI_BPP_MODE_SELECT_MASK;
381 			command = OPCODE_DIOR;
382 			if (spans_4byte)
383 				command = OPCODE_DIOR_4B;
384 		} else {
385 			command = SPINOR_OP_READ_1_1_2;
386 			if (spans_4byte)
387 				command = SPINOR_OP_READ4_1_1_2;
388 		}
389 		break;
390 	case SPI_NBITS_QUAD:
391 		bpc = 0x00000002;
392 		if (hp) {
393 			bpc |= 0x00020200; /* address and mode are 4-bit */
394 			bpp = 4; /* dummy cycles */
395 			bpp |= BSPI_BPP_ADDR_SELECT_MASK;
396 			command = OPCODE_QIOR;
397 			if (spans_4byte)
398 				command = OPCODE_QIOR_4B;
399 		} else {
400 			command = SPINOR_OP_READ_1_1_4;
401 			if (spans_4byte)
402 				command = SPINOR_OP_READ4_1_1_4;
403 		}
404 		break;
405 	default:
406 		rv = -EINVAL;
407 		break;
408 	}
409 
410 	if (rv == 0)
411 		bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc,
412 					      flex_mode);
413 
414 	return rv;
415 }
416 
417 static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi, int width,
418 				      int addrlen, int hp)
419 {
420 	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
421 
422 	dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
423 		width, addrlen, hp);
424 
425 	switch (width) {
426 	case SPI_NBITS_SINGLE:
427 		/* clear quad/dual mode */
428 		data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
429 			  BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
430 		break;
431 
432 	case SPI_NBITS_QUAD:
433 		/* clear dual mode and set quad mode */
434 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
435 		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
436 		break;
437 	case SPI_NBITS_DUAL:
438 		/* clear quad mode set dual mode */
439 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
440 		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
441 		break;
442 	default:
443 		return -EINVAL;
444 	}
445 
446 	if (addrlen == BSPI_ADDRLEN_4BYTES)
447 		/* set 4byte mode*/
448 		data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
449 	else
450 		/* clear 4 byte mode */
451 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
452 
453 	/* set the override mode */
454 	data |=	BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
455 	bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
456 	bcm_qspi_bspi_set_xfer_params(qspi, SPINOR_OP_READ_FAST, 0, 0, 0);
457 
458 	return 0;
459 }
460 
461 static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
462 				  int width, int addrlen, int hp)
463 {
464 	int error = 0;
465 
466 	/* default mode */
467 	qspi->xfer_mode.flex_mode = true;
468 
469 	if (!bcm_qspi_bspi_ver_three(qspi)) {
470 		u32 val, mask;
471 
472 		val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
473 		mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
474 		if (val & mask || qspi->s3_strap_override_ctrl & mask) {
475 			qspi->xfer_mode.flex_mode = false;
476 			bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE,
477 				       0);
478 
479 			if ((val | qspi->s3_strap_override_ctrl) &
480 			    BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL)
481 				width = SPI_NBITS_DUAL;
482 			else if ((val |  qspi->s3_strap_override_ctrl) &
483 				 BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD)
484 				width = SPI_NBITS_QUAD;
485 
486 			error = bcm_qspi_bspi_set_override(qspi, width, addrlen,
487 							   hp);
488 		}
489 	}
490 
491 	if (qspi->xfer_mode.flex_mode)
492 		error = bcm_qspi_bspi_set_flex_mode(qspi, width, addrlen, hp);
493 
494 	if (error) {
495 		dev_warn(&qspi->pdev->dev,
496 			 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
497 			 width, addrlen, hp);
498 	} else if (qspi->xfer_mode.width != width ||
499 		   qspi->xfer_mode.addrlen != addrlen ||
500 		   qspi->xfer_mode.hp != hp) {
501 		qspi->xfer_mode.width = width;
502 		qspi->xfer_mode.addrlen = addrlen;
503 		qspi->xfer_mode.hp = hp;
504 		dev_dbg(&qspi->pdev->dev,
505 			"cs:%d %d-lane output, %d-byte address%s\n",
506 			qspi->curr_cs,
507 			qspi->xfer_mode.width,
508 			qspi->xfer_mode.addrlen,
509 			qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
510 	}
511 
512 	return error;
513 }
514 
515 static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
516 {
517 	if (!has_bspi(qspi) || (qspi->bspi_enabled))
518 		return;
519 
520 	qspi->bspi_enabled = 1;
521 	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
522 		return;
523 
524 	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
525 	udelay(1);
526 	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
527 	udelay(1);
528 }
529 
530 static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
531 {
532 	if (!has_bspi(qspi) || (!qspi->bspi_enabled))
533 		return;
534 
535 	qspi->bspi_enabled = 0;
536 	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
537 		return;
538 
539 	bcm_qspi_bspi_busy_poll(qspi);
540 	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
541 	udelay(1);
542 }
543 
544 static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
545 {
546 	u32 data = 0;
547 
548 	if (qspi->curr_cs == cs)
549 		return;
550 	if (qspi->base[CHIP_SELECT]) {
551 		data = bcm_qspi_read(qspi, CHIP_SELECT, 0);
552 		data = (data & ~0xff) | (1 << cs);
553 		bcm_qspi_write(qspi, CHIP_SELECT, 0, data);
554 		usleep_range(10, 20);
555 	}
556 	qspi->curr_cs = cs;
557 }
558 
559 /* MSPI helpers */
560 static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
561 				  const struct bcm_qspi_parms *xp)
562 {
563 	u32 spcr, spbr = 0;
564 
565 	if (xp->speed_hz)
566 		spbr = qspi->base_clk / (2 * xp->speed_hz);
567 
568 	spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
569 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
570 
571 	spcr = MSPI_MASTER_BIT;
572 	/* for 16 bit the data should be zero */
573 	if (xp->bits_per_word != 16)
574 		spcr |= xp->bits_per_word << 2;
575 	spcr |= xp->mode & 3;
576 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
577 
578 	qspi->last_parms = *xp;
579 }
580 
581 static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
582 				  struct spi_device *spi,
583 				  struct spi_transfer *trans)
584 {
585 	struct bcm_qspi_parms xp;
586 
587 	xp.speed_hz = trans->speed_hz;
588 	xp.bits_per_word = trans->bits_per_word;
589 	xp.mode = spi->mode;
590 
591 	bcm_qspi_hw_set_parms(qspi, &xp);
592 }
593 
594 static int bcm_qspi_setup(struct spi_device *spi)
595 {
596 	struct bcm_qspi_parms *xp;
597 
598 	if (spi->bits_per_word > 16)
599 		return -EINVAL;
600 
601 	xp = spi_get_ctldata(spi);
602 	if (!xp) {
603 		xp = kzalloc(sizeof(*xp), GFP_KERNEL);
604 		if (!xp)
605 			return -ENOMEM;
606 		spi_set_ctldata(spi, xp);
607 	}
608 	xp->speed_hz = spi->max_speed_hz;
609 	xp->mode = spi->mode;
610 
611 	if (spi->bits_per_word)
612 		xp->bits_per_word = spi->bits_per_word;
613 	else
614 		xp->bits_per_word = 8;
615 
616 	return 0;
617 }
618 
619 static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
620 					struct qspi_trans *qt, int flags)
621 {
622 	int ret = TRANS_STATUS_BREAK_NONE;
623 
624 	/* count the last transferred bytes */
625 	if (qt->trans->bits_per_word <= 8)
626 		qt->byte++;
627 	else
628 		qt->byte += 2;
629 
630 	if (qt->byte >= qt->trans->len) {
631 		/* we're at the end of the spi_transfer */
632 
633 		/* in TX mode, need to pause for a delay or CS change */
634 		if (qt->trans->delay_usecs &&
635 		    (flags & TRANS_STATUS_BREAK_DELAY))
636 			ret |= TRANS_STATUS_BREAK_DELAY;
637 		if (qt->trans->cs_change &&
638 		    (flags & TRANS_STATUS_BREAK_CS_CHANGE))
639 			ret |= TRANS_STATUS_BREAK_CS_CHANGE;
640 		if (ret)
641 			goto done;
642 
643 		dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
644 		if (spi_transfer_is_last(qspi->master, qt->trans))
645 			ret = TRANS_STATUS_BREAK_EOM;
646 		else
647 			ret = TRANS_STATUS_BREAK_NO_BYTES;
648 
649 		qt->trans = NULL;
650 	}
651 
652 done:
653 	dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
654 		qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
655 	return ret;
656 }
657 
658 static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
659 {
660 	u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
661 
662 	/* mask out reserved bits */
663 	return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
664 }
665 
666 static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
667 {
668 	u32 reg_offset = MSPI_RXRAM;
669 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
670 	u32 msb_offset = reg_offset + (slot << 3);
671 
672 	return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
673 		((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
674 }
675 
676 static void read_from_hw(struct bcm_qspi *qspi, int slots)
677 {
678 	struct qspi_trans tp;
679 	int slot;
680 
681 	bcm_qspi_disable_bspi(qspi);
682 
683 	if (slots > MSPI_NUM_CDRAM) {
684 		/* should never happen */
685 		dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
686 		return;
687 	}
688 
689 	tp = qspi->trans_pos;
690 
691 	for (slot = 0; slot < slots; slot++) {
692 		if (tp.trans->bits_per_word <= 8) {
693 			u8 *buf = tp.trans->rx_buf;
694 
695 			if (buf)
696 				buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
697 			dev_dbg(&qspi->pdev->dev, "RD %02x\n",
698 				buf ? buf[tp.byte] : 0xff);
699 		} else {
700 			u16 *buf = tp.trans->rx_buf;
701 
702 			if (buf)
703 				buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
704 								      slot);
705 			dev_dbg(&qspi->pdev->dev, "RD %04x\n",
706 				buf ? buf[tp.byte] : 0xffff);
707 		}
708 
709 		update_qspi_trans_byte_count(qspi, &tp,
710 					     TRANS_STATUS_BREAK_NONE);
711 	}
712 
713 	qspi->trans_pos = tp;
714 }
715 
716 static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
717 				       u8 val)
718 {
719 	u32 reg_offset = MSPI_TXRAM + (slot << 3);
720 
721 	/* mask out reserved bits */
722 	bcm_qspi_write(qspi, MSPI, reg_offset, val);
723 }
724 
725 static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
726 					u16 val)
727 {
728 	u32 reg_offset = MSPI_TXRAM;
729 	u32 msb_offset = reg_offset + (slot << 3);
730 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
731 
732 	bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
733 	bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
734 }
735 
736 static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
737 {
738 	return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
739 }
740 
741 static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
742 {
743 	bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
744 }
745 
746 /* Return number of slots written */
747 static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
748 {
749 	struct qspi_trans tp;
750 	int slot = 0, tstatus = 0;
751 	u32 mspi_cdram = 0;
752 
753 	bcm_qspi_disable_bspi(qspi);
754 	tp = qspi->trans_pos;
755 	bcm_qspi_update_parms(qspi, spi, tp.trans);
756 
757 	/* Run until end of transfer or reached the max data */
758 	while (!tstatus && slot < MSPI_NUM_CDRAM) {
759 		if (tp.trans->bits_per_word <= 8) {
760 			const u8 *buf = tp.trans->tx_buf;
761 			u8 val = buf ? buf[tp.byte] : 0xff;
762 
763 			write_txram_slot_u8(qspi, slot, val);
764 			dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
765 		} else {
766 			const u16 *buf = tp.trans->tx_buf;
767 			u16 val = buf ? buf[tp.byte / 2] : 0xffff;
768 
769 			write_txram_slot_u16(qspi, slot, val);
770 			dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
771 		}
772 		mspi_cdram = MSPI_CDRAM_CONT_BIT;
773 		mspi_cdram |= (~(1 << spi->chip_select) &
774 			       MSPI_CDRAM_PCS);
775 		mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
776 				MSPI_CDRAM_BITSE_BIT);
777 
778 		write_cdram_slot(qspi, slot, mspi_cdram);
779 
780 		tstatus = update_qspi_trans_byte_count(qspi, &tp,
781 						       TRANS_STATUS_BREAK_TX);
782 		slot++;
783 	}
784 
785 	if (!slot) {
786 		dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
787 		goto done;
788 	}
789 
790 	dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
791 	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
792 	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
793 
794 	if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
795 		mspi_cdram = read_cdram_slot(qspi, slot - 1) &
796 			~MSPI_CDRAM_CONT_BIT;
797 		write_cdram_slot(qspi, slot - 1, mspi_cdram);
798 	}
799 
800 	if (has_bspi(qspi))
801 		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
802 
803 	/* Must flush previous writes before starting MSPI operation */
804 	mb();
805 	/* Set cont | spe | spifie */
806 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
807 
808 done:
809 	return slot;
810 }
811 
812 static int bcm_qspi_bspi_flash_read(struct spi_device *spi,
813 				    struct spi_flash_read_message *msg)
814 {
815 	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
816 	u32 addr = 0, len, len_words;
817 	int ret = 0;
818 	unsigned long timeo = msecs_to_jiffies(100);
819 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
820 
821 	if (bcm_qspi_bspi_ver_three(qspi))
822 		if (msg->addr_width == BSPI_ADDRLEN_4BYTES)
823 			return -EIO;
824 
825 	bcm_qspi_chip_select(qspi, spi->chip_select);
826 	bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
827 
828 	/*
829 	 * when using flex mode mode we need to send
830 	 * the upper address byte to bspi
831 	 */
832 	if (bcm_qspi_bspi_ver_three(qspi) == false) {
833 		addr = msg->from & 0xff000000;
834 		bcm_qspi_write(qspi, BSPI,
835 			       BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
836 	}
837 
838 	if (!qspi->xfer_mode.flex_mode)
839 		addr = msg->from;
840 	else
841 		addr = msg->from & 0x00ffffff;
842 
843 	/* set BSPI RAF buffer max read length */
844 	len = msg->len;
845 	if (len > BSPI_READ_LENGTH)
846 		len = BSPI_READ_LENGTH;
847 
848 	if (bcm_qspi_bspi_ver_three(qspi) == true)
849 		addr = (addr + 0xc00000) & 0xffffff;
850 
851 	reinit_completion(&qspi->bspi_done);
852 	bcm_qspi_enable_bspi(qspi);
853 	len_words = (len + 3) >> 2;
854 	qspi->bspi_rf_msg = msg;
855 	qspi->bspi_rf_msg_status = 0;
856 	qspi->bspi_rf_msg_idx = 0;
857 	qspi->bspi_rf_msg_len = len;
858 	dev_dbg(&qspi->pdev->dev, "bspi xfr addr 0x%x len 0x%x", addr, len);
859 
860 	bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
861 	bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
862 	bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
863 
864 	if (qspi->soc_intc) {
865 		/*
866 		 * clear soc MSPI and BSPI interrupts and enable
867 		 * BSPI interrupts.
868 		 */
869 		soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
870 		soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
871 	}
872 
873 	/* Must flush previous writes before starting BSPI operation */
874 	mb();
875 
876 	bcm_qspi_bspi_lr_start(qspi);
877 	if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
878 		dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
879 		ret = -ETIMEDOUT;
880 	} else {
881 		/* set the return length for the caller */
882 		msg->retlen = len;
883 	}
884 
885 	return ret;
886 }
887 
888 static int bcm_qspi_flash_read(struct spi_device *spi,
889 			       struct spi_flash_read_message *msg)
890 {
891 	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
892 	int ret = 0;
893 	bool mspi_read = false;
894 	u32 io_width, addrlen, addr, len;
895 	u_char *buf;
896 
897 	buf = msg->buf;
898 	addr = msg->from;
899 	len = msg->len;
900 
901 	if (bcm_qspi_bspi_ver_three(qspi) == true) {
902 		/*
903 		 * The address coming into this function is a raw flash offset.
904 		 * But for BSPI <= V3, we need to convert it to a remapped BSPI
905 		 * address. If it crosses a 4MB boundary, just revert back to
906 		 * using MSPI.
907 		 */
908 		addr = (addr + 0xc00000) & 0xffffff;
909 
910 		if ((~ADDR_4MB_MASK & addr) ^
911 		    (~ADDR_4MB_MASK & (addr + len - 1)))
912 			mspi_read = true;
913 	}
914 
915 	/* non-aligned and very short transfers are handled by MSPI */
916 	if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
917 	    len < 4)
918 		mspi_read = true;
919 
920 	if (mspi_read)
921 		/* this will make the m25p80 read to fallback to mspi read */
922 		return -EAGAIN;
923 
924 	io_width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
925 	addrlen = msg->addr_width;
926 	ret = bcm_qspi_bspi_set_mode(qspi, io_width, addrlen, -1);
927 
928 	if (!ret)
929 		ret = bcm_qspi_bspi_flash_read(spi, msg);
930 
931 	return ret;
932 }
933 
934 static int bcm_qspi_transfer_one(struct spi_master *master,
935 				 struct spi_device *spi,
936 				 struct spi_transfer *trans)
937 {
938 	struct bcm_qspi *qspi = spi_master_get_devdata(master);
939 	int slots;
940 	unsigned long timeo = msecs_to_jiffies(100);
941 
942 	bcm_qspi_chip_select(qspi, spi->chip_select);
943 	qspi->trans_pos.trans = trans;
944 	qspi->trans_pos.byte = 0;
945 
946 	while (qspi->trans_pos.byte < trans->len) {
947 		reinit_completion(&qspi->mspi_done);
948 
949 		slots = write_to_hw(qspi, spi);
950 		if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
951 			dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
952 			return -ETIMEDOUT;
953 		}
954 
955 		read_from_hw(qspi, slots);
956 	}
957 
958 	return 0;
959 }
960 
961 static void bcm_qspi_cleanup(struct spi_device *spi)
962 {
963 	struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
964 
965 	kfree(xp);
966 }
967 
968 static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
969 {
970 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
971 	struct bcm_qspi *qspi = qspi_dev_id->dev;
972 	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
973 
974 	if (status & MSPI_MSPI_STATUS_SPIF) {
975 		struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
976 		/* clear interrupt */
977 		status &= ~MSPI_MSPI_STATUS_SPIF;
978 		bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
979 		if (qspi->soc_intc)
980 			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
981 		complete(&qspi->mspi_done);
982 		return IRQ_HANDLED;
983 	}
984 
985 	return IRQ_NONE;
986 }
987 
988 static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
989 {
990 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
991 	struct bcm_qspi *qspi = qspi_dev_id->dev;
992 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
993 	u32 status = qspi_dev_id->irqp->mask;
994 
995 	if (qspi->bspi_enabled && qspi->bspi_rf_msg) {
996 		bcm_qspi_bspi_lr_data_read(qspi);
997 		if (qspi->bspi_rf_msg_len == 0) {
998 			qspi->bspi_rf_msg = NULL;
999 			if (qspi->soc_intc) {
1000 				/* disable soc BSPI interrupt */
1001 				soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1002 							   false);
1003 				/* indicate done */
1004 				status = INTR_BSPI_LR_SESSION_DONE_MASK;
1005 			}
1006 
1007 			if (qspi->bspi_rf_msg_status)
1008 				bcm_qspi_bspi_lr_clear(qspi);
1009 			else
1010 				bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1011 		}
1012 
1013 		if (qspi->soc_intc)
1014 			/* clear soc BSPI interrupt */
1015 			soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1016 	}
1017 
1018 	status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1019 	if (qspi->bspi_enabled && status && qspi->bspi_rf_msg_len == 0)
1020 		complete(&qspi->bspi_done);
1021 
1022 	return IRQ_HANDLED;
1023 }
1024 
1025 static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1026 {
1027 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1028 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1029 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1030 
1031 	dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1032 	qspi->bspi_rf_msg_status = -EIO;
1033 	if (qspi->soc_intc)
1034 		/* clear soc interrupt */
1035 		soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1036 
1037 	complete(&qspi->bspi_done);
1038 	return IRQ_HANDLED;
1039 }
1040 
1041 static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1042 {
1043 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1044 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1045 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1046 	irqreturn_t ret = IRQ_NONE;
1047 
1048 	if (soc_intc) {
1049 		u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1050 
1051 		if (status & MSPI_DONE)
1052 			ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1053 		else if (status & BSPI_DONE)
1054 			ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1055 		else if (status & BSPI_ERR)
1056 			ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1057 	}
1058 
1059 	return ret;
1060 }
1061 
1062 static const struct bcm_qspi_irq qspi_irq_tab[] = {
1063 	{
1064 		.irq_name = "spi_lr_fullness_reached",
1065 		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1066 		.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1067 	},
1068 	{
1069 		.irq_name = "spi_lr_session_aborted",
1070 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1071 		.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1072 	},
1073 	{
1074 		.irq_name = "spi_lr_impatient",
1075 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1076 		.mask = INTR_BSPI_LR_IMPATIENT_MASK,
1077 	},
1078 	{
1079 		.irq_name = "spi_lr_session_done",
1080 		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1081 		.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1082 	},
1083 #ifdef QSPI_INT_DEBUG
1084 	/* this interrupt is for debug purposes only, dont request irq */
1085 	{
1086 		.irq_name = "spi_lr_overread",
1087 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1088 		.mask = INTR_BSPI_LR_OVERREAD_MASK,
1089 	},
1090 #endif
1091 	{
1092 		.irq_name = "mspi_done",
1093 		.irq_handler = bcm_qspi_mspi_l2_isr,
1094 		.mask = INTR_MSPI_DONE_MASK,
1095 	},
1096 	{
1097 		.irq_name = "mspi_halted",
1098 		.irq_handler = bcm_qspi_mspi_l2_isr,
1099 		.mask = INTR_MSPI_HALTED_MASK,
1100 	},
1101 	{
1102 		/* single muxed L1 interrupt source */
1103 		.irq_name = "spi_l1_intr",
1104 		.irq_handler = bcm_qspi_l1_isr,
1105 		.irq_source = MUXED_L1,
1106 		.mask = QSPI_INTERRUPTS_ALL,
1107 	},
1108 };
1109 
1110 static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1111 {
1112 	u32 val = 0;
1113 
1114 	val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1115 	qspi->bspi_maj_rev = (val >> 8) & 0xff;
1116 	qspi->bspi_min_rev = val & 0xff;
1117 	if (!(bcm_qspi_bspi_ver_three(qspi))) {
1118 		/* Force mapping of BSPI address -> flash offset */
1119 		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1120 		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1121 	}
1122 	qspi->bspi_enabled = 1;
1123 	bcm_qspi_disable_bspi(qspi);
1124 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1125 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1126 }
1127 
1128 static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1129 {
1130 	struct bcm_qspi_parms parms;
1131 
1132 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1133 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1134 	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1135 	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1136 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1137 
1138 	parms.mode = SPI_MODE_3;
1139 	parms.bits_per_word = 8;
1140 	parms.speed_hz = qspi->max_speed_hz;
1141 	bcm_qspi_hw_set_parms(qspi, &parms);
1142 
1143 	if (has_bspi(qspi))
1144 		bcm_qspi_bspi_init(qspi);
1145 }
1146 
1147 static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1148 {
1149 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1150 	if (has_bspi(qspi))
1151 		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1152 
1153 }
1154 
1155 static const struct of_device_id bcm_qspi_of_match[] = {
1156 	{ .compatible = "brcm,spi-bcm-qspi" },
1157 	{},
1158 };
1159 MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1160 
1161 int bcm_qspi_probe(struct platform_device *pdev,
1162 		   struct bcm_qspi_soc_intc *soc_intc)
1163 {
1164 	struct device *dev = &pdev->dev;
1165 	struct bcm_qspi *qspi;
1166 	struct spi_master *master;
1167 	struct resource *res;
1168 	int irq, ret = 0, num_ints = 0;
1169 	u32 val;
1170 	const char *name = NULL;
1171 	int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1172 
1173 	/* We only support device-tree instantiation */
1174 	if (!dev->of_node)
1175 		return -ENODEV;
1176 
1177 	if (!of_match_node(bcm_qspi_of_match, dev->of_node))
1178 		return -ENODEV;
1179 
1180 	master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
1181 	if (!master) {
1182 		dev_err(dev, "error allocating spi_master\n");
1183 		return -ENOMEM;
1184 	}
1185 
1186 	qspi = spi_master_get_devdata(master);
1187 	qspi->pdev = pdev;
1188 	qspi->trans_pos.trans = NULL;
1189 	qspi->trans_pos.byte = 0;
1190 	qspi->master = master;
1191 
1192 	master->bus_num = -1;
1193 	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
1194 	master->setup = bcm_qspi_setup;
1195 	master->transfer_one = bcm_qspi_transfer_one;
1196 	master->spi_flash_read = bcm_qspi_flash_read;
1197 	master->cleanup = bcm_qspi_cleanup;
1198 	master->dev.of_node = dev->of_node;
1199 	master->num_chipselect = NUM_CHIPSELECT;
1200 
1201 	qspi->big_endian = of_device_is_big_endian(dev->of_node);
1202 
1203 	if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1204 		master->num_chipselect = val;
1205 
1206 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1207 	if (!res)
1208 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1209 						   "mspi");
1210 
1211 	if (res) {
1212 		qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1213 		if (IS_ERR(qspi->base[MSPI])) {
1214 			ret = PTR_ERR(qspi->base[MSPI]);
1215 			goto qspi_probe_err;
1216 		}
1217 	} else {
1218 		goto qspi_probe_err;
1219 	}
1220 
1221 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1222 	if (res) {
1223 		qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1224 		if (IS_ERR(qspi->base[BSPI])) {
1225 			ret = PTR_ERR(qspi->base[BSPI]);
1226 			goto qspi_probe_err;
1227 		}
1228 		qspi->bspi_mode = true;
1229 	} else {
1230 		qspi->bspi_mode = false;
1231 	}
1232 
1233 	dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1234 
1235 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1236 	if (res) {
1237 		qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1238 		if (IS_ERR(qspi->base[CHIP_SELECT])) {
1239 			ret = PTR_ERR(qspi->base[CHIP_SELECT]);
1240 			goto qspi_probe_err;
1241 		}
1242 	}
1243 
1244 	qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1245 				GFP_KERNEL);
1246 	if (!qspi->dev_ids) {
1247 		ret = -ENOMEM;
1248 		goto qspi_probe_err;
1249 	}
1250 
1251 	for (val = 0; val < num_irqs; val++) {
1252 		irq = -1;
1253 		name = qspi_irq_tab[val].irq_name;
1254 		if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1255 			/* get the l2 interrupts */
1256 			irq = platform_get_irq_byname(pdev, name);
1257 		} else if (!num_ints && soc_intc) {
1258 			/* all mspi, bspi intrs muxed to one L1 intr */
1259 			irq = platform_get_irq(pdev, 0);
1260 		}
1261 
1262 		if (irq  >= 0) {
1263 			ret = devm_request_irq(&pdev->dev, irq,
1264 					       qspi_irq_tab[val].irq_handler, 0,
1265 					       name,
1266 					       &qspi->dev_ids[val]);
1267 			if (ret < 0) {
1268 				dev_err(&pdev->dev, "IRQ %s not found\n", name);
1269 				goto qspi_probe_err;
1270 			}
1271 
1272 			qspi->dev_ids[val].dev = qspi;
1273 			qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1274 			num_ints++;
1275 			dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1276 				qspi_irq_tab[val].irq_name,
1277 				irq);
1278 		}
1279 	}
1280 
1281 	if (!num_ints) {
1282 		dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1283 		ret = -EINVAL;
1284 		goto qspi_probe_err;
1285 	}
1286 
1287 	/*
1288 	 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1289 	 * in specific ways
1290 	 */
1291 	if (soc_intc) {
1292 		qspi->soc_intc = soc_intc;
1293 		soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1294 	} else {
1295 		qspi->soc_intc = NULL;
1296 	}
1297 
1298 	qspi->clk = devm_clk_get(&pdev->dev, NULL);
1299 	if (IS_ERR(qspi->clk)) {
1300 		dev_warn(dev, "unable to get clock\n");
1301 		ret = PTR_ERR(qspi->clk);
1302 		goto qspi_probe_err;
1303 	}
1304 
1305 	ret = clk_prepare_enable(qspi->clk);
1306 	if (ret) {
1307 		dev_err(dev, "failed to prepare clock\n");
1308 		goto qspi_probe_err;
1309 	}
1310 
1311 	qspi->base_clk = clk_get_rate(qspi->clk);
1312 	qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
1313 
1314 	bcm_qspi_hw_init(qspi);
1315 	init_completion(&qspi->mspi_done);
1316 	init_completion(&qspi->bspi_done);
1317 	qspi->curr_cs = -1;
1318 
1319 	platform_set_drvdata(pdev, qspi);
1320 
1321 	qspi->xfer_mode.width = -1;
1322 	qspi->xfer_mode.addrlen = -1;
1323 	qspi->xfer_mode.hp = -1;
1324 
1325 	ret = devm_spi_register_master(&pdev->dev, master);
1326 	if (ret < 0) {
1327 		dev_err(dev, "can't register master\n");
1328 		goto qspi_reg_err;
1329 	}
1330 
1331 	return 0;
1332 
1333 qspi_reg_err:
1334 	bcm_qspi_hw_uninit(qspi);
1335 	clk_disable_unprepare(qspi->clk);
1336 qspi_probe_err:
1337 	spi_master_put(master);
1338 	kfree(qspi->dev_ids);
1339 	return ret;
1340 }
1341 /* probe function to be called by SoC specific platform driver probe */
1342 EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1343 
1344 int bcm_qspi_remove(struct platform_device *pdev)
1345 {
1346 	struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1347 
1348 	platform_set_drvdata(pdev, NULL);
1349 	bcm_qspi_hw_uninit(qspi);
1350 	clk_disable_unprepare(qspi->clk);
1351 	kfree(qspi->dev_ids);
1352 	spi_unregister_master(qspi->master);
1353 
1354 	return 0;
1355 }
1356 /* function to be called by SoC specific platform driver remove() */
1357 EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1358 
1359 static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1360 {
1361 	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1362 
1363 	spi_master_suspend(qspi->master);
1364 	clk_disable(qspi->clk);
1365 	bcm_qspi_hw_uninit(qspi);
1366 
1367 	return 0;
1368 };
1369 
1370 static int __maybe_unused bcm_qspi_resume(struct device *dev)
1371 {
1372 	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1373 	int ret = 0;
1374 
1375 	bcm_qspi_hw_init(qspi);
1376 	bcm_qspi_chip_select(qspi, qspi->curr_cs);
1377 	if (qspi->soc_intc)
1378 		/* enable MSPI interrupt */
1379 		qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1380 						 true);
1381 
1382 	ret = clk_enable(qspi->clk);
1383 	if (!ret)
1384 		spi_master_resume(qspi->master);
1385 
1386 	return ret;
1387 }
1388 
1389 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1390 
1391 /* pm_ops to be called by SoC specific platform driver */
1392 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1393 
1394 MODULE_AUTHOR("Kamal Dasu");
1395 MODULE_DESCRIPTION("Broadcom QSPI driver");
1396 MODULE_LICENSE("GPL v2");
1397 MODULE_ALIAS("platform:" DRIVER_NAME);
1398