1 /* 2 * Driver for Broadcom BRCMSTB, NSP, NS2, Cygnus SPI Controllers 3 * 4 * Copyright 2016 Broadcom 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License, version 2, as 8 * published by the Free Software Foundation (the "GPL"). 9 * 10 * This program is distributed in the hope that it will be useful, but 11 * WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 13 * General Public License version 2 (GPLv2) for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * version 2 (GPLv2) along with this source code. 17 */ 18 19 #include <linux/clk.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/interrupt.h> 24 #include <linux/io.h> 25 #include <linux/ioport.h> 26 #include <linux/kernel.h> 27 #include <linux/module.h> 28 #include <linux/of.h> 29 #include <linux/of_irq.h> 30 #include <linux/platform_device.h> 31 #include <linux/slab.h> 32 #include <linux/spi/spi.h> 33 #include <linux/spi/spi-mem.h> 34 #include <linux/sysfs.h> 35 #include <linux/types.h> 36 #include "spi-bcm-qspi.h" 37 38 #define DRIVER_NAME "bcm_qspi" 39 40 41 /* BSPI register offsets */ 42 #define BSPI_REVISION_ID 0x000 43 #define BSPI_SCRATCH 0x004 44 #define BSPI_MAST_N_BOOT_CTRL 0x008 45 #define BSPI_BUSY_STATUS 0x00c 46 #define BSPI_INTR_STATUS 0x010 47 #define BSPI_B0_STATUS 0x014 48 #define BSPI_B0_CTRL 0x018 49 #define BSPI_B1_STATUS 0x01c 50 #define BSPI_B1_CTRL 0x020 51 #define BSPI_STRAP_OVERRIDE_CTRL 0x024 52 #define BSPI_FLEX_MODE_ENABLE 0x028 53 #define BSPI_BITS_PER_CYCLE 0x02c 54 #define BSPI_BITS_PER_PHASE 0x030 55 #define BSPI_CMD_AND_MODE_BYTE 0x034 56 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038 57 #define BSPI_BSPI_XOR_VALUE 0x03c 58 #define BSPI_BSPI_XOR_ENABLE 0x040 59 #define BSPI_BSPI_PIO_MODE_ENABLE 0x044 60 #define BSPI_BSPI_PIO_IODIR 0x048 61 #define BSPI_BSPI_PIO_DATA 0x04c 62 63 /* RAF register offsets */ 64 #define BSPI_RAF_START_ADDR 0x100 65 #define BSPI_RAF_NUM_WORDS 0x104 66 #define BSPI_RAF_CTRL 0x108 67 #define BSPI_RAF_FULLNESS 0x10c 68 #define BSPI_RAF_WATERMARK 0x110 69 #define BSPI_RAF_STATUS 0x114 70 #define BSPI_RAF_READ_DATA 0x118 71 #define BSPI_RAF_WORD_CNT 0x11c 72 #define BSPI_RAF_CURR_ADDR 0x120 73 74 /* Override mode masks */ 75 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE BIT(0) 76 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL BIT(1) 77 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE BIT(2) 78 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD BIT(3) 79 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE BIT(4) 80 81 #define BSPI_ADDRLEN_3BYTES 3 82 #define BSPI_ADDRLEN_4BYTES 4 83 84 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1) 85 86 #define BSPI_RAF_CTRL_START_MASK BIT(0) 87 #define BSPI_RAF_CTRL_CLEAR_MASK BIT(1) 88 89 #define BSPI_BPP_MODE_SELECT_MASK BIT(8) 90 #define BSPI_BPP_ADDR_SELECT_MASK BIT(16) 91 92 #define BSPI_READ_LENGTH 512 93 94 /* MSPI register offsets */ 95 #define MSPI_SPCR0_LSB 0x000 96 #define MSPI_SPCR0_MSB 0x004 97 #define MSPI_SPCR1_LSB 0x008 98 #define MSPI_SPCR1_MSB 0x00c 99 #define MSPI_NEWQP 0x010 100 #define MSPI_ENDQP 0x014 101 #define MSPI_SPCR2 0x018 102 #define MSPI_MSPI_STATUS 0x020 103 #define MSPI_CPTQP 0x024 104 #define MSPI_SPCR3 0x028 105 #define MSPI_TXRAM 0x040 106 #define MSPI_RXRAM 0x0c0 107 #define MSPI_CDRAM 0x140 108 #define MSPI_WRITE_LOCK 0x180 109 110 #define MSPI_MASTER_BIT BIT(7) 111 112 #define MSPI_NUM_CDRAM 16 113 #define MSPI_CDRAM_CONT_BIT BIT(7) 114 #define MSPI_CDRAM_BITSE_BIT BIT(6) 115 #define MSPI_CDRAM_PCS 0xf 116 117 #define MSPI_SPCR2_SPE BIT(6) 118 #define MSPI_SPCR2_CONT_AFTER_CMD BIT(7) 119 120 #define MSPI_MSPI_STATUS_SPIF BIT(0) 121 122 #define INTR_BASE_BIT_SHIFT 0x02 123 #define INTR_COUNT 0x07 124 125 #define NUM_CHIPSELECT 4 126 #define QSPI_SPBR_MIN 8U 127 #define QSPI_SPBR_MAX 255U 128 129 #define OPCODE_DIOR 0xBB 130 #define OPCODE_QIOR 0xEB 131 #define OPCODE_DIOR_4B 0xBC 132 #define OPCODE_QIOR_4B 0xEC 133 134 #define MAX_CMD_SIZE 6 135 136 #define ADDR_4MB_MASK GENMASK(22, 0) 137 138 /* stop at end of transfer, no other reason */ 139 #define TRANS_STATUS_BREAK_NONE 0 140 /* stop at end of spi_message */ 141 #define TRANS_STATUS_BREAK_EOM 1 142 /* stop at end of spi_transfer if delay */ 143 #define TRANS_STATUS_BREAK_DELAY 2 144 /* stop at end of spi_transfer if cs_change */ 145 #define TRANS_STATUS_BREAK_CS_CHANGE 4 146 /* stop if we run out of bytes */ 147 #define TRANS_STATUS_BREAK_NO_BYTES 8 148 149 /* events that make us stop filling TX slots */ 150 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM | \ 151 TRANS_STATUS_BREAK_DELAY | \ 152 TRANS_STATUS_BREAK_CS_CHANGE) 153 154 /* events that make us deassert CS */ 155 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM | \ 156 TRANS_STATUS_BREAK_CS_CHANGE) 157 158 struct bcm_qspi_parms { 159 u32 speed_hz; 160 u8 mode; 161 u8 bits_per_word; 162 }; 163 164 struct bcm_xfer_mode { 165 bool flex_mode; 166 unsigned int width; 167 unsigned int addrlen; 168 unsigned int hp; 169 }; 170 171 enum base_type { 172 MSPI, 173 BSPI, 174 CHIP_SELECT, 175 BASEMAX, 176 }; 177 178 enum irq_source { 179 SINGLE_L2, 180 MUXED_L1, 181 }; 182 183 struct bcm_qspi_irq { 184 const char *irq_name; 185 const irq_handler_t irq_handler; 186 int irq_source; 187 u32 mask; 188 }; 189 190 struct bcm_qspi_dev_id { 191 const struct bcm_qspi_irq *irqp; 192 void *dev; 193 }; 194 195 196 struct qspi_trans { 197 struct spi_transfer *trans; 198 int byte; 199 bool mspi_last_trans; 200 }; 201 202 struct bcm_qspi { 203 struct platform_device *pdev; 204 struct spi_master *master; 205 struct clk *clk; 206 u32 base_clk; 207 u32 max_speed_hz; 208 void __iomem *base[BASEMAX]; 209 210 /* Some SoCs provide custom interrupt status register(s) */ 211 struct bcm_qspi_soc_intc *soc_intc; 212 213 struct bcm_qspi_parms last_parms; 214 struct qspi_trans trans_pos; 215 int curr_cs; 216 int bspi_maj_rev; 217 int bspi_min_rev; 218 int bspi_enabled; 219 const struct spi_mem_op *bspi_rf_op; 220 u32 bspi_rf_op_idx; 221 u32 bspi_rf_op_len; 222 u32 bspi_rf_op_status; 223 struct bcm_xfer_mode xfer_mode; 224 u32 s3_strap_override_ctrl; 225 bool bspi_mode; 226 bool big_endian; 227 int num_irqs; 228 struct bcm_qspi_dev_id *dev_ids; 229 struct completion mspi_done; 230 struct completion bspi_done; 231 }; 232 233 static inline bool has_bspi(struct bcm_qspi *qspi) 234 { 235 return qspi->bspi_mode; 236 } 237 238 /* Read qspi controller register*/ 239 static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type, 240 unsigned int offset) 241 { 242 return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset); 243 } 244 245 /* Write qspi controller register*/ 246 static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type, 247 unsigned int offset, unsigned int data) 248 { 249 bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset); 250 } 251 252 /* BSPI helpers */ 253 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi) 254 { 255 int i; 256 257 /* this should normally finish within 10us */ 258 for (i = 0; i < 1000; i++) { 259 if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1)) 260 return 0; 261 udelay(1); 262 } 263 dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n"); 264 return -EIO; 265 } 266 267 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi) 268 { 269 if (qspi->bspi_maj_rev < 4) 270 return true; 271 return false; 272 } 273 274 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi) 275 { 276 bcm_qspi_bspi_busy_poll(qspi); 277 /* Force rising edge for the b0/b1 'flush' field */ 278 bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1); 279 bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1); 280 bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0); 281 bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0); 282 } 283 284 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi) 285 { 286 return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) & 287 BSPI_RAF_STATUS_FIFO_EMPTY_MASK); 288 } 289 290 static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi) 291 { 292 u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA); 293 294 /* BSPI v3 LR is LE only, convert data to host endianness */ 295 if (bcm_qspi_bspi_ver_three(qspi)) 296 data = le32_to_cpu(data); 297 298 return data; 299 } 300 301 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi) 302 { 303 bcm_qspi_bspi_busy_poll(qspi); 304 bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL, 305 BSPI_RAF_CTRL_START_MASK); 306 } 307 308 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi) 309 { 310 bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL, 311 BSPI_RAF_CTRL_CLEAR_MASK); 312 bcm_qspi_bspi_flush_prefetch_buffers(qspi); 313 } 314 315 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi) 316 { 317 u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in; 318 u32 data = 0; 319 320 dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op, 321 qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len); 322 while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) { 323 data = bcm_qspi_bspi_lr_read_fifo(qspi); 324 if (likely(qspi->bspi_rf_op_len >= 4) && 325 IS_ALIGNED((uintptr_t)buf, 4)) { 326 buf[qspi->bspi_rf_op_idx++] = data; 327 qspi->bspi_rf_op_len -= 4; 328 } else { 329 /* Read out remaining bytes, make sure*/ 330 u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx]; 331 332 data = cpu_to_le32(data); 333 while (qspi->bspi_rf_op_len) { 334 *cbuf++ = (u8)data; 335 data >>= 8; 336 qspi->bspi_rf_op_len--; 337 } 338 } 339 } 340 } 341 342 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte, 343 int bpp, int bpc, int flex_mode) 344 { 345 bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0); 346 bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc); 347 bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp); 348 bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte); 349 bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode); 350 } 351 352 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi, 353 const struct spi_mem_op *op, int hp) 354 { 355 int bpc = 0, bpp = 0; 356 u8 command = op->cmd.opcode; 357 int width = op->cmd.buswidth ? op->cmd.buswidth : SPI_NBITS_SINGLE; 358 int addrlen = op->addr.nbytes * 8; 359 int flex_mode = 1; 360 361 dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n", 362 width, addrlen, hp); 363 364 if (addrlen == BSPI_ADDRLEN_4BYTES) 365 bpp = BSPI_BPP_ADDR_SELECT_MASK; 366 367 bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth; 368 369 switch (width) { 370 case SPI_NBITS_SINGLE: 371 if (addrlen == BSPI_ADDRLEN_3BYTES) 372 /* default mode, does not need flex_cmd */ 373 flex_mode = 0; 374 break; 375 case SPI_NBITS_DUAL: 376 bpc = 0x00000001; 377 if (hp) { 378 bpc |= 0x00010100; /* address and mode are 2-bit */ 379 bpp = BSPI_BPP_MODE_SELECT_MASK; 380 } 381 break; 382 case SPI_NBITS_QUAD: 383 bpc = 0x00000002; 384 if (hp) { 385 bpc |= 0x00020200; /* address and mode are 4-bit */ 386 bpp |= BSPI_BPP_MODE_SELECT_MASK; 387 } 388 break; 389 default: 390 return -EINVAL; 391 } 392 393 bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode); 394 395 return 0; 396 } 397 398 static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi, 399 const struct spi_mem_op *op, int hp) 400 { 401 int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE; 402 int addrlen = op->addr.nbytes; 403 u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL); 404 405 dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n", 406 width, addrlen, hp); 407 408 switch (width) { 409 case SPI_NBITS_SINGLE: 410 /* clear quad/dual mode */ 411 data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD | 412 BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL); 413 break; 414 case SPI_NBITS_QUAD: 415 /* clear dual mode and set quad mode */ 416 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL; 417 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD; 418 break; 419 case SPI_NBITS_DUAL: 420 /* clear quad mode set dual mode */ 421 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD; 422 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL; 423 break; 424 default: 425 return -EINVAL; 426 } 427 428 if (addrlen == BSPI_ADDRLEN_4BYTES) 429 /* set 4byte mode*/ 430 data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE; 431 else 432 /* clear 4 byte mode */ 433 data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE; 434 435 /* set the override mode */ 436 data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE; 437 bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data); 438 bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0); 439 440 return 0; 441 } 442 443 static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi, 444 const struct spi_mem_op *op, int hp) 445 { 446 int error = 0; 447 int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE; 448 int addrlen = op->addr.nbytes; 449 450 /* default mode */ 451 qspi->xfer_mode.flex_mode = true; 452 453 if (!bcm_qspi_bspi_ver_three(qspi)) { 454 u32 val, mask; 455 456 val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL); 457 mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE; 458 if (val & mask || qspi->s3_strap_override_ctrl & mask) { 459 qspi->xfer_mode.flex_mode = false; 460 bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0); 461 error = bcm_qspi_bspi_set_override(qspi, op, hp); 462 } 463 } 464 465 if (qspi->xfer_mode.flex_mode) 466 error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp); 467 468 if (error) { 469 dev_warn(&qspi->pdev->dev, 470 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n", 471 width, addrlen, hp); 472 } else if (qspi->xfer_mode.width != width || 473 qspi->xfer_mode.addrlen != addrlen || 474 qspi->xfer_mode.hp != hp) { 475 qspi->xfer_mode.width = width; 476 qspi->xfer_mode.addrlen = addrlen; 477 qspi->xfer_mode.hp = hp; 478 dev_dbg(&qspi->pdev->dev, 479 "cs:%d %d-lane output, %d-byte address%s\n", 480 qspi->curr_cs, 481 qspi->xfer_mode.width, 482 qspi->xfer_mode.addrlen, 483 qspi->xfer_mode.hp != -1 ? ", hp mode" : ""); 484 } 485 486 return error; 487 } 488 489 static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi) 490 { 491 if (!has_bspi(qspi)) 492 return; 493 494 qspi->bspi_enabled = 1; 495 if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0) 496 return; 497 498 bcm_qspi_bspi_flush_prefetch_buffers(qspi); 499 udelay(1); 500 bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0); 501 udelay(1); 502 } 503 504 static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi) 505 { 506 if (!has_bspi(qspi)) 507 return; 508 509 qspi->bspi_enabled = 0; 510 if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1)) 511 return; 512 513 bcm_qspi_bspi_busy_poll(qspi); 514 bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1); 515 udelay(1); 516 } 517 518 static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs) 519 { 520 u32 rd = 0; 521 u32 wr = 0; 522 523 if (qspi->base[CHIP_SELECT]) { 524 rd = bcm_qspi_read(qspi, CHIP_SELECT, 0); 525 wr = (rd & ~0xff) | (1 << cs); 526 if (rd == wr) 527 return; 528 bcm_qspi_write(qspi, CHIP_SELECT, 0, wr); 529 usleep_range(10, 20); 530 } 531 532 dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs); 533 qspi->curr_cs = cs; 534 } 535 536 /* MSPI helpers */ 537 static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi, 538 const struct bcm_qspi_parms *xp) 539 { 540 u32 spcr, spbr = 0; 541 542 if (xp->speed_hz) 543 spbr = qspi->base_clk / (2 * xp->speed_hz); 544 545 spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX); 546 bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr); 547 548 spcr = MSPI_MASTER_BIT; 549 /* for 16 bit the data should be zero */ 550 if (xp->bits_per_word != 16) 551 spcr |= xp->bits_per_word << 2; 552 spcr |= xp->mode & 3; 553 bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr); 554 555 qspi->last_parms = *xp; 556 } 557 558 static void bcm_qspi_update_parms(struct bcm_qspi *qspi, 559 struct spi_device *spi, 560 struct spi_transfer *trans) 561 { 562 struct bcm_qspi_parms xp; 563 564 xp.speed_hz = trans->speed_hz; 565 xp.bits_per_word = trans->bits_per_word; 566 xp.mode = spi->mode; 567 568 bcm_qspi_hw_set_parms(qspi, &xp); 569 } 570 571 static int bcm_qspi_setup(struct spi_device *spi) 572 { 573 struct bcm_qspi_parms *xp; 574 575 if (spi->bits_per_word > 16) 576 return -EINVAL; 577 578 xp = spi_get_ctldata(spi); 579 if (!xp) { 580 xp = kzalloc(sizeof(*xp), GFP_KERNEL); 581 if (!xp) 582 return -ENOMEM; 583 spi_set_ctldata(spi, xp); 584 } 585 xp->speed_hz = spi->max_speed_hz; 586 xp->mode = spi->mode; 587 588 if (spi->bits_per_word) 589 xp->bits_per_word = spi->bits_per_word; 590 else 591 xp->bits_per_word = 8; 592 593 return 0; 594 } 595 596 static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi, 597 struct qspi_trans *qt) 598 { 599 if (qt->mspi_last_trans && 600 spi_transfer_is_last(qspi->master, qt->trans)) 601 return true; 602 else 603 return false; 604 } 605 606 static int update_qspi_trans_byte_count(struct bcm_qspi *qspi, 607 struct qspi_trans *qt, int flags) 608 { 609 int ret = TRANS_STATUS_BREAK_NONE; 610 611 /* count the last transferred bytes */ 612 if (qt->trans->bits_per_word <= 8) 613 qt->byte++; 614 else 615 qt->byte += 2; 616 617 if (qt->byte >= qt->trans->len) { 618 /* we're at the end of the spi_transfer */ 619 /* in TX mode, need to pause for a delay or CS change */ 620 if (qt->trans->delay_usecs && 621 (flags & TRANS_STATUS_BREAK_DELAY)) 622 ret |= TRANS_STATUS_BREAK_DELAY; 623 if (qt->trans->cs_change && 624 (flags & TRANS_STATUS_BREAK_CS_CHANGE)) 625 ret |= TRANS_STATUS_BREAK_CS_CHANGE; 626 if (ret) 627 goto done; 628 629 dev_dbg(&qspi->pdev->dev, "advance msg exit\n"); 630 if (bcm_qspi_mspi_transfer_is_last(qspi, qt)) 631 ret = TRANS_STATUS_BREAK_EOM; 632 else 633 ret = TRANS_STATUS_BREAK_NO_BYTES; 634 635 qt->trans = NULL; 636 } 637 638 done: 639 dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n", 640 qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret); 641 return ret; 642 } 643 644 static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot) 645 { 646 u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4; 647 648 /* mask out reserved bits */ 649 return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff; 650 } 651 652 static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot) 653 { 654 u32 reg_offset = MSPI_RXRAM; 655 u32 lsb_offset = reg_offset + (slot << 3) + 0x4; 656 u32 msb_offset = reg_offset + (slot << 3); 657 658 return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) | 659 ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8); 660 } 661 662 static void read_from_hw(struct bcm_qspi *qspi, int slots) 663 { 664 struct qspi_trans tp; 665 int slot; 666 667 bcm_qspi_disable_bspi(qspi); 668 669 if (slots > MSPI_NUM_CDRAM) { 670 /* should never happen */ 671 dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__); 672 return; 673 } 674 675 tp = qspi->trans_pos; 676 677 for (slot = 0; slot < slots; slot++) { 678 if (tp.trans->bits_per_word <= 8) { 679 u8 *buf = tp.trans->rx_buf; 680 681 if (buf) 682 buf[tp.byte] = read_rxram_slot_u8(qspi, slot); 683 dev_dbg(&qspi->pdev->dev, "RD %02x\n", 684 buf ? buf[tp.byte] : 0xff); 685 } else { 686 u16 *buf = tp.trans->rx_buf; 687 688 if (buf) 689 buf[tp.byte / 2] = read_rxram_slot_u16(qspi, 690 slot); 691 dev_dbg(&qspi->pdev->dev, "RD %04x\n", 692 buf ? buf[tp.byte] : 0xffff); 693 } 694 695 update_qspi_trans_byte_count(qspi, &tp, 696 TRANS_STATUS_BREAK_NONE); 697 } 698 699 qspi->trans_pos = tp; 700 } 701 702 static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot, 703 u8 val) 704 { 705 u32 reg_offset = MSPI_TXRAM + (slot << 3); 706 707 /* mask out reserved bits */ 708 bcm_qspi_write(qspi, MSPI, reg_offset, val); 709 } 710 711 static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot, 712 u16 val) 713 { 714 u32 reg_offset = MSPI_TXRAM; 715 u32 msb_offset = reg_offset + (slot << 3); 716 u32 lsb_offset = reg_offset + (slot << 3) + 0x4; 717 718 bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8)); 719 bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff)); 720 } 721 722 static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot) 723 { 724 return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2)); 725 } 726 727 static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val) 728 { 729 bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val); 730 } 731 732 /* Return number of slots written */ 733 static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi) 734 { 735 struct qspi_trans tp; 736 int slot = 0, tstatus = 0; 737 u32 mspi_cdram = 0; 738 739 bcm_qspi_disable_bspi(qspi); 740 tp = qspi->trans_pos; 741 bcm_qspi_update_parms(qspi, spi, tp.trans); 742 743 /* Run until end of transfer or reached the max data */ 744 while (!tstatus && slot < MSPI_NUM_CDRAM) { 745 if (tp.trans->bits_per_word <= 8) { 746 const u8 *buf = tp.trans->tx_buf; 747 u8 val = buf ? buf[tp.byte] : 0xff; 748 749 write_txram_slot_u8(qspi, slot, val); 750 dev_dbg(&qspi->pdev->dev, "WR %02x\n", val); 751 } else { 752 const u16 *buf = tp.trans->tx_buf; 753 u16 val = buf ? buf[tp.byte / 2] : 0xffff; 754 755 write_txram_slot_u16(qspi, slot, val); 756 dev_dbg(&qspi->pdev->dev, "WR %04x\n", val); 757 } 758 mspi_cdram = MSPI_CDRAM_CONT_BIT; 759 760 if (has_bspi(qspi)) 761 mspi_cdram &= ~1; 762 else 763 mspi_cdram |= (~(1 << spi->chip_select) & 764 MSPI_CDRAM_PCS); 765 766 mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 : 767 MSPI_CDRAM_BITSE_BIT); 768 769 write_cdram_slot(qspi, slot, mspi_cdram); 770 771 tstatus = update_qspi_trans_byte_count(qspi, &tp, 772 TRANS_STATUS_BREAK_TX); 773 slot++; 774 } 775 776 if (!slot) { 777 dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__); 778 goto done; 779 } 780 781 dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot); 782 bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0); 783 bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1); 784 785 if (tstatus & TRANS_STATUS_BREAK_DESELECT) { 786 mspi_cdram = read_cdram_slot(qspi, slot - 1) & 787 ~MSPI_CDRAM_CONT_BIT; 788 write_cdram_slot(qspi, slot - 1, mspi_cdram); 789 } 790 791 if (has_bspi(qspi)) 792 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1); 793 794 /* Must flush previous writes before starting MSPI operation */ 795 mb(); 796 /* Set cont | spe | spifie */ 797 bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0); 798 799 done: 800 return slot; 801 } 802 803 static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi, 804 const struct spi_mem_op *op) 805 { 806 struct bcm_qspi *qspi = spi_master_get_devdata(spi->master); 807 u32 addr = 0, len, rdlen, len_words, from = 0; 808 int ret = 0; 809 unsigned long timeo = msecs_to_jiffies(100); 810 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc; 811 812 if (bcm_qspi_bspi_ver_three(qspi)) 813 if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES) 814 return -EIO; 815 816 from = op->addr.val; 817 bcm_qspi_chip_select(qspi, spi->chip_select); 818 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0); 819 820 /* 821 * when using flex mode we need to send 822 * the upper address byte to bspi 823 */ 824 if (bcm_qspi_bspi_ver_three(qspi) == false) { 825 addr = from & 0xff000000; 826 bcm_qspi_write(qspi, BSPI, 827 BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr); 828 } 829 830 if (!qspi->xfer_mode.flex_mode) 831 addr = from; 832 else 833 addr = from & 0x00ffffff; 834 835 if (bcm_qspi_bspi_ver_three(qspi) == true) 836 addr = (addr + 0xc00000) & 0xffffff; 837 838 /* 839 * read into the entire buffer by breaking the reads 840 * into RAF buffer read lengths 841 */ 842 len = op->data.nbytes; 843 qspi->bspi_rf_op_idx = 0; 844 845 do { 846 if (len > BSPI_READ_LENGTH) 847 rdlen = BSPI_READ_LENGTH; 848 else 849 rdlen = len; 850 851 reinit_completion(&qspi->bspi_done); 852 bcm_qspi_enable_bspi(qspi); 853 len_words = (rdlen + 3) >> 2; 854 qspi->bspi_rf_op = op; 855 qspi->bspi_rf_op_status = 0; 856 qspi->bspi_rf_op_len = rdlen; 857 dev_dbg(&qspi->pdev->dev, 858 "bspi xfr addr 0x%x len 0x%x", addr, rdlen); 859 bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr); 860 bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words); 861 bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0); 862 if (qspi->soc_intc) { 863 /* 864 * clear soc MSPI and BSPI interrupts and enable 865 * BSPI interrupts. 866 */ 867 soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE); 868 soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true); 869 } 870 871 /* Must flush previous writes before starting BSPI operation */ 872 mb(); 873 bcm_qspi_bspi_lr_start(qspi); 874 if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) { 875 dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n"); 876 ret = -ETIMEDOUT; 877 break; 878 } 879 880 /* set msg return length */ 881 addr += rdlen; 882 len -= rdlen; 883 } while (len); 884 885 return ret; 886 } 887 888 static int bcm_qspi_transfer_one(struct spi_master *master, 889 struct spi_device *spi, 890 struct spi_transfer *trans) 891 { 892 struct bcm_qspi *qspi = spi_master_get_devdata(master); 893 int slots; 894 unsigned long timeo = msecs_to_jiffies(100); 895 896 bcm_qspi_chip_select(qspi, spi->chip_select); 897 qspi->trans_pos.trans = trans; 898 qspi->trans_pos.byte = 0; 899 900 while (qspi->trans_pos.byte < trans->len) { 901 reinit_completion(&qspi->mspi_done); 902 903 slots = write_to_hw(qspi, spi); 904 if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) { 905 dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n"); 906 return -ETIMEDOUT; 907 } 908 909 read_from_hw(qspi, slots); 910 } 911 912 return 0; 913 } 914 915 static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi, 916 const struct spi_mem_op *op) 917 { 918 struct spi_master *master = spi->master; 919 struct bcm_qspi *qspi = spi_master_get_devdata(master); 920 struct spi_transfer t[2]; 921 u8 cmd[6] = { }; 922 int ret, i; 923 924 memset(cmd, 0, sizeof(cmd)); 925 memset(t, 0, sizeof(t)); 926 927 /* tx */ 928 /* opcode is in cmd[0] */ 929 cmd[0] = op->cmd.opcode; 930 for (i = 0; i < op->addr.nbytes; i++) 931 cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); 932 933 t[0].tx_buf = cmd; 934 t[0].len = op->addr.nbytes + op->dummy.nbytes + 1; 935 t[0].bits_per_word = spi->bits_per_word; 936 t[0].tx_nbits = op->cmd.buswidth; 937 /* lets mspi know that this is not last transfer */ 938 qspi->trans_pos.mspi_last_trans = false; 939 ret = bcm_qspi_transfer_one(master, spi, &t[0]); 940 941 /* rx */ 942 qspi->trans_pos.mspi_last_trans = true; 943 if (!ret) { 944 /* rx */ 945 t[1].rx_buf = op->data.buf.in; 946 t[1].len = op->data.nbytes; 947 t[1].rx_nbits = op->data.buswidth; 948 t[1].bits_per_word = spi->bits_per_word; 949 ret = bcm_qspi_transfer_one(master, spi, &t[1]); 950 } 951 952 return ret; 953 } 954 955 static int bcm_qspi_exec_mem_op(struct spi_mem *mem, 956 const struct spi_mem_op *op) 957 { 958 struct spi_device *spi = mem->spi; 959 struct bcm_qspi *qspi = spi_master_get_devdata(spi->master); 960 int ret = 0; 961 bool mspi_read = false; 962 u32 addr = 0, len; 963 u_char *buf; 964 965 if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 || 966 op->data.dir != SPI_MEM_DATA_IN) 967 return -ENOTSUPP; 968 969 buf = op->data.buf.in; 970 addr = op->addr.val; 971 len = op->data.nbytes; 972 973 if (bcm_qspi_bspi_ver_three(qspi) == true) { 974 /* 975 * The address coming into this function is a raw flash offset. 976 * But for BSPI <= V3, we need to convert it to a remapped BSPI 977 * address. If it crosses a 4MB boundary, just revert back to 978 * using MSPI. 979 */ 980 addr = (addr + 0xc00000) & 0xffffff; 981 982 if ((~ADDR_4MB_MASK & addr) ^ 983 (~ADDR_4MB_MASK & (addr + len - 1))) 984 mspi_read = true; 985 } 986 987 /* non-aligned and very short transfers are handled by MSPI */ 988 if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) || 989 len < 4) 990 mspi_read = true; 991 992 if (mspi_read) 993 return bcm_qspi_mspi_exec_mem_op(spi, op); 994 995 ret = bcm_qspi_bspi_set_mode(qspi, op, -1); 996 997 if (!ret) 998 ret = bcm_qspi_bspi_exec_mem_op(spi, op); 999 1000 return ret; 1001 } 1002 1003 static void bcm_qspi_cleanup(struct spi_device *spi) 1004 { 1005 struct bcm_qspi_parms *xp = spi_get_ctldata(spi); 1006 1007 kfree(xp); 1008 } 1009 1010 static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id) 1011 { 1012 struct bcm_qspi_dev_id *qspi_dev_id = dev_id; 1013 struct bcm_qspi *qspi = qspi_dev_id->dev; 1014 u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS); 1015 1016 if (status & MSPI_MSPI_STATUS_SPIF) { 1017 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc; 1018 /* clear interrupt */ 1019 status &= ~MSPI_MSPI_STATUS_SPIF; 1020 bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status); 1021 if (qspi->soc_intc) 1022 soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE); 1023 complete(&qspi->mspi_done); 1024 return IRQ_HANDLED; 1025 } 1026 1027 return IRQ_NONE; 1028 } 1029 1030 static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id) 1031 { 1032 struct bcm_qspi_dev_id *qspi_dev_id = dev_id; 1033 struct bcm_qspi *qspi = qspi_dev_id->dev; 1034 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc; 1035 u32 status = qspi_dev_id->irqp->mask; 1036 1037 if (qspi->bspi_enabled && qspi->bspi_rf_op) { 1038 bcm_qspi_bspi_lr_data_read(qspi); 1039 if (qspi->bspi_rf_op_len == 0) { 1040 qspi->bspi_rf_op = NULL; 1041 if (qspi->soc_intc) { 1042 /* disable soc BSPI interrupt */ 1043 soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, 1044 false); 1045 /* indicate done */ 1046 status = INTR_BSPI_LR_SESSION_DONE_MASK; 1047 } 1048 1049 if (qspi->bspi_rf_op_status) 1050 bcm_qspi_bspi_lr_clear(qspi); 1051 else 1052 bcm_qspi_bspi_flush_prefetch_buffers(qspi); 1053 } 1054 1055 if (qspi->soc_intc) 1056 /* clear soc BSPI interrupt */ 1057 soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE); 1058 } 1059 1060 status &= INTR_BSPI_LR_SESSION_DONE_MASK; 1061 if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0) 1062 complete(&qspi->bspi_done); 1063 1064 return IRQ_HANDLED; 1065 } 1066 1067 static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id) 1068 { 1069 struct bcm_qspi_dev_id *qspi_dev_id = dev_id; 1070 struct bcm_qspi *qspi = qspi_dev_id->dev; 1071 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc; 1072 1073 dev_err(&qspi->pdev->dev, "BSPI INT error\n"); 1074 qspi->bspi_rf_op_status = -EIO; 1075 if (qspi->soc_intc) 1076 /* clear soc interrupt */ 1077 soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR); 1078 1079 complete(&qspi->bspi_done); 1080 return IRQ_HANDLED; 1081 } 1082 1083 static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id) 1084 { 1085 struct bcm_qspi_dev_id *qspi_dev_id = dev_id; 1086 struct bcm_qspi *qspi = qspi_dev_id->dev; 1087 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc; 1088 irqreturn_t ret = IRQ_NONE; 1089 1090 if (soc_intc) { 1091 u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc); 1092 1093 if (status & MSPI_DONE) 1094 ret = bcm_qspi_mspi_l2_isr(irq, dev_id); 1095 else if (status & BSPI_DONE) 1096 ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id); 1097 else if (status & BSPI_ERR) 1098 ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id); 1099 } 1100 1101 return ret; 1102 } 1103 1104 static const struct bcm_qspi_irq qspi_irq_tab[] = { 1105 { 1106 .irq_name = "spi_lr_fullness_reached", 1107 .irq_handler = bcm_qspi_bspi_lr_l2_isr, 1108 .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK, 1109 }, 1110 { 1111 .irq_name = "spi_lr_session_aborted", 1112 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr, 1113 .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK, 1114 }, 1115 { 1116 .irq_name = "spi_lr_impatient", 1117 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr, 1118 .mask = INTR_BSPI_LR_IMPATIENT_MASK, 1119 }, 1120 { 1121 .irq_name = "spi_lr_session_done", 1122 .irq_handler = bcm_qspi_bspi_lr_l2_isr, 1123 .mask = INTR_BSPI_LR_SESSION_DONE_MASK, 1124 }, 1125 #ifdef QSPI_INT_DEBUG 1126 /* this interrupt is for debug purposes only, dont request irq */ 1127 { 1128 .irq_name = "spi_lr_overread", 1129 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr, 1130 .mask = INTR_BSPI_LR_OVERREAD_MASK, 1131 }, 1132 #endif 1133 { 1134 .irq_name = "mspi_done", 1135 .irq_handler = bcm_qspi_mspi_l2_isr, 1136 .mask = INTR_MSPI_DONE_MASK, 1137 }, 1138 { 1139 .irq_name = "mspi_halted", 1140 .irq_handler = bcm_qspi_mspi_l2_isr, 1141 .mask = INTR_MSPI_HALTED_MASK, 1142 }, 1143 { 1144 /* single muxed L1 interrupt source */ 1145 .irq_name = "spi_l1_intr", 1146 .irq_handler = bcm_qspi_l1_isr, 1147 .irq_source = MUXED_L1, 1148 .mask = QSPI_INTERRUPTS_ALL, 1149 }, 1150 }; 1151 1152 static void bcm_qspi_bspi_init(struct bcm_qspi *qspi) 1153 { 1154 u32 val = 0; 1155 1156 val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID); 1157 qspi->bspi_maj_rev = (val >> 8) & 0xff; 1158 qspi->bspi_min_rev = val & 0xff; 1159 if (!(bcm_qspi_bspi_ver_three(qspi))) { 1160 /* Force mapping of BSPI address -> flash offset */ 1161 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0); 1162 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1); 1163 } 1164 qspi->bspi_enabled = 1; 1165 bcm_qspi_disable_bspi(qspi); 1166 bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0); 1167 bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0); 1168 } 1169 1170 static void bcm_qspi_hw_init(struct bcm_qspi *qspi) 1171 { 1172 struct bcm_qspi_parms parms; 1173 1174 bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0); 1175 bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0); 1176 bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0); 1177 bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0); 1178 bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20); 1179 1180 parms.mode = SPI_MODE_3; 1181 parms.bits_per_word = 8; 1182 parms.speed_hz = qspi->max_speed_hz; 1183 bcm_qspi_hw_set_parms(qspi, &parms); 1184 1185 if (has_bspi(qspi)) 1186 bcm_qspi_bspi_init(qspi); 1187 } 1188 1189 static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi) 1190 { 1191 bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0); 1192 if (has_bspi(qspi)) 1193 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0); 1194 1195 } 1196 1197 static const struct spi_controller_mem_ops bcm_qspi_mem_ops = { 1198 .exec_op = bcm_qspi_exec_mem_op, 1199 }; 1200 1201 static const struct of_device_id bcm_qspi_of_match[] = { 1202 { .compatible = "brcm,spi-bcm-qspi" }, 1203 {}, 1204 }; 1205 MODULE_DEVICE_TABLE(of, bcm_qspi_of_match); 1206 1207 int bcm_qspi_probe(struct platform_device *pdev, 1208 struct bcm_qspi_soc_intc *soc_intc) 1209 { 1210 struct device *dev = &pdev->dev; 1211 struct bcm_qspi *qspi; 1212 struct spi_master *master; 1213 struct resource *res; 1214 int irq, ret = 0, num_ints = 0; 1215 u32 val; 1216 const char *name = NULL; 1217 int num_irqs = ARRAY_SIZE(qspi_irq_tab); 1218 1219 /* We only support device-tree instantiation */ 1220 if (!dev->of_node) 1221 return -ENODEV; 1222 1223 if (!of_match_node(bcm_qspi_of_match, dev->of_node)) 1224 return -ENODEV; 1225 1226 master = spi_alloc_master(dev, sizeof(struct bcm_qspi)); 1227 if (!master) { 1228 dev_err(dev, "error allocating spi_master\n"); 1229 return -ENOMEM; 1230 } 1231 1232 qspi = spi_master_get_devdata(master); 1233 qspi->pdev = pdev; 1234 qspi->trans_pos.trans = NULL; 1235 qspi->trans_pos.byte = 0; 1236 qspi->trans_pos.mspi_last_trans = true; 1237 qspi->master = master; 1238 1239 master->bus_num = -1; 1240 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD; 1241 master->setup = bcm_qspi_setup; 1242 master->transfer_one = bcm_qspi_transfer_one; 1243 master->mem_ops = &bcm_qspi_mem_ops; 1244 master->cleanup = bcm_qspi_cleanup; 1245 master->dev.of_node = dev->of_node; 1246 master->num_chipselect = NUM_CHIPSELECT; 1247 1248 qspi->big_endian = of_device_is_big_endian(dev->of_node); 1249 1250 if (!of_property_read_u32(dev->of_node, "num-cs", &val)) 1251 master->num_chipselect = val; 1252 1253 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi"); 1254 if (!res) 1255 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 1256 "mspi"); 1257 1258 if (res) { 1259 qspi->base[MSPI] = devm_ioremap_resource(dev, res); 1260 if (IS_ERR(qspi->base[MSPI])) { 1261 ret = PTR_ERR(qspi->base[MSPI]); 1262 goto qspi_resource_err; 1263 } 1264 } else { 1265 goto qspi_resource_err; 1266 } 1267 1268 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi"); 1269 if (res) { 1270 qspi->base[BSPI] = devm_ioremap_resource(dev, res); 1271 if (IS_ERR(qspi->base[BSPI])) { 1272 ret = PTR_ERR(qspi->base[BSPI]); 1273 goto qspi_resource_err; 1274 } 1275 qspi->bspi_mode = true; 1276 } else { 1277 qspi->bspi_mode = false; 1278 } 1279 1280 dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : ""); 1281 1282 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg"); 1283 if (res) { 1284 qspi->base[CHIP_SELECT] = devm_ioremap_resource(dev, res); 1285 if (IS_ERR(qspi->base[CHIP_SELECT])) { 1286 ret = PTR_ERR(qspi->base[CHIP_SELECT]); 1287 goto qspi_resource_err; 1288 } 1289 } 1290 1291 qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id), 1292 GFP_KERNEL); 1293 if (!qspi->dev_ids) { 1294 ret = -ENOMEM; 1295 goto qspi_resource_err; 1296 } 1297 1298 for (val = 0; val < num_irqs; val++) { 1299 irq = -1; 1300 name = qspi_irq_tab[val].irq_name; 1301 if (qspi_irq_tab[val].irq_source == SINGLE_L2) { 1302 /* get the l2 interrupts */ 1303 irq = platform_get_irq_byname(pdev, name); 1304 } else if (!num_ints && soc_intc) { 1305 /* all mspi, bspi intrs muxed to one L1 intr */ 1306 irq = platform_get_irq(pdev, 0); 1307 } 1308 1309 if (irq >= 0) { 1310 ret = devm_request_irq(&pdev->dev, irq, 1311 qspi_irq_tab[val].irq_handler, 0, 1312 name, 1313 &qspi->dev_ids[val]); 1314 if (ret < 0) { 1315 dev_err(&pdev->dev, "IRQ %s not found\n", name); 1316 goto qspi_probe_err; 1317 } 1318 1319 qspi->dev_ids[val].dev = qspi; 1320 qspi->dev_ids[val].irqp = &qspi_irq_tab[val]; 1321 num_ints++; 1322 dev_dbg(&pdev->dev, "registered IRQ %s %d\n", 1323 qspi_irq_tab[val].irq_name, 1324 irq); 1325 } 1326 } 1327 1328 if (!num_ints) { 1329 dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n"); 1330 ret = -EINVAL; 1331 goto qspi_probe_err; 1332 } 1333 1334 /* 1335 * Some SoCs integrate spi controller (e.g., its interrupt bits) 1336 * in specific ways 1337 */ 1338 if (soc_intc) { 1339 qspi->soc_intc = soc_intc; 1340 soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true); 1341 } else { 1342 qspi->soc_intc = NULL; 1343 } 1344 1345 qspi->clk = devm_clk_get(&pdev->dev, NULL); 1346 if (IS_ERR(qspi->clk)) { 1347 dev_warn(dev, "unable to get clock\n"); 1348 ret = PTR_ERR(qspi->clk); 1349 goto qspi_probe_err; 1350 } 1351 1352 ret = clk_prepare_enable(qspi->clk); 1353 if (ret) { 1354 dev_err(dev, "failed to prepare clock\n"); 1355 goto qspi_probe_err; 1356 } 1357 1358 qspi->base_clk = clk_get_rate(qspi->clk); 1359 qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2); 1360 1361 bcm_qspi_hw_init(qspi); 1362 init_completion(&qspi->mspi_done); 1363 init_completion(&qspi->bspi_done); 1364 qspi->curr_cs = -1; 1365 1366 platform_set_drvdata(pdev, qspi); 1367 1368 qspi->xfer_mode.width = -1; 1369 qspi->xfer_mode.addrlen = -1; 1370 qspi->xfer_mode.hp = -1; 1371 1372 ret = devm_spi_register_master(&pdev->dev, master); 1373 if (ret < 0) { 1374 dev_err(dev, "can't register master\n"); 1375 goto qspi_reg_err; 1376 } 1377 1378 return 0; 1379 1380 qspi_reg_err: 1381 bcm_qspi_hw_uninit(qspi); 1382 clk_disable_unprepare(qspi->clk); 1383 qspi_probe_err: 1384 kfree(qspi->dev_ids); 1385 qspi_resource_err: 1386 spi_master_put(master); 1387 return ret; 1388 } 1389 /* probe function to be called by SoC specific platform driver probe */ 1390 EXPORT_SYMBOL_GPL(bcm_qspi_probe); 1391 1392 int bcm_qspi_remove(struct platform_device *pdev) 1393 { 1394 struct bcm_qspi *qspi = platform_get_drvdata(pdev); 1395 1396 bcm_qspi_hw_uninit(qspi); 1397 clk_disable_unprepare(qspi->clk); 1398 kfree(qspi->dev_ids); 1399 spi_unregister_master(qspi->master); 1400 1401 return 0; 1402 } 1403 /* function to be called by SoC specific platform driver remove() */ 1404 EXPORT_SYMBOL_GPL(bcm_qspi_remove); 1405 1406 static int __maybe_unused bcm_qspi_suspend(struct device *dev) 1407 { 1408 struct bcm_qspi *qspi = dev_get_drvdata(dev); 1409 1410 /* store the override strap value */ 1411 if (!bcm_qspi_bspi_ver_three(qspi)) 1412 qspi->s3_strap_override_ctrl = 1413 bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL); 1414 1415 spi_master_suspend(qspi->master); 1416 clk_disable(qspi->clk); 1417 bcm_qspi_hw_uninit(qspi); 1418 1419 return 0; 1420 }; 1421 1422 static int __maybe_unused bcm_qspi_resume(struct device *dev) 1423 { 1424 struct bcm_qspi *qspi = dev_get_drvdata(dev); 1425 int ret = 0; 1426 1427 bcm_qspi_hw_init(qspi); 1428 bcm_qspi_chip_select(qspi, qspi->curr_cs); 1429 if (qspi->soc_intc) 1430 /* enable MSPI interrupt */ 1431 qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE, 1432 true); 1433 1434 ret = clk_enable(qspi->clk); 1435 if (!ret) 1436 spi_master_resume(qspi->master); 1437 1438 return ret; 1439 } 1440 1441 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume); 1442 1443 /* pm_ops to be called by SoC specific platform driver */ 1444 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops); 1445 1446 MODULE_AUTHOR("Kamal Dasu"); 1447 MODULE_DESCRIPTION("Broadcom QSPI driver"); 1448 MODULE_LICENSE("GPL v2"); 1449 MODULE_ALIAS("platform:" DRIVER_NAME); 1450