xref: /openbmc/linux/drivers/spi/spi-bcm-qspi.c (revision b92dd117)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
4  *
5  * Copyright 2016 Broadcom
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/ioport.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_irq.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/spi/spi.h>
22 #include <linux/spi/spi-mem.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 #include "spi-bcm-qspi.h"
26 
27 #define DRIVER_NAME "bcm_qspi"
28 
29 
30 /* BSPI register offsets */
31 #define BSPI_REVISION_ID			0x000
32 #define BSPI_SCRATCH				0x004
33 #define BSPI_MAST_N_BOOT_CTRL			0x008
34 #define BSPI_BUSY_STATUS			0x00c
35 #define BSPI_INTR_STATUS			0x010
36 #define BSPI_B0_STATUS				0x014
37 #define BSPI_B0_CTRL				0x018
38 #define BSPI_B1_STATUS				0x01c
39 #define BSPI_B1_CTRL				0x020
40 #define BSPI_STRAP_OVERRIDE_CTRL		0x024
41 #define BSPI_FLEX_MODE_ENABLE			0x028
42 #define BSPI_BITS_PER_CYCLE			0x02c
43 #define BSPI_BITS_PER_PHASE			0x030
44 #define BSPI_CMD_AND_MODE_BYTE			0x034
45 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE	0x038
46 #define BSPI_BSPI_XOR_VALUE			0x03c
47 #define BSPI_BSPI_XOR_ENABLE			0x040
48 #define BSPI_BSPI_PIO_MODE_ENABLE		0x044
49 #define BSPI_BSPI_PIO_IODIR			0x048
50 #define BSPI_BSPI_PIO_DATA			0x04c
51 
52 /* RAF register offsets */
53 #define BSPI_RAF_START_ADDR			0x100
54 #define BSPI_RAF_NUM_WORDS			0x104
55 #define BSPI_RAF_CTRL				0x108
56 #define BSPI_RAF_FULLNESS			0x10c
57 #define BSPI_RAF_WATERMARK			0x110
58 #define BSPI_RAF_STATUS			0x114
59 #define BSPI_RAF_READ_DATA			0x118
60 #define BSPI_RAF_WORD_CNT			0x11c
61 #define BSPI_RAF_CURR_ADDR			0x120
62 
63 /* Override mode masks */
64 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE	BIT(0)
65 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL	BIT(1)
66 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE	BIT(2)
67 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD	BIT(3)
68 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE	BIT(4)
69 
70 #define BSPI_ADDRLEN_3BYTES			3
71 #define BSPI_ADDRLEN_4BYTES			4
72 
73 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK	BIT(1)
74 
75 #define BSPI_RAF_CTRL_START_MASK		BIT(0)
76 #define BSPI_RAF_CTRL_CLEAR_MASK		BIT(1)
77 
78 #define BSPI_BPP_MODE_SELECT_MASK		BIT(8)
79 #define BSPI_BPP_ADDR_SELECT_MASK		BIT(16)
80 
81 #define BSPI_READ_LENGTH			256
82 
83 /* MSPI register offsets */
84 #define MSPI_SPCR0_LSB				0x000
85 #define MSPI_SPCR0_MSB				0x004
86 #define MSPI_SPCR0_MSB_CPHA			BIT(0)
87 #define MSPI_SPCR0_MSB_CPOL			BIT(1)
88 #define MSPI_SPCR0_MSB_BITS_SHIFT		0x2
89 #define MSPI_SPCR1_LSB				0x008
90 #define MSPI_SPCR1_MSB				0x00c
91 #define MSPI_NEWQP				0x010
92 #define MSPI_ENDQP				0x014
93 #define MSPI_SPCR2				0x018
94 #define MSPI_MSPI_STATUS			0x020
95 #define MSPI_CPTQP				0x024
96 #define MSPI_SPCR3				0x028
97 #define MSPI_REV				0x02c
98 #define MSPI_TXRAM				0x040
99 #define MSPI_RXRAM				0x0c0
100 #define MSPI_CDRAM				0x140
101 #define MSPI_WRITE_LOCK			0x180
102 
103 #define MSPI_MASTER_BIT			BIT(7)
104 
105 #define MSPI_NUM_CDRAM				16
106 #define MSPI_CDRAM_OUTP				BIT(8)
107 #define MSPI_CDRAM_CONT_BIT			BIT(7)
108 #define MSPI_CDRAM_BITSE_BIT			BIT(6)
109 #define MSPI_CDRAM_DT_BIT			BIT(5)
110 #define MSPI_CDRAM_PCS				0xf
111 
112 #define MSPI_SPCR2_SPE				BIT(6)
113 #define MSPI_SPCR2_CONT_AFTER_CMD		BIT(7)
114 
115 #define MSPI_SPCR3_FASTBR			BIT(0)
116 #define MSPI_SPCR3_FASTDT			BIT(1)
117 #define MSPI_SPCR3_SYSCLKSEL_MASK		GENMASK(11, 10)
118 #define MSPI_SPCR3_SYSCLKSEL_27			(MSPI_SPCR3_SYSCLKSEL_MASK & \
119 						 ~(BIT(10) | BIT(11)))
120 #define MSPI_SPCR3_SYSCLKSEL_108		(MSPI_SPCR3_SYSCLKSEL_MASK & \
121 						 BIT(11))
122 #define MSPI_SPCR3_TXRXDAM_MASK			GENMASK(4, 2)
123 #define MSPI_SPCR3_DAM_8BYTE			0
124 #define MSPI_SPCR3_DAM_16BYTE			(BIT(2) | BIT(4))
125 #define MSPI_SPCR3_DAM_32BYTE			(BIT(3) | BIT(5))
126 #define MSPI_SPCR3_HALFDUPLEX			BIT(6)
127 #define MSPI_SPCR3_HDOUTTYPE			BIT(7)
128 #define MSPI_SPCR3_DATA_REG_SZ			BIT(8)
129 #define MSPI_SPCR3_CPHARX			BIT(9)
130 
131 #define MSPI_MSPI_STATUS_SPIF			BIT(0)
132 
133 #define INTR_BASE_BIT_SHIFT			0x02
134 #define INTR_COUNT				0x07
135 
136 #define NUM_CHIPSELECT				4
137 #define QSPI_SPBR_MAX				255U
138 #define MSPI_BASE_FREQ				27000000UL
139 
140 #define OPCODE_DIOR				0xBB
141 #define OPCODE_QIOR				0xEB
142 #define OPCODE_DIOR_4B				0xBC
143 #define OPCODE_QIOR_4B				0xEC
144 
145 #define MAX_CMD_SIZE				6
146 
147 #define ADDR_4MB_MASK				GENMASK(22, 0)
148 
149 /* stop at end of transfer, no other reason */
150 #define TRANS_STATUS_BREAK_NONE		0
151 /* stop at end of spi_message */
152 #define TRANS_STATUS_BREAK_EOM			1
153 /* stop at end of spi_transfer if delay */
154 #define TRANS_STATUS_BREAK_DELAY		2
155 /* stop at end of spi_transfer if cs_change */
156 #define TRANS_STATUS_BREAK_CS_CHANGE		4
157 /* stop if we run out of bytes */
158 #define TRANS_STATUS_BREAK_NO_BYTES		8
159 
160 /* events that make us stop filling TX slots */
161 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |		\
162 			       TRANS_STATUS_BREAK_DELAY |		\
163 			       TRANS_STATUS_BREAK_CS_CHANGE)
164 
165 /* events that make us deassert CS */
166 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |		\
167 				     TRANS_STATUS_BREAK_CS_CHANGE)
168 
169 /*
170  * Used for writing and reading data in the right order
171  * to TXRAM and RXRAM when used as 32-bit registers respectively
172  */
173 #define swap4bytes(__val) \
174 	((((__val) >> 24) & 0x000000FF) | (((__val) >>  8) & 0x0000FF00) | \
175 	 (((__val) <<  8) & 0x00FF0000) | (((__val) << 24) & 0xFF000000))
176 
177 struct bcm_qspi_parms {
178 	u32 speed_hz;
179 	u8 mode;
180 	u8 bits_per_word;
181 };
182 
183 struct bcm_xfer_mode {
184 	bool flex_mode;
185 	unsigned int width;
186 	unsigned int addrlen;
187 	unsigned int hp;
188 };
189 
190 enum base_type {
191 	MSPI,
192 	BSPI,
193 	CHIP_SELECT,
194 	BASEMAX,
195 };
196 
197 enum irq_source {
198 	SINGLE_L2,
199 	MUXED_L1,
200 };
201 
202 struct bcm_qspi_irq {
203 	const char *irq_name;
204 	const irq_handler_t irq_handler;
205 	int irq_source;
206 	u32 mask;
207 };
208 
209 struct bcm_qspi_dev_id {
210 	const struct bcm_qspi_irq *irqp;
211 	void *dev;
212 };
213 
214 
215 struct qspi_trans {
216 	struct spi_transfer *trans;
217 	int byte;
218 	bool mspi_last_trans;
219 };
220 
221 struct bcm_qspi {
222 	struct platform_device *pdev;
223 	struct spi_master *master;
224 	struct clk *clk;
225 	u32 base_clk;
226 	u32 max_speed_hz;
227 	void __iomem *base[BASEMAX];
228 
229 	/* Some SoCs provide custom interrupt status register(s) */
230 	struct bcm_qspi_soc_intc	*soc_intc;
231 
232 	struct bcm_qspi_parms last_parms;
233 	struct qspi_trans  trans_pos;
234 	int curr_cs;
235 	int bspi_maj_rev;
236 	int bspi_min_rev;
237 	int bspi_enabled;
238 	const struct spi_mem_op *bspi_rf_op;
239 	u32 bspi_rf_op_idx;
240 	u32 bspi_rf_op_len;
241 	u32 bspi_rf_op_status;
242 	struct bcm_xfer_mode xfer_mode;
243 	u32 s3_strap_override_ctrl;
244 	bool bspi_mode;
245 	bool big_endian;
246 	int num_irqs;
247 	struct bcm_qspi_dev_id *dev_ids;
248 	struct completion mspi_done;
249 	struct completion bspi_done;
250 	u8 mspi_maj_rev;
251 	u8 mspi_min_rev;
252 	bool mspi_spcr3_sysclk;
253 };
254 
255 static inline bool has_bspi(struct bcm_qspi *qspi)
256 {
257 	return qspi->bspi_mode;
258 }
259 
260 /* hardware supports spcr3 and fast baud-rate  */
261 static inline bool bcm_qspi_has_fastbr(struct bcm_qspi *qspi)
262 {
263 	if (!has_bspi(qspi) &&
264 	    ((qspi->mspi_maj_rev >= 1) &&
265 	     (qspi->mspi_min_rev >= 5)))
266 		return true;
267 
268 	return false;
269 }
270 
271 /* hardware supports sys clk 108Mhz  */
272 static inline bool bcm_qspi_has_sysclk_108(struct bcm_qspi *qspi)
273 {
274 	if (!has_bspi(qspi) && (qspi->mspi_spcr3_sysclk ||
275 	    ((qspi->mspi_maj_rev >= 1) &&
276 	     (qspi->mspi_min_rev >= 6))))
277 		return true;
278 
279 	return false;
280 }
281 
282 static inline int bcm_qspi_spbr_min(struct bcm_qspi *qspi)
283 {
284 	if (bcm_qspi_has_fastbr(qspi))
285 		return (bcm_qspi_has_sysclk_108(qspi) ? 4 : 1);
286 	else
287 		return 8;
288 }
289 
290 static u32 bcm_qspi_calc_spbr(u32 clk_speed_hz,
291 			      const struct bcm_qspi_parms *xp)
292 {
293 	u32 spbr = 0;
294 
295 	/* SPBR = System Clock/(2 * SCK Baud Rate) */
296 	if (xp->speed_hz)
297 		spbr = clk_speed_hz / (xp->speed_hz * 2);
298 
299 	return spbr;
300 }
301 
302 /* Read qspi controller register*/
303 static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
304 				unsigned int offset)
305 {
306 	return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
307 }
308 
309 /* Write qspi controller register*/
310 static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
311 				  unsigned int offset, unsigned int data)
312 {
313 	bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
314 }
315 
316 /* BSPI helpers */
317 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
318 {
319 	int i;
320 
321 	/* this should normally finish within 10us */
322 	for (i = 0; i < 1000; i++) {
323 		if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
324 			return 0;
325 		udelay(1);
326 	}
327 	dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
328 	return -EIO;
329 }
330 
331 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
332 {
333 	if (qspi->bspi_maj_rev < 4)
334 		return true;
335 	return false;
336 }
337 
338 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
339 {
340 	bcm_qspi_bspi_busy_poll(qspi);
341 	/* Force rising edge for the b0/b1 'flush' field */
342 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
343 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
344 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
345 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
346 }
347 
348 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
349 {
350 	return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
351 				BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
352 }
353 
354 static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
355 {
356 	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
357 
358 	/* BSPI v3 LR is LE only, convert data to host endianness */
359 	if (bcm_qspi_bspi_ver_three(qspi))
360 		data = le32_to_cpu(data);
361 
362 	return data;
363 }
364 
365 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
366 {
367 	bcm_qspi_bspi_busy_poll(qspi);
368 	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
369 		       BSPI_RAF_CTRL_START_MASK);
370 }
371 
372 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
373 {
374 	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
375 		       BSPI_RAF_CTRL_CLEAR_MASK);
376 	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
377 }
378 
379 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
380 {
381 	u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
382 	u32 data = 0;
383 
384 	dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
385 		qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
386 	while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
387 		data = bcm_qspi_bspi_lr_read_fifo(qspi);
388 		if (likely(qspi->bspi_rf_op_len >= 4) &&
389 		    IS_ALIGNED((uintptr_t)buf, 4)) {
390 			buf[qspi->bspi_rf_op_idx++] = data;
391 			qspi->bspi_rf_op_len -= 4;
392 		} else {
393 			/* Read out remaining bytes, make sure*/
394 			u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
395 
396 			data = cpu_to_le32(data);
397 			while (qspi->bspi_rf_op_len) {
398 				*cbuf++ = (u8)data;
399 				data >>= 8;
400 				qspi->bspi_rf_op_len--;
401 			}
402 		}
403 	}
404 }
405 
406 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
407 					  int bpp, int bpc, int flex_mode)
408 {
409 	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
410 	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
411 	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
412 	bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
413 	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
414 }
415 
416 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
417 				       const struct spi_mem_op *op, int hp)
418 {
419 	int bpc = 0, bpp = 0;
420 	u8 command = op->cmd.opcode;
421 	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
422 	int addrlen = op->addr.nbytes;
423 	int flex_mode = 1;
424 
425 	dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
426 		width, addrlen, hp);
427 
428 	if (addrlen == BSPI_ADDRLEN_4BYTES)
429 		bpp = BSPI_BPP_ADDR_SELECT_MASK;
430 
431 	if (op->dummy.nbytes)
432 		bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
433 
434 	switch (width) {
435 	case SPI_NBITS_SINGLE:
436 		if (addrlen == BSPI_ADDRLEN_3BYTES)
437 			/* default mode, does not need flex_cmd */
438 			flex_mode = 0;
439 		break;
440 	case SPI_NBITS_DUAL:
441 		bpc = 0x00000001;
442 		if (hp) {
443 			bpc |= 0x00010100; /* address and mode are 2-bit */
444 			bpp = BSPI_BPP_MODE_SELECT_MASK;
445 		}
446 		break;
447 	case SPI_NBITS_QUAD:
448 		bpc = 0x00000002;
449 		if (hp) {
450 			bpc |= 0x00020200; /* address and mode are 4-bit */
451 			bpp |= BSPI_BPP_MODE_SELECT_MASK;
452 		}
453 		break;
454 	default:
455 		return -EINVAL;
456 	}
457 
458 	bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
459 
460 	return 0;
461 }
462 
463 static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
464 				      const struct spi_mem_op *op, int hp)
465 {
466 	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
467 	int addrlen = op->addr.nbytes;
468 	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
469 
470 	dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
471 		width, addrlen, hp);
472 
473 	switch (width) {
474 	case SPI_NBITS_SINGLE:
475 		/* clear quad/dual mode */
476 		data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
477 			  BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
478 		break;
479 	case SPI_NBITS_QUAD:
480 		/* clear dual mode and set quad mode */
481 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
482 		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
483 		break;
484 	case SPI_NBITS_DUAL:
485 		/* clear quad mode set dual mode */
486 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
487 		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
488 		break;
489 	default:
490 		return -EINVAL;
491 	}
492 
493 	if (addrlen == BSPI_ADDRLEN_4BYTES)
494 		/* set 4byte mode*/
495 		data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
496 	else
497 		/* clear 4 byte mode */
498 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
499 
500 	/* set the override mode */
501 	data |=	BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
502 	bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
503 	bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
504 
505 	return 0;
506 }
507 
508 static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
509 				  const struct spi_mem_op *op, int hp)
510 {
511 	int error = 0;
512 	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
513 	int addrlen = op->addr.nbytes;
514 
515 	/* default mode */
516 	qspi->xfer_mode.flex_mode = true;
517 
518 	if (!bcm_qspi_bspi_ver_three(qspi)) {
519 		u32 val, mask;
520 
521 		val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
522 		mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
523 		if (val & mask || qspi->s3_strap_override_ctrl & mask) {
524 			qspi->xfer_mode.flex_mode = false;
525 			bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
526 			error = bcm_qspi_bspi_set_override(qspi, op, hp);
527 		}
528 	}
529 
530 	if (qspi->xfer_mode.flex_mode)
531 		error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
532 
533 	if (error) {
534 		dev_warn(&qspi->pdev->dev,
535 			 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
536 			 width, addrlen, hp);
537 	} else if (qspi->xfer_mode.width != width ||
538 		   qspi->xfer_mode.addrlen != addrlen ||
539 		   qspi->xfer_mode.hp != hp) {
540 		qspi->xfer_mode.width = width;
541 		qspi->xfer_mode.addrlen = addrlen;
542 		qspi->xfer_mode.hp = hp;
543 		dev_dbg(&qspi->pdev->dev,
544 			"cs:%d %d-lane output, %d-byte address%s\n",
545 			qspi->curr_cs,
546 			qspi->xfer_mode.width,
547 			qspi->xfer_mode.addrlen,
548 			qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
549 	}
550 
551 	return error;
552 }
553 
554 static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
555 {
556 	if (!has_bspi(qspi))
557 		return;
558 
559 	qspi->bspi_enabled = 1;
560 	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
561 		return;
562 
563 	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
564 	udelay(1);
565 	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
566 	udelay(1);
567 }
568 
569 static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
570 {
571 	if (!has_bspi(qspi))
572 		return;
573 
574 	qspi->bspi_enabled = 0;
575 	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
576 		return;
577 
578 	bcm_qspi_bspi_busy_poll(qspi);
579 	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
580 	udelay(1);
581 }
582 
583 static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
584 {
585 	u32 rd = 0;
586 	u32 wr = 0;
587 
588 	if (cs >= 0 && qspi->base[CHIP_SELECT]) {
589 		rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
590 		wr = (rd & ~0xff) | (1 << cs);
591 		if (rd == wr)
592 			return;
593 		bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
594 		usleep_range(10, 20);
595 	}
596 
597 	dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
598 	qspi->curr_cs = cs;
599 }
600 
601 static bool bcmspi_parms_did_change(const struct bcm_qspi_parms * const cur,
602 				    const struct bcm_qspi_parms * const prev)
603 {
604 	return (cur->speed_hz != prev->speed_hz) ||
605 		(cur->mode != prev->mode) ||
606 		(cur->bits_per_word != prev->bits_per_word);
607 }
608 
609 
610 /* MSPI helpers */
611 static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
612 				  const struct bcm_qspi_parms *xp)
613 {
614 	u32 spcr, spbr = 0;
615 
616 	if (!bcmspi_parms_did_change(xp, &qspi->last_parms))
617 		return;
618 
619 	if (!qspi->mspi_maj_rev)
620 		/* legacy controller */
621 		spcr = MSPI_MASTER_BIT;
622 	else
623 		spcr = 0;
624 
625 	/*
626 	 * Bits per transfer.  BITS determines the number of data bits
627 	 * transferred if the command control bit (BITSE of a
628 	 * CDRAM Register) is equal to 1.
629 	 * If CDRAM BITSE is equal to 0, 8 data bits are transferred
630 	 * regardless
631 	 */
632 	if (xp->bits_per_word != 16 && xp->bits_per_word != 64)
633 		spcr |= xp->bits_per_word << MSPI_SPCR0_MSB_BITS_SHIFT;
634 
635 	spcr |= xp->mode & (MSPI_SPCR0_MSB_CPHA | MSPI_SPCR0_MSB_CPOL);
636 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
637 
638 	if (bcm_qspi_has_fastbr(qspi)) {
639 		spcr = 0;
640 
641 		/* enable fastbr */
642 		spcr |=	MSPI_SPCR3_FASTBR;
643 
644 		if (xp->mode & SPI_3WIRE)
645 			spcr |= MSPI_SPCR3_HALFDUPLEX |  MSPI_SPCR3_HDOUTTYPE;
646 
647 		if (bcm_qspi_has_sysclk_108(qspi)) {
648 			/* check requested baud rate before moving to 108Mhz */
649 			spbr = bcm_qspi_calc_spbr(MSPI_BASE_FREQ * 4, xp);
650 			if (spbr > QSPI_SPBR_MAX) {
651 				/* use SYSCLK_27Mhz for slower baud rates */
652 				spcr &= ~MSPI_SPCR3_SYSCLKSEL_MASK;
653 				qspi->base_clk = MSPI_BASE_FREQ;
654 			} else {
655 				/* SYSCLK_108Mhz */
656 				spcr |= MSPI_SPCR3_SYSCLKSEL_108;
657 				qspi->base_clk = MSPI_BASE_FREQ * 4;
658 			}
659 		}
660 
661 		if (xp->bits_per_word > 16) {
662 			/* data_reg_size 1 (64bit) */
663 			spcr |=	MSPI_SPCR3_DATA_REG_SZ;
664 			/* TxRx RAM data access mode 2 for 32B and set fastdt */
665 			spcr |=	MSPI_SPCR3_DAM_32BYTE  | MSPI_SPCR3_FASTDT;
666 			/*
667 			 *  Set length of delay after transfer
668 			 *  DTL from 0(256) to 1
669 			 */
670 			bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 1);
671 		} else {
672 			/* data_reg_size[8] = 0 */
673 			spcr &=	~(MSPI_SPCR3_DATA_REG_SZ);
674 
675 			/*
676 			 * TxRx RAM access mode 8B
677 			 * and disable fastdt
678 			 */
679 			spcr &= ~(MSPI_SPCR3_DAM_32BYTE);
680 		}
681 		bcm_qspi_write(qspi, MSPI, MSPI_SPCR3, spcr);
682 	}
683 
684 	/* SCK Baud Rate = System Clock/(2 * SPBR) */
685 	qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
686 	spbr = bcm_qspi_calc_spbr(qspi->base_clk, xp);
687 	spbr = clamp_val(spbr, bcm_qspi_spbr_min(qspi), QSPI_SPBR_MAX);
688 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spbr);
689 
690 	qspi->last_parms = *xp;
691 }
692 
693 static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
694 				  struct spi_device *spi,
695 				  struct spi_transfer *trans)
696 {
697 	struct bcm_qspi_parms xp;
698 
699 	xp.speed_hz = trans->speed_hz;
700 	xp.bits_per_word = trans->bits_per_word;
701 	xp.mode = spi->mode;
702 
703 	bcm_qspi_hw_set_parms(qspi, &xp);
704 }
705 
706 static int bcm_qspi_setup(struct spi_device *spi)
707 {
708 	struct bcm_qspi_parms *xp;
709 
710 	if (spi->bits_per_word > 64)
711 		return -EINVAL;
712 
713 	xp = spi_get_ctldata(spi);
714 	if (!xp) {
715 		xp = kzalloc(sizeof(*xp), GFP_KERNEL);
716 		if (!xp)
717 			return -ENOMEM;
718 		spi_set_ctldata(spi, xp);
719 	}
720 	xp->speed_hz = spi->max_speed_hz;
721 	xp->mode = spi->mode;
722 
723 	if (spi->bits_per_word)
724 		xp->bits_per_word = spi->bits_per_word;
725 	else
726 		xp->bits_per_word = 8;
727 
728 	return 0;
729 }
730 
731 static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
732 					   struct qspi_trans *qt)
733 {
734 	if (qt->mspi_last_trans &&
735 	    spi_transfer_is_last(qspi->master, qt->trans))
736 		return true;
737 	else
738 		return false;
739 }
740 
741 static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
742 					struct qspi_trans *qt, int flags)
743 {
744 	int ret = TRANS_STATUS_BREAK_NONE;
745 
746 	/* count the last transferred bytes */
747 	if (qt->trans->bits_per_word <= 8)
748 		qt->byte++;
749 	else if (qt->trans->bits_per_word <= 16)
750 		qt->byte += 2;
751 	else if (qt->trans->bits_per_word <= 32)
752 		qt->byte += 4;
753 	else if (qt->trans->bits_per_word <= 64)
754 		qt->byte += 8;
755 
756 	if (qt->byte >= qt->trans->len) {
757 		/* we're at the end of the spi_transfer */
758 		/* in TX mode, need to pause for a delay or CS change */
759 		if (qt->trans->delay.value &&
760 		    (flags & TRANS_STATUS_BREAK_DELAY))
761 			ret |= TRANS_STATUS_BREAK_DELAY;
762 		if (qt->trans->cs_change &&
763 		    (flags & TRANS_STATUS_BREAK_CS_CHANGE))
764 			ret |= TRANS_STATUS_BREAK_CS_CHANGE;
765 
766 		if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
767 			ret |= TRANS_STATUS_BREAK_EOM;
768 		else
769 			ret |= TRANS_STATUS_BREAK_NO_BYTES;
770 
771 		qt->trans = NULL;
772 	}
773 
774 	dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
775 		qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
776 	return ret;
777 }
778 
779 static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
780 {
781 	u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
782 
783 	/* mask out reserved bits */
784 	return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
785 }
786 
787 static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
788 {
789 	u32 reg_offset = MSPI_RXRAM;
790 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
791 	u32 msb_offset = reg_offset + (slot << 3);
792 
793 	return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
794 		((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
795 }
796 
797 static inline u32 read_rxram_slot_u32(struct bcm_qspi *qspi, int slot)
798 {
799 	u32 reg_offset = MSPI_RXRAM;
800 	u32 offset = reg_offset + (slot << 3);
801 	u32 val;
802 
803 	val = bcm_qspi_read(qspi, MSPI, offset);
804 	val = swap4bytes(val);
805 
806 	return val;
807 }
808 
809 static inline u64 read_rxram_slot_u64(struct bcm_qspi *qspi, int slot)
810 {
811 	u32 reg_offset = MSPI_RXRAM;
812 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
813 	u32 msb_offset = reg_offset + (slot << 3);
814 	u32 msb, lsb;
815 
816 	msb = bcm_qspi_read(qspi, MSPI, msb_offset);
817 	msb = swap4bytes(msb);
818 	lsb = bcm_qspi_read(qspi, MSPI, lsb_offset);
819 	lsb = swap4bytes(lsb);
820 
821 	return ((u64)msb << 32 | lsb);
822 }
823 
824 static void read_from_hw(struct bcm_qspi *qspi, int slots)
825 {
826 	struct qspi_trans tp;
827 	int slot;
828 
829 	bcm_qspi_disable_bspi(qspi);
830 
831 	if (slots > MSPI_NUM_CDRAM) {
832 		/* should never happen */
833 		dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
834 		return;
835 	}
836 
837 	tp = qspi->trans_pos;
838 
839 	for (slot = 0; slot < slots; slot++) {
840 		if (tp.trans->bits_per_word <= 8) {
841 			u8 *buf = tp.trans->rx_buf;
842 
843 			if (buf)
844 				buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
845 			dev_dbg(&qspi->pdev->dev, "RD %02x\n",
846 				buf ? buf[tp.byte] : 0x0);
847 		} else if (tp.trans->bits_per_word <= 16) {
848 			u16 *buf = tp.trans->rx_buf;
849 
850 			if (buf)
851 				buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
852 								      slot);
853 			dev_dbg(&qspi->pdev->dev, "RD %04x\n",
854 				buf ? buf[tp.byte / 2] : 0x0);
855 		} else if (tp.trans->bits_per_word <= 32) {
856 			u32 *buf = tp.trans->rx_buf;
857 
858 			if (buf)
859 				buf[tp.byte / 4] = read_rxram_slot_u32(qspi,
860 								      slot);
861 			dev_dbg(&qspi->pdev->dev, "RD %08x\n",
862 				buf ? buf[tp.byte / 4] : 0x0);
863 
864 		} else if (tp.trans->bits_per_word <= 64) {
865 			u64 *buf = tp.trans->rx_buf;
866 
867 			if (buf)
868 				buf[tp.byte / 8] = read_rxram_slot_u64(qspi,
869 								      slot);
870 			dev_dbg(&qspi->pdev->dev, "RD %llx\n",
871 				buf ? buf[tp.byte / 8] : 0x0);
872 
873 
874 		}
875 
876 		update_qspi_trans_byte_count(qspi, &tp,
877 					     TRANS_STATUS_BREAK_NONE);
878 	}
879 
880 	qspi->trans_pos = tp;
881 }
882 
883 static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
884 				       u8 val)
885 {
886 	u32 reg_offset = MSPI_TXRAM + (slot << 3);
887 
888 	/* mask out reserved bits */
889 	bcm_qspi_write(qspi, MSPI, reg_offset, val);
890 }
891 
892 static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
893 					u16 val)
894 {
895 	u32 reg_offset = MSPI_TXRAM;
896 	u32 msb_offset = reg_offset + (slot << 3);
897 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
898 
899 	bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
900 	bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
901 }
902 
903 static inline void write_txram_slot_u32(struct bcm_qspi *qspi, int slot,
904 					u32 val)
905 {
906 	u32 reg_offset = MSPI_TXRAM;
907 	u32 msb_offset = reg_offset + (slot << 3);
908 
909 	bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(val));
910 }
911 
912 static inline void write_txram_slot_u64(struct bcm_qspi *qspi, int slot,
913 					u64 val)
914 {
915 	u32 reg_offset = MSPI_TXRAM;
916 	u32 msb_offset = reg_offset + (slot << 3);
917 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
918 	u32 msb = upper_32_bits(val);
919 	u32 lsb = lower_32_bits(val);
920 
921 	bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(msb));
922 	bcm_qspi_write(qspi, MSPI, lsb_offset, swap4bytes(lsb));
923 }
924 
925 static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
926 {
927 	return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
928 }
929 
930 static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
931 {
932 	bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
933 }
934 
935 /* Return number of slots written */
936 static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
937 {
938 	struct qspi_trans tp;
939 	int slot = 0, tstatus = 0;
940 	u32 mspi_cdram = 0;
941 
942 	bcm_qspi_disable_bspi(qspi);
943 	tp = qspi->trans_pos;
944 	bcm_qspi_update_parms(qspi, spi, tp.trans);
945 
946 	/* Run until end of transfer or reached the max data */
947 	while (!tstatus && slot < MSPI_NUM_CDRAM) {
948 		mspi_cdram = MSPI_CDRAM_CONT_BIT;
949 		if (tp.trans->bits_per_word <= 8) {
950 			const u8 *buf = tp.trans->tx_buf;
951 			u8 val = buf ? buf[tp.byte] : 0x00;
952 
953 			write_txram_slot_u8(qspi, slot, val);
954 			dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
955 		} else if (tp.trans->bits_per_word <= 16) {
956 			const u16 *buf = tp.trans->tx_buf;
957 			u16 val = buf ? buf[tp.byte / 2] : 0x0000;
958 
959 			write_txram_slot_u16(qspi, slot, val);
960 			dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
961 		} else if (tp.trans->bits_per_word <= 32) {
962 			const u32 *buf = tp.trans->tx_buf;
963 			u32 val = buf ? buf[tp.byte/4] : 0x0;
964 
965 			write_txram_slot_u32(qspi, slot, val);
966 			dev_dbg(&qspi->pdev->dev, "WR %08x\n", val);
967 		} else if (tp.trans->bits_per_word <= 64) {
968 			const u64 *buf = tp.trans->tx_buf;
969 			u64 val = (buf ? buf[tp.byte/8] : 0x0);
970 
971 			/* use the length of delay from SPCR1_LSB */
972 			if (bcm_qspi_has_fastbr(qspi))
973 				mspi_cdram |= MSPI_CDRAM_DT_BIT;
974 
975 			write_txram_slot_u64(qspi, slot, val);
976 			dev_dbg(&qspi->pdev->dev, "WR %llx\n", val);
977 		}
978 
979 		mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
980 			       MSPI_CDRAM_BITSE_BIT);
981 
982 		/* set 3wrire halfduplex mode data from master to slave */
983 		if ((spi->mode & SPI_3WIRE) && tp.trans->tx_buf)
984 			mspi_cdram |= MSPI_CDRAM_OUTP;
985 
986 		if (has_bspi(qspi))
987 			mspi_cdram &= ~1;
988 		else
989 			mspi_cdram |= (~(1 << spi->chip_select) &
990 				       MSPI_CDRAM_PCS);
991 
992 		write_cdram_slot(qspi, slot, mspi_cdram);
993 
994 		tstatus = update_qspi_trans_byte_count(qspi, &tp,
995 						       TRANS_STATUS_BREAK_TX);
996 		slot++;
997 	}
998 
999 	if (!slot) {
1000 		dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
1001 		goto done;
1002 	}
1003 
1004 	dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
1005 	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1006 	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
1007 
1008 	/*
1009 	 *  case 1) EOM =1, cs_change =0: SSb inactive
1010 	 *  case 2) EOM =1, cs_change =1: SSb stay active
1011 	 *  case 3) EOM =0, cs_change =0: SSb stay active
1012 	 *  case 4) EOM =0, cs_change =1: SSb inactive
1013 	 */
1014 	if (((tstatus & TRANS_STATUS_BREAK_DESELECT)
1015 	     == TRANS_STATUS_BREAK_CS_CHANGE) ||
1016 	    ((tstatus & TRANS_STATUS_BREAK_DESELECT)
1017 	     == TRANS_STATUS_BREAK_EOM)) {
1018 		mspi_cdram = read_cdram_slot(qspi, slot - 1) &
1019 			~MSPI_CDRAM_CONT_BIT;
1020 		write_cdram_slot(qspi, slot - 1, mspi_cdram);
1021 	}
1022 
1023 	if (has_bspi(qspi))
1024 		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
1025 
1026 	/* Must flush previous writes before starting MSPI operation */
1027 	mb();
1028 	/* Set cont | spe | spifie */
1029 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
1030 
1031 done:
1032 	return slot;
1033 }
1034 
1035 static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
1036 				     const struct spi_mem_op *op)
1037 {
1038 	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
1039 	u32 addr = 0, len, rdlen, len_words, from = 0;
1040 	int ret = 0;
1041 	unsigned long timeo = msecs_to_jiffies(100);
1042 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1043 
1044 	if (bcm_qspi_bspi_ver_three(qspi))
1045 		if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
1046 			return -EIO;
1047 
1048 	from = op->addr.val;
1049 	if (!spi->cs_gpiod)
1050 		bcm_qspi_chip_select(qspi, spi->chip_select);
1051 	bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1052 
1053 	/*
1054 	 * when using flex mode we need to send
1055 	 * the upper address byte to bspi
1056 	 */
1057 	if (!bcm_qspi_bspi_ver_three(qspi)) {
1058 		addr = from & 0xff000000;
1059 		bcm_qspi_write(qspi, BSPI,
1060 			       BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
1061 	}
1062 
1063 	if (!qspi->xfer_mode.flex_mode)
1064 		addr = from;
1065 	else
1066 		addr = from & 0x00ffffff;
1067 
1068 	if (bcm_qspi_bspi_ver_three(qspi) == true)
1069 		addr = (addr + 0xc00000) & 0xffffff;
1070 
1071 	/*
1072 	 * read into the entire buffer by breaking the reads
1073 	 * into RAF buffer read lengths
1074 	 */
1075 	len = op->data.nbytes;
1076 	qspi->bspi_rf_op_idx = 0;
1077 
1078 	do {
1079 		if (len > BSPI_READ_LENGTH)
1080 			rdlen = BSPI_READ_LENGTH;
1081 		else
1082 			rdlen = len;
1083 
1084 		reinit_completion(&qspi->bspi_done);
1085 		bcm_qspi_enable_bspi(qspi);
1086 		len_words = (rdlen + 3) >> 2;
1087 		qspi->bspi_rf_op = op;
1088 		qspi->bspi_rf_op_status = 0;
1089 		qspi->bspi_rf_op_len = rdlen;
1090 		dev_dbg(&qspi->pdev->dev,
1091 			"bspi xfr addr 0x%x len 0x%x", addr, rdlen);
1092 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
1093 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
1094 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
1095 		if (qspi->soc_intc) {
1096 			/*
1097 			 * clear soc MSPI and BSPI interrupts and enable
1098 			 * BSPI interrupts.
1099 			 */
1100 			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
1101 			soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
1102 		}
1103 
1104 		/* Must flush previous writes before starting BSPI operation */
1105 		mb();
1106 		bcm_qspi_bspi_lr_start(qspi);
1107 		if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
1108 			dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
1109 			ret = -ETIMEDOUT;
1110 			break;
1111 		}
1112 
1113 		/* set msg return length */
1114 		addr += rdlen;
1115 		len -= rdlen;
1116 	} while (len);
1117 
1118 	return ret;
1119 }
1120 
1121 static int bcm_qspi_transfer_one(struct spi_master *master,
1122 				 struct spi_device *spi,
1123 				 struct spi_transfer *trans)
1124 {
1125 	struct bcm_qspi *qspi = spi_master_get_devdata(master);
1126 	int slots;
1127 	unsigned long timeo = msecs_to_jiffies(100);
1128 
1129 	if (!spi->cs_gpiod)
1130 		bcm_qspi_chip_select(qspi, spi->chip_select);
1131 	qspi->trans_pos.trans = trans;
1132 	qspi->trans_pos.byte = 0;
1133 
1134 	while (qspi->trans_pos.byte < trans->len) {
1135 		reinit_completion(&qspi->mspi_done);
1136 
1137 		slots = write_to_hw(qspi, spi);
1138 		if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
1139 			dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
1140 			return -ETIMEDOUT;
1141 		}
1142 
1143 		read_from_hw(qspi, slots);
1144 	}
1145 	bcm_qspi_enable_bspi(qspi);
1146 
1147 	return 0;
1148 }
1149 
1150 static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
1151 				     const struct spi_mem_op *op)
1152 {
1153 	struct spi_master *master = spi->master;
1154 	struct bcm_qspi *qspi = spi_master_get_devdata(master);
1155 	struct spi_transfer t[2];
1156 	u8 cmd[6] = { };
1157 	int ret, i;
1158 
1159 	memset(cmd, 0, sizeof(cmd));
1160 	memset(t, 0, sizeof(t));
1161 
1162 	/* tx */
1163 	/* opcode is in cmd[0] */
1164 	cmd[0] = op->cmd.opcode;
1165 	for (i = 0; i < op->addr.nbytes; i++)
1166 		cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
1167 
1168 	t[0].tx_buf = cmd;
1169 	t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
1170 	t[0].bits_per_word = spi->bits_per_word;
1171 	t[0].tx_nbits = op->cmd.buswidth;
1172 	/* lets mspi know that this is not last transfer */
1173 	qspi->trans_pos.mspi_last_trans = false;
1174 	ret = bcm_qspi_transfer_one(master, spi, &t[0]);
1175 
1176 	/* rx */
1177 	qspi->trans_pos.mspi_last_trans = true;
1178 	if (!ret) {
1179 		/* rx */
1180 		t[1].rx_buf = op->data.buf.in;
1181 		t[1].len = op->data.nbytes;
1182 		t[1].rx_nbits =  op->data.buswidth;
1183 		t[1].bits_per_word = spi->bits_per_word;
1184 		ret = bcm_qspi_transfer_one(master, spi, &t[1]);
1185 	}
1186 
1187 	return ret;
1188 }
1189 
1190 static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
1191 				const struct spi_mem_op *op)
1192 {
1193 	struct spi_device *spi = mem->spi;
1194 	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
1195 	int ret = 0;
1196 	bool mspi_read = false;
1197 	u32 addr = 0, len;
1198 	u_char *buf;
1199 
1200 	if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
1201 	    op->data.dir != SPI_MEM_DATA_IN)
1202 		return -ENOTSUPP;
1203 
1204 	buf = op->data.buf.in;
1205 	addr = op->addr.val;
1206 	len = op->data.nbytes;
1207 
1208 	if (has_bspi(qspi) && bcm_qspi_bspi_ver_three(qspi) == true) {
1209 		/*
1210 		 * The address coming into this function is a raw flash offset.
1211 		 * But for BSPI <= V3, we need to convert it to a remapped BSPI
1212 		 * address. If it crosses a 4MB boundary, just revert back to
1213 		 * using MSPI.
1214 		 */
1215 		addr = (addr + 0xc00000) & 0xffffff;
1216 
1217 		if ((~ADDR_4MB_MASK & addr) ^
1218 		    (~ADDR_4MB_MASK & (addr + len - 1)))
1219 			mspi_read = true;
1220 	}
1221 
1222 	/* non-aligned and very short transfers are handled by MSPI */
1223 	if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
1224 	    len < 4)
1225 		mspi_read = true;
1226 
1227 	if (!has_bspi(qspi) || mspi_read)
1228 		return bcm_qspi_mspi_exec_mem_op(spi, op);
1229 
1230 	ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
1231 
1232 	if (!ret)
1233 		ret = bcm_qspi_bspi_exec_mem_op(spi, op);
1234 
1235 	return ret;
1236 }
1237 
1238 static void bcm_qspi_cleanup(struct spi_device *spi)
1239 {
1240 	struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
1241 
1242 	kfree(xp);
1243 }
1244 
1245 static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1246 {
1247 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1248 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1249 	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1250 
1251 	if (status & MSPI_MSPI_STATUS_SPIF) {
1252 		struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1253 		/* clear interrupt */
1254 		status &= ~MSPI_MSPI_STATUS_SPIF;
1255 		bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1256 		if (qspi->soc_intc)
1257 			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1258 		complete(&qspi->mspi_done);
1259 		return IRQ_HANDLED;
1260 	}
1261 
1262 	return IRQ_NONE;
1263 }
1264 
1265 static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1266 {
1267 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1268 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1269 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1270 	u32 status = qspi_dev_id->irqp->mask;
1271 
1272 	if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1273 		bcm_qspi_bspi_lr_data_read(qspi);
1274 		if (qspi->bspi_rf_op_len == 0) {
1275 			qspi->bspi_rf_op = NULL;
1276 			if (qspi->soc_intc) {
1277 				/* disable soc BSPI interrupt */
1278 				soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1279 							   false);
1280 				/* indicate done */
1281 				status = INTR_BSPI_LR_SESSION_DONE_MASK;
1282 			}
1283 
1284 			if (qspi->bspi_rf_op_status)
1285 				bcm_qspi_bspi_lr_clear(qspi);
1286 			else
1287 				bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1288 		}
1289 
1290 		if (qspi->soc_intc)
1291 			/* clear soc BSPI interrupt */
1292 			soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1293 	}
1294 
1295 	status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1296 	if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1297 		complete(&qspi->bspi_done);
1298 
1299 	return IRQ_HANDLED;
1300 }
1301 
1302 static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1303 {
1304 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1305 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1306 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1307 
1308 	dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1309 	qspi->bspi_rf_op_status = -EIO;
1310 	if (qspi->soc_intc)
1311 		/* clear soc interrupt */
1312 		soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1313 
1314 	complete(&qspi->bspi_done);
1315 	return IRQ_HANDLED;
1316 }
1317 
1318 static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1319 {
1320 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1321 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1322 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1323 	irqreturn_t ret = IRQ_NONE;
1324 
1325 	if (soc_intc) {
1326 		u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1327 
1328 		if (status & MSPI_DONE)
1329 			ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1330 		else if (status & BSPI_DONE)
1331 			ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1332 		else if (status & BSPI_ERR)
1333 			ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1334 	}
1335 
1336 	return ret;
1337 }
1338 
1339 static const struct bcm_qspi_irq qspi_irq_tab[] = {
1340 	{
1341 		.irq_name = "spi_lr_fullness_reached",
1342 		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1343 		.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1344 	},
1345 	{
1346 		.irq_name = "spi_lr_session_aborted",
1347 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1348 		.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1349 	},
1350 	{
1351 		.irq_name = "spi_lr_impatient",
1352 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1353 		.mask = INTR_BSPI_LR_IMPATIENT_MASK,
1354 	},
1355 	{
1356 		.irq_name = "spi_lr_session_done",
1357 		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1358 		.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1359 	},
1360 #ifdef QSPI_INT_DEBUG
1361 	/* this interrupt is for debug purposes only, dont request irq */
1362 	{
1363 		.irq_name = "spi_lr_overread",
1364 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1365 		.mask = INTR_BSPI_LR_OVERREAD_MASK,
1366 	},
1367 #endif
1368 	{
1369 		.irq_name = "mspi_done",
1370 		.irq_handler = bcm_qspi_mspi_l2_isr,
1371 		.mask = INTR_MSPI_DONE_MASK,
1372 	},
1373 	{
1374 		.irq_name = "mspi_halted",
1375 		.irq_handler = bcm_qspi_mspi_l2_isr,
1376 		.mask = INTR_MSPI_HALTED_MASK,
1377 	},
1378 	{
1379 		/* single muxed L1 interrupt source */
1380 		.irq_name = "spi_l1_intr",
1381 		.irq_handler = bcm_qspi_l1_isr,
1382 		.irq_source = MUXED_L1,
1383 		.mask = QSPI_INTERRUPTS_ALL,
1384 	},
1385 };
1386 
1387 static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1388 {
1389 	u32 val = 0;
1390 
1391 	val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1392 	qspi->bspi_maj_rev = (val >> 8) & 0xff;
1393 	qspi->bspi_min_rev = val & 0xff;
1394 	if (!(bcm_qspi_bspi_ver_three(qspi))) {
1395 		/* Force mapping of BSPI address -> flash offset */
1396 		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1397 		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1398 	}
1399 	qspi->bspi_enabled = 1;
1400 	bcm_qspi_disable_bspi(qspi);
1401 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1402 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1403 }
1404 
1405 static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1406 {
1407 	struct bcm_qspi_parms parms;
1408 
1409 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1410 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1411 	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1412 	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1413 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1414 
1415 	parms.mode = SPI_MODE_3;
1416 	parms.bits_per_word = 8;
1417 	parms.speed_hz = qspi->max_speed_hz;
1418 	bcm_qspi_hw_set_parms(qspi, &parms);
1419 
1420 	if (has_bspi(qspi))
1421 		bcm_qspi_bspi_init(qspi);
1422 }
1423 
1424 static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1425 {
1426 	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1427 
1428 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1429 	if (has_bspi(qspi))
1430 		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1431 
1432 	/* clear interrupt */
1433 	bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status & ~1);
1434 }
1435 
1436 static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1437 	.exec_op = bcm_qspi_exec_mem_op,
1438 };
1439 
1440 struct bcm_qspi_data {
1441 	bool	has_mspi_rev;
1442 	bool	has_spcr3_sysclk;
1443 };
1444 
1445 static const struct bcm_qspi_data bcm_qspi_no_rev_data = {
1446 	.has_mspi_rev	= false,
1447 	.has_spcr3_sysclk = false,
1448 };
1449 
1450 static const struct bcm_qspi_data bcm_qspi_rev_data = {
1451 	.has_mspi_rev	= true,
1452 	.has_spcr3_sysclk = false,
1453 };
1454 
1455 static const struct bcm_qspi_data bcm_qspi_spcr3_data = {
1456 	.has_mspi_rev	= true,
1457 	.has_spcr3_sysclk = true,
1458 };
1459 
1460 static const struct of_device_id bcm_qspi_of_match[] = {
1461 	{
1462 		.compatible = "brcm,spi-bcm7445-qspi",
1463 		.data = &bcm_qspi_rev_data,
1464 
1465 	},
1466 	{
1467 		.compatible = "brcm,spi-bcm-qspi",
1468 		.data = &bcm_qspi_no_rev_data,
1469 	},
1470 	{
1471 		.compatible = "brcm,spi-bcm7216-qspi",
1472 		.data = &bcm_qspi_spcr3_data,
1473 	},
1474 	{
1475 		.compatible = "brcm,spi-bcm7278-qspi",
1476 		.data = &bcm_qspi_spcr3_data,
1477 	},
1478 	{},
1479 };
1480 MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1481 
1482 int bcm_qspi_probe(struct platform_device *pdev,
1483 		   struct bcm_qspi_soc_intc *soc_intc)
1484 {
1485 	const struct of_device_id *of_id = NULL;
1486 	const struct bcm_qspi_data *data;
1487 	struct device *dev = &pdev->dev;
1488 	struct bcm_qspi *qspi;
1489 	struct spi_master *master;
1490 	struct resource *res;
1491 	int irq, ret = 0, num_ints = 0;
1492 	u32 val;
1493 	u32 rev = 0;
1494 	const char *name = NULL;
1495 	int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1496 
1497 	/* We only support device-tree instantiation */
1498 	if (!dev->of_node)
1499 		return -ENODEV;
1500 
1501 	of_id = of_match_node(bcm_qspi_of_match, dev->of_node);
1502 	if (!of_id)
1503 		return -ENODEV;
1504 
1505 	data = of_id->data;
1506 
1507 	master = devm_spi_alloc_master(dev, sizeof(struct bcm_qspi));
1508 	if (!master) {
1509 		dev_err(dev, "error allocating spi_master\n");
1510 		return -ENOMEM;
1511 	}
1512 
1513 	qspi = spi_master_get_devdata(master);
1514 
1515 	qspi->clk = devm_clk_get_optional(&pdev->dev, NULL);
1516 	if (IS_ERR(qspi->clk))
1517 		return PTR_ERR(qspi->clk);
1518 
1519 	qspi->pdev = pdev;
1520 	qspi->trans_pos.trans = NULL;
1521 	qspi->trans_pos.byte = 0;
1522 	qspi->trans_pos.mspi_last_trans = true;
1523 	qspi->master = master;
1524 
1525 	master->bus_num = -1;
1526 	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD |
1527 				SPI_3WIRE;
1528 	master->setup = bcm_qspi_setup;
1529 	master->transfer_one = bcm_qspi_transfer_one;
1530 	master->mem_ops = &bcm_qspi_mem_ops;
1531 	master->cleanup = bcm_qspi_cleanup;
1532 	master->dev.of_node = dev->of_node;
1533 	master->num_chipselect = NUM_CHIPSELECT;
1534 	master->use_gpio_descriptors = true;
1535 
1536 	qspi->big_endian = of_device_is_big_endian(dev->of_node);
1537 
1538 	if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1539 		master->num_chipselect = val;
1540 
1541 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1542 	if (!res)
1543 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1544 						   "mspi");
1545 
1546 	if (res) {
1547 		qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1548 		if (IS_ERR(qspi->base[MSPI]))
1549 			return PTR_ERR(qspi->base[MSPI]);
1550 	} else {
1551 		return 0;
1552 	}
1553 
1554 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1555 	if (res) {
1556 		qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1557 		if (IS_ERR(qspi->base[BSPI]))
1558 			return PTR_ERR(qspi->base[BSPI]);
1559 		qspi->bspi_mode = true;
1560 	} else {
1561 		qspi->bspi_mode = false;
1562 	}
1563 
1564 	dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1565 
1566 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1567 	if (res) {
1568 		qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1569 		if (IS_ERR(qspi->base[CHIP_SELECT]))
1570 			return PTR_ERR(qspi->base[CHIP_SELECT]);
1571 	}
1572 
1573 	qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1574 				GFP_KERNEL);
1575 	if (!qspi->dev_ids)
1576 		return -ENOMEM;
1577 
1578 	/*
1579 	 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1580 	 * in specific ways
1581 	 */
1582 	if (soc_intc) {
1583 		qspi->soc_intc = soc_intc;
1584 		soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1585 	} else {
1586 		qspi->soc_intc = NULL;
1587 	}
1588 
1589 	if (qspi->clk) {
1590 		ret = clk_prepare_enable(qspi->clk);
1591 		if (ret) {
1592 			dev_err(dev, "failed to prepare clock\n");
1593 			goto qspi_probe_err;
1594 		}
1595 		qspi->base_clk = clk_get_rate(qspi->clk);
1596 	} else {
1597 		qspi->base_clk = MSPI_BASE_FREQ;
1598 	}
1599 
1600 	if (data->has_mspi_rev) {
1601 		rev = bcm_qspi_read(qspi, MSPI, MSPI_REV);
1602 		/* some older revs do not have a MSPI_REV register */
1603 		if ((rev & 0xff) == 0xff)
1604 			rev = 0;
1605 	}
1606 
1607 	qspi->mspi_maj_rev = (rev >> 4) & 0xf;
1608 	qspi->mspi_min_rev = rev & 0xf;
1609 	qspi->mspi_spcr3_sysclk = data->has_spcr3_sysclk;
1610 
1611 	qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
1612 
1613 	/*
1614 	 * On SW resets it is possible to have the mask still enabled
1615 	 * Need to disable the mask and clear the status while we init
1616 	 */
1617 	bcm_qspi_hw_uninit(qspi);
1618 
1619 	for (val = 0; val < num_irqs; val++) {
1620 		irq = -1;
1621 		name = qspi_irq_tab[val].irq_name;
1622 		if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1623 			/* get the l2 interrupts */
1624 			irq = platform_get_irq_byname_optional(pdev, name);
1625 		} else if (!num_ints && soc_intc) {
1626 			/* all mspi, bspi intrs muxed to one L1 intr */
1627 			irq = platform_get_irq(pdev, 0);
1628 		}
1629 
1630 		if (irq  >= 0) {
1631 			ret = devm_request_irq(&pdev->dev, irq,
1632 					       qspi_irq_tab[val].irq_handler, 0,
1633 					       name,
1634 					       &qspi->dev_ids[val]);
1635 			if (ret < 0) {
1636 				dev_err(&pdev->dev, "IRQ %s not found\n", name);
1637 				goto qspi_unprepare_err;
1638 			}
1639 
1640 			qspi->dev_ids[val].dev = qspi;
1641 			qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1642 			num_ints++;
1643 			dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1644 				qspi_irq_tab[val].irq_name,
1645 				irq);
1646 		}
1647 	}
1648 
1649 	if (!num_ints) {
1650 		dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1651 		ret = -EINVAL;
1652 		goto qspi_unprepare_err;
1653 	}
1654 
1655 	bcm_qspi_hw_init(qspi);
1656 	init_completion(&qspi->mspi_done);
1657 	init_completion(&qspi->bspi_done);
1658 	qspi->curr_cs = -1;
1659 
1660 	platform_set_drvdata(pdev, qspi);
1661 
1662 	qspi->xfer_mode.width = -1;
1663 	qspi->xfer_mode.addrlen = -1;
1664 	qspi->xfer_mode.hp = -1;
1665 
1666 	ret = spi_register_master(master);
1667 	if (ret < 0) {
1668 		dev_err(dev, "can't register master\n");
1669 		goto qspi_reg_err;
1670 	}
1671 
1672 	return 0;
1673 
1674 qspi_reg_err:
1675 	bcm_qspi_hw_uninit(qspi);
1676 qspi_unprepare_err:
1677 	clk_disable_unprepare(qspi->clk);
1678 qspi_probe_err:
1679 	kfree(qspi->dev_ids);
1680 	return ret;
1681 }
1682 /* probe function to be called by SoC specific platform driver probe */
1683 EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1684 
1685 int bcm_qspi_remove(struct platform_device *pdev)
1686 {
1687 	struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1688 
1689 	spi_unregister_master(qspi->master);
1690 	bcm_qspi_hw_uninit(qspi);
1691 	clk_disable_unprepare(qspi->clk);
1692 	kfree(qspi->dev_ids);
1693 
1694 	return 0;
1695 }
1696 /* function to be called by SoC specific platform driver remove() */
1697 EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1698 
1699 static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1700 {
1701 	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1702 
1703 	/* store the override strap value */
1704 	if (!bcm_qspi_bspi_ver_three(qspi))
1705 		qspi->s3_strap_override_ctrl =
1706 			bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1707 
1708 	spi_master_suspend(qspi->master);
1709 	clk_disable_unprepare(qspi->clk);
1710 	bcm_qspi_hw_uninit(qspi);
1711 
1712 	return 0;
1713 };
1714 
1715 static int __maybe_unused bcm_qspi_resume(struct device *dev)
1716 {
1717 	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1718 	int ret = 0;
1719 
1720 	bcm_qspi_hw_init(qspi);
1721 	bcm_qspi_chip_select(qspi, qspi->curr_cs);
1722 	if (qspi->soc_intc)
1723 		/* enable MSPI interrupt */
1724 		qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1725 						 true);
1726 
1727 	ret = clk_prepare_enable(qspi->clk);
1728 	if (!ret)
1729 		spi_master_resume(qspi->master);
1730 
1731 	return ret;
1732 }
1733 
1734 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1735 
1736 /* pm_ops to be called by SoC specific platform driver */
1737 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1738 
1739 MODULE_AUTHOR("Kamal Dasu");
1740 MODULE_DESCRIPTION("Broadcom QSPI driver");
1741 MODULE_LICENSE("GPL v2");
1742 MODULE_ALIAS("platform:" DRIVER_NAME);
1743