xref: /openbmc/linux/drivers/spi/spi-bcm-qspi.c (revision 0edeb899)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
4  *
5  * Copyright 2016 Broadcom
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/ioport.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_irq.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/spi/spi.h>
22 #include <linux/spi/spi-mem.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 #include "spi-bcm-qspi.h"
26 
27 #define DRIVER_NAME "bcm_qspi"
28 
29 
30 /* BSPI register offsets */
31 #define BSPI_REVISION_ID			0x000
32 #define BSPI_SCRATCH				0x004
33 #define BSPI_MAST_N_BOOT_CTRL			0x008
34 #define BSPI_BUSY_STATUS			0x00c
35 #define BSPI_INTR_STATUS			0x010
36 #define BSPI_B0_STATUS				0x014
37 #define BSPI_B0_CTRL				0x018
38 #define BSPI_B1_STATUS				0x01c
39 #define BSPI_B1_CTRL				0x020
40 #define BSPI_STRAP_OVERRIDE_CTRL		0x024
41 #define BSPI_FLEX_MODE_ENABLE			0x028
42 #define BSPI_BITS_PER_CYCLE			0x02c
43 #define BSPI_BITS_PER_PHASE			0x030
44 #define BSPI_CMD_AND_MODE_BYTE			0x034
45 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE	0x038
46 #define BSPI_BSPI_XOR_VALUE			0x03c
47 #define BSPI_BSPI_XOR_ENABLE			0x040
48 #define BSPI_BSPI_PIO_MODE_ENABLE		0x044
49 #define BSPI_BSPI_PIO_IODIR			0x048
50 #define BSPI_BSPI_PIO_DATA			0x04c
51 
52 /* RAF register offsets */
53 #define BSPI_RAF_START_ADDR			0x100
54 #define BSPI_RAF_NUM_WORDS			0x104
55 #define BSPI_RAF_CTRL				0x108
56 #define BSPI_RAF_FULLNESS			0x10c
57 #define BSPI_RAF_WATERMARK			0x110
58 #define BSPI_RAF_STATUS			0x114
59 #define BSPI_RAF_READ_DATA			0x118
60 #define BSPI_RAF_WORD_CNT			0x11c
61 #define BSPI_RAF_CURR_ADDR			0x120
62 
63 /* Override mode masks */
64 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE	BIT(0)
65 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL	BIT(1)
66 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE	BIT(2)
67 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD	BIT(3)
68 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE	BIT(4)
69 
70 #define BSPI_ADDRLEN_3BYTES			3
71 #define BSPI_ADDRLEN_4BYTES			4
72 
73 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK	BIT(1)
74 
75 #define BSPI_RAF_CTRL_START_MASK		BIT(0)
76 #define BSPI_RAF_CTRL_CLEAR_MASK		BIT(1)
77 
78 #define BSPI_BPP_MODE_SELECT_MASK		BIT(8)
79 #define BSPI_BPP_ADDR_SELECT_MASK		BIT(16)
80 
81 #define BSPI_READ_LENGTH			256
82 
83 /* MSPI register offsets */
84 #define MSPI_SPCR0_LSB				0x000
85 #define MSPI_SPCR0_MSB				0x004
86 #define MSPI_SPCR0_MSB_CPHA			BIT(0)
87 #define MSPI_SPCR0_MSB_CPOL			BIT(1)
88 #define MSPI_SPCR0_MSB_BITS_SHIFT		0x2
89 #define MSPI_SPCR1_LSB				0x008
90 #define MSPI_SPCR1_MSB				0x00c
91 #define MSPI_NEWQP				0x010
92 #define MSPI_ENDQP				0x014
93 #define MSPI_SPCR2				0x018
94 #define MSPI_MSPI_STATUS			0x020
95 #define MSPI_CPTQP				0x024
96 #define MSPI_SPCR3				0x028
97 #define MSPI_REV				0x02c
98 #define MSPI_TXRAM				0x040
99 #define MSPI_RXRAM				0x0c0
100 #define MSPI_CDRAM				0x140
101 #define MSPI_WRITE_LOCK			0x180
102 
103 #define MSPI_MASTER_BIT			BIT(7)
104 
105 #define MSPI_NUM_CDRAM				16
106 #define MSPI_CDRAM_OUTP				BIT(8)
107 #define MSPI_CDRAM_CONT_BIT			BIT(7)
108 #define MSPI_CDRAM_BITSE_BIT			BIT(6)
109 #define MSPI_CDRAM_DT_BIT			BIT(5)
110 #define MSPI_CDRAM_PCS				0xf
111 
112 #define MSPI_SPCR2_SPE				BIT(6)
113 #define MSPI_SPCR2_CONT_AFTER_CMD		BIT(7)
114 
115 #define MSPI_SPCR3_FASTBR			BIT(0)
116 #define MSPI_SPCR3_FASTDT			BIT(1)
117 #define MSPI_SPCR3_SYSCLKSEL_MASK		GENMASK(11, 10)
118 #define MSPI_SPCR3_SYSCLKSEL_27			(MSPI_SPCR3_SYSCLKSEL_MASK & \
119 						 ~(BIT(10) | BIT(11)))
120 #define MSPI_SPCR3_SYSCLKSEL_108		(MSPI_SPCR3_SYSCLKSEL_MASK & \
121 						 BIT(11))
122 #define MSPI_SPCR3_TXRXDAM_MASK			GENMASK(4, 2)
123 #define MSPI_SPCR3_DAM_8BYTE			0
124 #define MSPI_SPCR3_DAM_16BYTE			(BIT(2) | BIT(4))
125 #define MSPI_SPCR3_DAM_32BYTE			(BIT(3) | BIT(5))
126 #define MSPI_SPCR3_HALFDUPLEX			BIT(6)
127 #define MSPI_SPCR3_HDOUTTYPE			BIT(7)
128 #define MSPI_SPCR3_DATA_REG_SZ			BIT(8)
129 #define MSPI_SPCR3_CPHARX			BIT(9)
130 
131 #define MSPI_MSPI_STATUS_SPIF			BIT(0)
132 
133 #define INTR_BASE_BIT_SHIFT			0x02
134 #define INTR_COUNT				0x07
135 
136 #define NUM_CHIPSELECT				4
137 #define QSPI_SPBR_MAX				255U
138 #define MSPI_BASE_FREQ				27000000UL
139 
140 #define OPCODE_DIOR				0xBB
141 #define OPCODE_QIOR				0xEB
142 #define OPCODE_DIOR_4B				0xBC
143 #define OPCODE_QIOR_4B				0xEC
144 
145 #define MAX_CMD_SIZE				6
146 
147 #define ADDR_4MB_MASK				GENMASK(22, 0)
148 
149 /* stop at end of transfer, no other reason */
150 #define TRANS_STATUS_BREAK_NONE		0
151 /* stop at end of spi_message */
152 #define TRANS_STATUS_BREAK_EOM			1
153 /* stop at end of spi_transfer if delay */
154 #define TRANS_STATUS_BREAK_DELAY		2
155 /* stop at end of spi_transfer if cs_change */
156 #define TRANS_STATUS_BREAK_CS_CHANGE		4
157 /* stop if we run out of bytes */
158 #define TRANS_STATUS_BREAK_NO_BYTES		8
159 
160 /* events that make us stop filling TX slots */
161 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |		\
162 			       TRANS_STATUS_BREAK_DELAY |		\
163 			       TRANS_STATUS_BREAK_CS_CHANGE)
164 
165 /* events that make us deassert CS */
166 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |		\
167 				     TRANS_STATUS_BREAK_CS_CHANGE)
168 
169 /*
170  * Used for writing and reading data in the right order
171  * to TXRAM and RXRAM when used as 32-bit registers respectively
172  */
173 #define swap4bytes(__val) \
174 	((((__val) >> 24) & 0x000000FF) | (((__val) >>  8) & 0x0000FF00) | \
175 	 (((__val) <<  8) & 0x00FF0000) | (((__val) << 24) & 0xFF000000))
176 
177 struct bcm_qspi_parms {
178 	u32 speed_hz;
179 	u8 mode;
180 	u8 bits_per_word;
181 };
182 
183 struct bcm_xfer_mode {
184 	bool flex_mode;
185 	unsigned int width;
186 	unsigned int addrlen;
187 	unsigned int hp;
188 };
189 
190 enum base_type {
191 	MSPI,
192 	BSPI,
193 	CHIP_SELECT,
194 	BASEMAX,
195 };
196 
197 enum irq_source {
198 	SINGLE_L2,
199 	MUXED_L1,
200 };
201 
202 struct bcm_qspi_irq {
203 	const char *irq_name;
204 	const irq_handler_t irq_handler;
205 	int irq_source;
206 	u32 mask;
207 };
208 
209 struct bcm_qspi_dev_id {
210 	const struct bcm_qspi_irq *irqp;
211 	void *dev;
212 };
213 
214 
215 struct qspi_trans {
216 	struct spi_transfer *trans;
217 	int byte;
218 	bool mspi_last_trans;
219 };
220 
221 struct bcm_qspi {
222 	struct platform_device *pdev;
223 	struct spi_master *master;
224 	struct clk *clk;
225 	u32 base_clk;
226 	u32 max_speed_hz;
227 	void __iomem *base[BASEMAX];
228 
229 	/* Some SoCs provide custom interrupt status register(s) */
230 	struct bcm_qspi_soc_intc	*soc_intc;
231 
232 	struct bcm_qspi_parms last_parms;
233 	struct qspi_trans  trans_pos;
234 	int curr_cs;
235 	int bspi_maj_rev;
236 	int bspi_min_rev;
237 	int bspi_enabled;
238 	const struct spi_mem_op *bspi_rf_op;
239 	u32 bspi_rf_op_idx;
240 	u32 bspi_rf_op_len;
241 	u32 bspi_rf_op_status;
242 	struct bcm_xfer_mode xfer_mode;
243 	u32 s3_strap_override_ctrl;
244 	bool bspi_mode;
245 	bool big_endian;
246 	int num_irqs;
247 	struct bcm_qspi_dev_id *dev_ids;
248 	struct completion mspi_done;
249 	struct completion bspi_done;
250 	u8 mspi_maj_rev;
251 	u8 mspi_min_rev;
252 	bool mspi_spcr3_sysclk;
253 };
254 
255 static inline bool has_bspi(struct bcm_qspi *qspi)
256 {
257 	return qspi->bspi_mode;
258 }
259 
260 /* hardware supports spcr3 and fast baud-rate  */
261 static inline bool bcm_qspi_has_fastbr(struct bcm_qspi *qspi)
262 {
263 	if (!has_bspi(qspi) &&
264 	    ((qspi->mspi_maj_rev >= 1) &&
265 	     (qspi->mspi_min_rev >= 5)))
266 		return true;
267 
268 	return false;
269 }
270 
271 /* hardware supports sys clk 108Mhz  */
272 static inline bool bcm_qspi_has_sysclk_108(struct bcm_qspi *qspi)
273 {
274 	if (!has_bspi(qspi) && (qspi->mspi_spcr3_sysclk ||
275 	    ((qspi->mspi_maj_rev >= 1) &&
276 	     (qspi->mspi_min_rev >= 6))))
277 		return true;
278 
279 	return false;
280 }
281 
282 static inline int bcm_qspi_spbr_min(struct bcm_qspi *qspi)
283 {
284 	if (bcm_qspi_has_fastbr(qspi))
285 		return (bcm_qspi_has_sysclk_108(qspi) ? 4 : 1);
286 	else
287 		return 8;
288 }
289 
290 /* Read qspi controller register*/
291 static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
292 				unsigned int offset)
293 {
294 	return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
295 }
296 
297 /* Write qspi controller register*/
298 static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
299 				  unsigned int offset, unsigned int data)
300 {
301 	bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
302 }
303 
304 /* BSPI helpers */
305 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
306 {
307 	int i;
308 
309 	/* this should normally finish within 10us */
310 	for (i = 0; i < 1000; i++) {
311 		if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
312 			return 0;
313 		udelay(1);
314 	}
315 	dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
316 	return -EIO;
317 }
318 
319 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
320 {
321 	if (qspi->bspi_maj_rev < 4)
322 		return true;
323 	return false;
324 }
325 
326 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
327 {
328 	bcm_qspi_bspi_busy_poll(qspi);
329 	/* Force rising edge for the b0/b1 'flush' field */
330 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
331 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
332 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
333 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
334 }
335 
336 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
337 {
338 	return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
339 				BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
340 }
341 
342 static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
343 {
344 	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
345 
346 	/* BSPI v3 LR is LE only, convert data to host endianness */
347 	if (bcm_qspi_bspi_ver_three(qspi))
348 		data = le32_to_cpu(data);
349 
350 	return data;
351 }
352 
353 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
354 {
355 	bcm_qspi_bspi_busy_poll(qspi);
356 	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
357 		       BSPI_RAF_CTRL_START_MASK);
358 }
359 
360 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
361 {
362 	bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
363 		       BSPI_RAF_CTRL_CLEAR_MASK);
364 	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
365 }
366 
367 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
368 {
369 	u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
370 	u32 data = 0;
371 
372 	dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
373 		qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
374 	while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
375 		data = bcm_qspi_bspi_lr_read_fifo(qspi);
376 		if (likely(qspi->bspi_rf_op_len >= 4) &&
377 		    IS_ALIGNED((uintptr_t)buf, 4)) {
378 			buf[qspi->bspi_rf_op_idx++] = data;
379 			qspi->bspi_rf_op_len -= 4;
380 		} else {
381 			/* Read out remaining bytes, make sure*/
382 			u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
383 
384 			data = cpu_to_le32(data);
385 			while (qspi->bspi_rf_op_len) {
386 				*cbuf++ = (u8)data;
387 				data >>= 8;
388 				qspi->bspi_rf_op_len--;
389 			}
390 		}
391 	}
392 }
393 
394 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
395 					  int bpp, int bpc, int flex_mode)
396 {
397 	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
398 	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
399 	bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
400 	bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
401 	bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
402 }
403 
404 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
405 				       const struct spi_mem_op *op, int hp)
406 {
407 	int bpc = 0, bpp = 0;
408 	u8 command = op->cmd.opcode;
409 	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
410 	int addrlen = op->addr.nbytes;
411 	int flex_mode = 1;
412 
413 	dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
414 		width, addrlen, hp);
415 
416 	if (addrlen == BSPI_ADDRLEN_4BYTES)
417 		bpp = BSPI_BPP_ADDR_SELECT_MASK;
418 
419 	if (op->dummy.nbytes)
420 		bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
421 
422 	switch (width) {
423 	case SPI_NBITS_SINGLE:
424 		if (addrlen == BSPI_ADDRLEN_3BYTES)
425 			/* default mode, does not need flex_cmd */
426 			flex_mode = 0;
427 		break;
428 	case SPI_NBITS_DUAL:
429 		bpc = 0x00000001;
430 		if (hp) {
431 			bpc |= 0x00010100; /* address and mode are 2-bit */
432 			bpp = BSPI_BPP_MODE_SELECT_MASK;
433 		}
434 		break;
435 	case SPI_NBITS_QUAD:
436 		bpc = 0x00000002;
437 		if (hp) {
438 			bpc |= 0x00020200; /* address and mode are 4-bit */
439 			bpp |= BSPI_BPP_MODE_SELECT_MASK;
440 		}
441 		break;
442 	default:
443 		return -EINVAL;
444 	}
445 
446 	bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
447 
448 	return 0;
449 }
450 
451 static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
452 				      const struct spi_mem_op *op, int hp)
453 {
454 	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
455 	int addrlen = op->addr.nbytes;
456 	u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
457 
458 	dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
459 		width, addrlen, hp);
460 
461 	switch (width) {
462 	case SPI_NBITS_SINGLE:
463 		/* clear quad/dual mode */
464 		data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
465 			  BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
466 		break;
467 	case SPI_NBITS_QUAD:
468 		/* clear dual mode and set quad mode */
469 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
470 		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
471 		break;
472 	case SPI_NBITS_DUAL:
473 		/* clear quad mode set dual mode */
474 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
475 		data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
476 		break;
477 	default:
478 		return -EINVAL;
479 	}
480 
481 	if (addrlen == BSPI_ADDRLEN_4BYTES)
482 		/* set 4byte mode*/
483 		data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
484 	else
485 		/* clear 4 byte mode */
486 		data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
487 
488 	/* set the override mode */
489 	data |=	BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
490 	bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
491 	bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
492 
493 	return 0;
494 }
495 
496 static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
497 				  const struct spi_mem_op *op, int hp)
498 {
499 	int error = 0;
500 	int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
501 	int addrlen = op->addr.nbytes;
502 
503 	/* default mode */
504 	qspi->xfer_mode.flex_mode = true;
505 
506 	if (!bcm_qspi_bspi_ver_three(qspi)) {
507 		u32 val, mask;
508 
509 		val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
510 		mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
511 		if (val & mask || qspi->s3_strap_override_ctrl & mask) {
512 			qspi->xfer_mode.flex_mode = false;
513 			bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
514 			error = bcm_qspi_bspi_set_override(qspi, op, hp);
515 		}
516 	}
517 
518 	if (qspi->xfer_mode.flex_mode)
519 		error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
520 
521 	if (error) {
522 		dev_warn(&qspi->pdev->dev,
523 			 "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
524 			 width, addrlen, hp);
525 	} else if (qspi->xfer_mode.width != width ||
526 		   qspi->xfer_mode.addrlen != addrlen ||
527 		   qspi->xfer_mode.hp != hp) {
528 		qspi->xfer_mode.width = width;
529 		qspi->xfer_mode.addrlen = addrlen;
530 		qspi->xfer_mode.hp = hp;
531 		dev_dbg(&qspi->pdev->dev,
532 			"cs:%d %d-lane output, %d-byte address%s\n",
533 			qspi->curr_cs,
534 			qspi->xfer_mode.width,
535 			qspi->xfer_mode.addrlen,
536 			qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
537 	}
538 
539 	return error;
540 }
541 
542 static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
543 {
544 	if (!has_bspi(qspi))
545 		return;
546 
547 	qspi->bspi_enabled = 1;
548 	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
549 		return;
550 
551 	bcm_qspi_bspi_flush_prefetch_buffers(qspi);
552 	udelay(1);
553 	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
554 	udelay(1);
555 }
556 
557 static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
558 {
559 	if (!has_bspi(qspi))
560 		return;
561 
562 	qspi->bspi_enabled = 0;
563 	if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
564 		return;
565 
566 	bcm_qspi_bspi_busy_poll(qspi);
567 	bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
568 	udelay(1);
569 }
570 
571 static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
572 {
573 	u32 rd = 0;
574 	u32 wr = 0;
575 
576 	if (qspi->base[CHIP_SELECT]) {
577 		rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
578 		wr = (rd & ~0xff) | (1 << cs);
579 		if (rd == wr)
580 			return;
581 		bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
582 		usleep_range(10, 20);
583 	}
584 
585 	dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
586 	qspi->curr_cs = cs;
587 }
588 
589 /* MSPI helpers */
590 static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
591 				  const struct bcm_qspi_parms *xp)
592 {
593 	u32 spcr, spbr = 0;
594 
595 	if (!qspi->mspi_maj_rev)
596 		/* legacy controller */
597 		spcr = MSPI_MASTER_BIT;
598 	else
599 		spcr = 0;
600 
601 	/*
602 	 * Bits per transfer.  BITS determines the number of data bits
603 	 * transferred if the command control bit (BITSE of a
604 	 * CDRAM Register) is equal to 1.
605 	 * If CDRAM BITSE is equal to 0, 8 data bits are transferred
606 	 * regardless
607 	 */
608 	if (xp->bits_per_word != 16 && xp->bits_per_word != 64)
609 		spcr |= xp->bits_per_word << MSPI_SPCR0_MSB_BITS_SHIFT;
610 
611 	spcr |= xp->mode & (MSPI_SPCR0_MSB_CPHA | MSPI_SPCR0_MSB_CPOL);
612 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
613 
614 	if (bcm_qspi_has_fastbr(qspi)) {
615 		spcr = 0;
616 
617 		/* enable fastbr */
618 		spcr |=	MSPI_SPCR3_FASTBR;
619 
620 		if (xp->mode & SPI_3WIRE)
621 			spcr |= MSPI_SPCR3_HALFDUPLEX |  MSPI_SPCR3_HDOUTTYPE;
622 
623 		if (bcm_qspi_has_sysclk_108(qspi)) {
624 			/* SYSCLK_108 */
625 			spcr |= MSPI_SPCR3_SYSCLKSEL_108;
626 			qspi->base_clk = MSPI_BASE_FREQ * 4;
627 		}
628 
629 		if (xp->bits_per_word > 16) {
630 			/* data_reg_size 1 (64bit) */
631 			spcr |=	MSPI_SPCR3_DATA_REG_SZ;
632 			/* TxRx RAM data access mode 2 for 32B and set fastdt */
633 			spcr |=	MSPI_SPCR3_DAM_32BYTE  | MSPI_SPCR3_FASTDT;
634 			/*
635 			 *  Set length of delay after transfer
636 			 *  DTL from 0(256) to 1
637 			 */
638 			bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 1);
639 		} else {
640 			/* data_reg_size[8] = 0 */
641 			spcr &=	~(MSPI_SPCR3_DATA_REG_SZ);
642 
643 			/*
644 			 * TxRx RAM access mode 8B
645 			 * and disable fastdt
646 			 */
647 			spcr &= ~(MSPI_SPCR3_DAM_32BYTE);
648 		}
649 		bcm_qspi_write(qspi, MSPI, MSPI_SPCR3, spcr);
650 	}
651 
652 	if (xp->speed_hz)
653 		spbr = qspi->base_clk / (2 * xp->speed_hz);
654 
655 	spbr = clamp_val(spbr, bcm_qspi_spbr_min(qspi), QSPI_SPBR_MAX);
656 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spbr);
657 
658 	qspi->last_parms = *xp;
659 }
660 
661 static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
662 				  struct spi_device *spi,
663 				  struct spi_transfer *trans)
664 {
665 	struct bcm_qspi_parms xp;
666 
667 	xp.speed_hz = trans->speed_hz;
668 	xp.bits_per_word = trans->bits_per_word;
669 	xp.mode = spi->mode;
670 
671 	bcm_qspi_hw_set_parms(qspi, &xp);
672 }
673 
674 static int bcm_qspi_setup(struct spi_device *spi)
675 {
676 	struct bcm_qspi_parms *xp;
677 
678 	if (spi->bits_per_word > 64)
679 		return -EINVAL;
680 
681 	xp = spi_get_ctldata(spi);
682 	if (!xp) {
683 		xp = kzalloc(sizeof(*xp), GFP_KERNEL);
684 		if (!xp)
685 			return -ENOMEM;
686 		spi_set_ctldata(spi, xp);
687 	}
688 	xp->speed_hz = spi->max_speed_hz;
689 	xp->mode = spi->mode;
690 
691 	if (spi->bits_per_word)
692 		xp->bits_per_word = spi->bits_per_word;
693 	else
694 		xp->bits_per_word = 8;
695 
696 	return 0;
697 }
698 
699 static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
700 					   struct qspi_trans *qt)
701 {
702 	if (qt->mspi_last_trans &&
703 	    spi_transfer_is_last(qspi->master, qt->trans))
704 		return true;
705 	else
706 		return false;
707 }
708 
709 static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
710 					struct qspi_trans *qt, int flags)
711 {
712 	int ret = TRANS_STATUS_BREAK_NONE;
713 
714 	/* count the last transferred bytes */
715 	if (qt->trans->bits_per_word <= 8)
716 		qt->byte++;
717 	else if (qt->trans->bits_per_word <= 16)
718 		qt->byte += 2;
719 	else if (qt->trans->bits_per_word <= 32)
720 		qt->byte += 4;
721 	else if (qt->trans->bits_per_word <= 64)
722 		qt->byte += 8;
723 
724 	if (qt->byte >= qt->trans->len) {
725 		/* we're at the end of the spi_transfer */
726 		/* in TX mode, need to pause for a delay or CS change */
727 		if (qt->trans->delay.value &&
728 		    (flags & TRANS_STATUS_BREAK_DELAY))
729 			ret |= TRANS_STATUS_BREAK_DELAY;
730 		if (qt->trans->cs_change &&
731 		    (flags & TRANS_STATUS_BREAK_CS_CHANGE))
732 			ret |= TRANS_STATUS_BREAK_CS_CHANGE;
733 
734 		if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
735 			ret |= TRANS_STATUS_BREAK_EOM;
736 		else
737 			ret |= TRANS_STATUS_BREAK_NO_BYTES;
738 
739 		qt->trans = NULL;
740 	}
741 
742 	dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
743 		qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
744 	return ret;
745 }
746 
747 static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
748 {
749 	u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
750 
751 	/* mask out reserved bits */
752 	return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
753 }
754 
755 static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
756 {
757 	u32 reg_offset = MSPI_RXRAM;
758 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
759 	u32 msb_offset = reg_offset + (slot << 3);
760 
761 	return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
762 		((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
763 }
764 
765 static inline u32 read_rxram_slot_u32(struct bcm_qspi *qspi, int slot)
766 {
767 	u32 reg_offset = MSPI_RXRAM;
768 	u32 offset = reg_offset + (slot << 3);
769 	u32 val;
770 
771 	val = bcm_qspi_read(qspi, MSPI, offset);
772 	val = swap4bytes(val);
773 
774 	return val;
775 }
776 
777 static inline u64 read_rxram_slot_u64(struct bcm_qspi *qspi, int slot)
778 {
779 	u32 reg_offset = MSPI_RXRAM;
780 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
781 	u32 msb_offset = reg_offset + (slot << 3);
782 	u32 msb, lsb;
783 
784 	msb = bcm_qspi_read(qspi, MSPI, msb_offset);
785 	msb = swap4bytes(msb);
786 	lsb = bcm_qspi_read(qspi, MSPI, lsb_offset);
787 	lsb = swap4bytes(lsb);
788 
789 	return ((u64)msb << 32 | lsb);
790 }
791 
792 static void read_from_hw(struct bcm_qspi *qspi, int slots)
793 {
794 	struct qspi_trans tp;
795 	int slot;
796 
797 	bcm_qspi_disable_bspi(qspi);
798 
799 	if (slots > MSPI_NUM_CDRAM) {
800 		/* should never happen */
801 		dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
802 		return;
803 	}
804 
805 	tp = qspi->trans_pos;
806 
807 	for (slot = 0; slot < slots; slot++) {
808 		if (tp.trans->bits_per_word <= 8) {
809 			u8 *buf = tp.trans->rx_buf;
810 
811 			if (buf)
812 				buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
813 			dev_dbg(&qspi->pdev->dev, "RD %02x\n",
814 				buf ? buf[tp.byte] : 0x0);
815 		} else if (tp.trans->bits_per_word <= 16) {
816 			u16 *buf = tp.trans->rx_buf;
817 
818 			if (buf)
819 				buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
820 								      slot);
821 			dev_dbg(&qspi->pdev->dev, "RD %04x\n",
822 				buf ? buf[tp.byte / 2] : 0x0);
823 		} else if (tp.trans->bits_per_word <= 32) {
824 			u32 *buf = tp.trans->rx_buf;
825 
826 			if (buf)
827 				buf[tp.byte / 4] = read_rxram_slot_u32(qspi,
828 								      slot);
829 			dev_dbg(&qspi->pdev->dev, "RD %08x\n",
830 				buf ? buf[tp.byte / 4] : 0x0);
831 
832 		} else if (tp.trans->bits_per_word <= 64) {
833 			u64 *buf = tp.trans->rx_buf;
834 
835 			if (buf)
836 				buf[tp.byte / 8] = read_rxram_slot_u64(qspi,
837 								      slot);
838 			dev_dbg(&qspi->pdev->dev, "RD %llx\n",
839 				buf ? buf[tp.byte / 8] : 0x0);
840 
841 
842 		}
843 
844 		update_qspi_trans_byte_count(qspi, &tp,
845 					     TRANS_STATUS_BREAK_NONE);
846 	}
847 
848 	qspi->trans_pos = tp;
849 }
850 
851 static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
852 				       u8 val)
853 {
854 	u32 reg_offset = MSPI_TXRAM + (slot << 3);
855 
856 	/* mask out reserved bits */
857 	bcm_qspi_write(qspi, MSPI, reg_offset, val);
858 }
859 
860 static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
861 					u16 val)
862 {
863 	u32 reg_offset = MSPI_TXRAM;
864 	u32 msb_offset = reg_offset + (slot << 3);
865 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
866 
867 	bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
868 	bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
869 }
870 
871 static inline void write_txram_slot_u32(struct bcm_qspi *qspi, int slot,
872 					u32 val)
873 {
874 	u32 reg_offset = MSPI_TXRAM;
875 	u32 msb_offset = reg_offset + (slot << 3);
876 
877 	bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(val));
878 }
879 
880 static inline void write_txram_slot_u64(struct bcm_qspi *qspi, int slot,
881 					u64 val)
882 {
883 	u32 reg_offset = MSPI_TXRAM;
884 	u32 msb_offset = reg_offset + (slot << 3);
885 	u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
886 	u32 msb = upper_32_bits(val);
887 	u32 lsb = lower_32_bits(val);
888 
889 	bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(msb));
890 	bcm_qspi_write(qspi, MSPI, lsb_offset, swap4bytes(lsb));
891 }
892 
893 static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
894 {
895 	return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
896 }
897 
898 static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
899 {
900 	bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
901 }
902 
903 /* Return number of slots written */
904 static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
905 {
906 	struct qspi_trans tp;
907 	int slot = 0, tstatus = 0;
908 	u32 mspi_cdram = 0;
909 
910 	bcm_qspi_disable_bspi(qspi);
911 	tp = qspi->trans_pos;
912 	bcm_qspi_update_parms(qspi, spi, tp.trans);
913 
914 	/* Run until end of transfer or reached the max data */
915 	while (!tstatus && slot < MSPI_NUM_CDRAM) {
916 		mspi_cdram = MSPI_CDRAM_CONT_BIT;
917 		if (tp.trans->bits_per_word <= 8) {
918 			const u8 *buf = tp.trans->tx_buf;
919 			u8 val = buf ? buf[tp.byte] : 0x00;
920 
921 			write_txram_slot_u8(qspi, slot, val);
922 			dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
923 		} else if (tp.trans->bits_per_word <= 16) {
924 			const u16 *buf = tp.trans->tx_buf;
925 			u16 val = buf ? buf[tp.byte / 2] : 0x0000;
926 
927 			write_txram_slot_u16(qspi, slot, val);
928 			dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
929 		} else if (tp.trans->bits_per_word <= 32) {
930 			const u32 *buf = tp.trans->tx_buf;
931 			u32 val = buf ? buf[tp.byte/4] : 0x0;
932 
933 			write_txram_slot_u32(qspi, slot, val);
934 			dev_dbg(&qspi->pdev->dev, "WR %08x\n", val);
935 		} else if (tp.trans->bits_per_word <= 64) {
936 			const u64 *buf = tp.trans->tx_buf;
937 			u64 val = (buf ? buf[tp.byte/8] : 0x0);
938 
939 			/* use the length of delay from SPCR1_LSB */
940 			if (bcm_qspi_has_fastbr(qspi))
941 				mspi_cdram |= MSPI_CDRAM_DT_BIT;
942 
943 			write_txram_slot_u64(qspi, slot, val);
944 			dev_dbg(&qspi->pdev->dev, "WR %llx\n", val);
945 		}
946 
947 		mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
948 			       MSPI_CDRAM_BITSE_BIT);
949 
950 		/* set 3wrire halfduplex mode data from master to slave */
951 		if ((spi->mode & SPI_3WIRE) && tp.trans->tx_buf)
952 			mspi_cdram |= MSPI_CDRAM_OUTP;
953 
954 		if (has_bspi(qspi))
955 			mspi_cdram &= ~1;
956 		else
957 			mspi_cdram |= (~(1 << spi->chip_select) &
958 				       MSPI_CDRAM_PCS);
959 
960 		write_cdram_slot(qspi, slot, mspi_cdram);
961 
962 		tstatus = update_qspi_trans_byte_count(qspi, &tp,
963 						       TRANS_STATUS_BREAK_TX);
964 		slot++;
965 	}
966 
967 	if (!slot) {
968 		dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
969 		goto done;
970 	}
971 
972 	dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
973 	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
974 	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
975 
976 	/*
977 	 *  case 1) EOM =1, cs_change =0: SSb inactive
978 	 *  case 2) EOM =1, cs_change =1: SSb stay active
979 	 *  case 3) EOM =0, cs_change =0: SSb stay active
980 	 *  case 4) EOM =0, cs_change =1: SSb inactive
981 	 */
982 	if (((tstatus & TRANS_STATUS_BREAK_DESELECT)
983 	     == TRANS_STATUS_BREAK_CS_CHANGE) ||
984 	    ((tstatus & TRANS_STATUS_BREAK_DESELECT)
985 	     == TRANS_STATUS_BREAK_EOM)) {
986 		mspi_cdram = read_cdram_slot(qspi, slot - 1) &
987 			~MSPI_CDRAM_CONT_BIT;
988 		write_cdram_slot(qspi, slot - 1, mspi_cdram);
989 	}
990 
991 	if (has_bspi(qspi))
992 		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
993 
994 	/* Must flush previous writes before starting MSPI operation */
995 	mb();
996 	/* Set cont | spe | spifie */
997 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
998 
999 done:
1000 	return slot;
1001 }
1002 
1003 static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
1004 				     const struct spi_mem_op *op)
1005 {
1006 	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
1007 	u32 addr = 0, len, rdlen, len_words, from = 0;
1008 	int ret = 0;
1009 	unsigned long timeo = msecs_to_jiffies(100);
1010 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1011 
1012 	if (bcm_qspi_bspi_ver_three(qspi))
1013 		if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
1014 			return -EIO;
1015 
1016 	from = op->addr.val;
1017 	if (!spi->cs_gpiod)
1018 		bcm_qspi_chip_select(qspi, spi->chip_select);
1019 	bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1020 
1021 	/*
1022 	 * when using flex mode we need to send
1023 	 * the upper address byte to bspi
1024 	 */
1025 	if (!bcm_qspi_bspi_ver_three(qspi)) {
1026 		addr = from & 0xff000000;
1027 		bcm_qspi_write(qspi, BSPI,
1028 			       BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
1029 	}
1030 
1031 	if (!qspi->xfer_mode.flex_mode)
1032 		addr = from;
1033 	else
1034 		addr = from & 0x00ffffff;
1035 
1036 	if (bcm_qspi_bspi_ver_three(qspi) == true)
1037 		addr = (addr + 0xc00000) & 0xffffff;
1038 
1039 	/*
1040 	 * read into the entire buffer by breaking the reads
1041 	 * into RAF buffer read lengths
1042 	 */
1043 	len = op->data.nbytes;
1044 	qspi->bspi_rf_op_idx = 0;
1045 
1046 	do {
1047 		if (len > BSPI_READ_LENGTH)
1048 			rdlen = BSPI_READ_LENGTH;
1049 		else
1050 			rdlen = len;
1051 
1052 		reinit_completion(&qspi->bspi_done);
1053 		bcm_qspi_enable_bspi(qspi);
1054 		len_words = (rdlen + 3) >> 2;
1055 		qspi->bspi_rf_op = op;
1056 		qspi->bspi_rf_op_status = 0;
1057 		qspi->bspi_rf_op_len = rdlen;
1058 		dev_dbg(&qspi->pdev->dev,
1059 			"bspi xfr addr 0x%x len 0x%x", addr, rdlen);
1060 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
1061 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
1062 		bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
1063 		if (qspi->soc_intc) {
1064 			/*
1065 			 * clear soc MSPI and BSPI interrupts and enable
1066 			 * BSPI interrupts.
1067 			 */
1068 			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
1069 			soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
1070 		}
1071 
1072 		/* Must flush previous writes before starting BSPI operation */
1073 		mb();
1074 		bcm_qspi_bspi_lr_start(qspi);
1075 		if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
1076 			dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
1077 			ret = -ETIMEDOUT;
1078 			break;
1079 		}
1080 
1081 		/* set msg return length */
1082 		addr += rdlen;
1083 		len -= rdlen;
1084 	} while (len);
1085 
1086 	return ret;
1087 }
1088 
1089 static int bcm_qspi_transfer_one(struct spi_master *master,
1090 				 struct spi_device *spi,
1091 				 struct spi_transfer *trans)
1092 {
1093 	struct bcm_qspi *qspi = spi_master_get_devdata(master);
1094 	int slots;
1095 	unsigned long timeo = msecs_to_jiffies(100);
1096 
1097 	if (!spi->cs_gpiod)
1098 		bcm_qspi_chip_select(qspi, spi->chip_select);
1099 	qspi->trans_pos.trans = trans;
1100 	qspi->trans_pos.byte = 0;
1101 
1102 	while (qspi->trans_pos.byte < trans->len) {
1103 		reinit_completion(&qspi->mspi_done);
1104 
1105 		slots = write_to_hw(qspi, spi);
1106 		if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
1107 			dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
1108 			return -ETIMEDOUT;
1109 		}
1110 
1111 		read_from_hw(qspi, slots);
1112 	}
1113 	bcm_qspi_enable_bspi(qspi);
1114 
1115 	return 0;
1116 }
1117 
1118 static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
1119 				     const struct spi_mem_op *op)
1120 {
1121 	struct spi_master *master = spi->master;
1122 	struct bcm_qspi *qspi = spi_master_get_devdata(master);
1123 	struct spi_transfer t[2];
1124 	u8 cmd[6] = { };
1125 	int ret, i;
1126 
1127 	memset(cmd, 0, sizeof(cmd));
1128 	memset(t, 0, sizeof(t));
1129 
1130 	/* tx */
1131 	/* opcode is in cmd[0] */
1132 	cmd[0] = op->cmd.opcode;
1133 	for (i = 0; i < op->addr.nbytes; i++)
1134 		cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
1135 
1136 	t[0].tx_buf = cmd;
1137 	t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
1138 	t[0].bits_per_word = spi->bits_per_word;
1139 	t[0].tx_nbits = op->cmd.buswidth;
1140 	/* lets mspi know that this is not last transfer */
1141 	qspi->trans_pos.mspi_last_trans = false;
1142 	ret = bcm_qspi_transfer_one(master, spi, &t[0]);
1143 
1144 	/* rx */
1145 	qspi->trans_pos.mspi_last_trans = true;
1146 	if (!ret) {
1147 		/* rx */
1148 		t[1].rx_buf = op->data.buf.in;
1149 		t[1].len = op->data.nbytes;
1150 		t[1].rx_nbits =  op->data.buswidth;
1151 		t[1].bits_per_word = spi->bits_per_word;
1152 		ret = bcm_qspi_transfer_one(master, spi, &t[1]);
1153 	}
1154 
1155 	return ret;
1156 }
1157 
1158 static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
1159 				const struct spi_mem_op *op)
1160 {
1161 	struct spi_device *spi = mem->spi;
1162 	struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
1163 	int ret = 0;
1164 	bool mspi_read = false;
1165 	u32 addr = 0, len;
1166 	u_char *buf;
1167 
1168 	if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
1169 	    op->data.dir != SPI_MEM_DATA_IN)
1170 		return -ENOTSUPP;
1171 
1172 	buf = op->data.buf.in;
1173 	addr = op->addr.val;
1174 	len = op->data.nbytes;
1175 
1176 	if (bcm_qspi_bspi_ver_three(qspi) == true) {
1177 		/*
1178 		 * The address coming into this function is a raw flash offset.
1179 		 * But for BSPI <= V3, we need to convert it to a remapped BSPI
1180 		 * address. If it crosses a 4MB boundary, just revert back to
1181 		 * using MSPI.
1182 		 */
1183 		addr = (addr + 0xc00000) & 0xffffff;
1184 
1185 		if ((~ADDR_4MB_MASK & addr) ^
1186 		    (~ADDR_4MB_MASK & (addr + len - 1)))
1187 			mspi_read = true;
1188 	}
1189 
1190 	/* non-aligned and very short transfers are handled by MSPI */
1191 	if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
1192 	    len < 4)
1193 		mspi_read = true;
1194 
1195 	if (mspi_read)
1196 		return bcm_qspi_mspi_exec_mem_op(spi, op);
1197 
1198 	ret = bcm_qspi_bspi_set_mode(qspi, op, 0);
1199 
1200 	if (!ret)
1201 		ret = bcm_qspi_bspi_exec_mem_op(spi, op);
1202 
1203 	return ret;
1204 }
1205 
1206 static void bcm_qspi_cleanup(struct spi_device *spi)
1207 {
1208 	struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
1209 
1210 	kfree(xp);
1211 }
1212 
1213 static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1214 {
1215 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1216 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1217 	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1218 
1219 	if (status & MSPI_MSPI_STATUS_SPIF) {
1220 		struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1221 		/* clear interrupt */
1222 		status &= ~MSPI_MSPI_STATUS_SPIF;
1223 		bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1224 		if (qspi->soc_intc)
1225 			soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1226 		complete(&qspi->mspi_done);
1227 		return IRQ_HANDLED;
1228 	}
1229 
1230 	return IRQ_NONE;
1231 }
1232 
1233 static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1234 {
1235 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1236 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1237 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1238 	u32 status = qspi_dev_id->irqp->mask;
1239 
1240 	if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1241 		bcm_qspi_bspi_lr_data_read(qspi);
1242 		if (qspi->bspi_rf_op_len == 0) {
1243 			qspi->bspi_rf_op = NULL;
1244 			if (qspi->soc_intc) {
1245 				/* disable soc BSPI interrupt */
1246 				soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1247 							   false);
1248 				/* indicate done */
1249 				status = INTR_BSPI_LR_SESSION_DONE_MASK;
1250 			}
1251 
1252 			if (qspi->bspi_rf_op_status)
1253 				bcm_qspi_bspi_lr_clear(qspi);
1254 			else
1255 				bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1256 		}
1257 
1258 		if (qspi->soc_intc)
1259 			/* clear soc BSPI interrupt */
1260 			soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1261 	}
1262 
1263 	status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1264 	if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1265 		complete(&qspi->bspi_done);
1266 
1267 	return IRQ_HANDLED;
1268 }
1269 
1270 static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1271 {
1272 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1273 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1274 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1275 
1276 	dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1277 	qspi->bspi_rf_op_status = -EIO;
1278 	if (qspi->soc_intc)
1279 		/* clear soc interrupt */
1280 		soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1281 
1282 	complete(&qspi->bspi_done);
1283 	return IRQ_HANDLED;
1284 }
1285 
1286 static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1287 {
1288 	struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1289 	struct bcm_qspi *qspi = qspi_dev_id->dev;
1290 	struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1291 	irqreturn_t ret = IRQ_NONE;
1292 
1293 	if (soc_intc) {
1294 		u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1295 
1296 		if (status & MSPI_DONE)
1297 			ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1298 		else if (status & BSPI_DONE)
1299 			ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1300 		else if (status & BSPI_ERR)
1301 			ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1302 	}
1303 
1304 	return ret;
1305 }
1306 
1307 static const struct bcm_qspi_irq qspi_irq_tab[] = {
1308 	{
1309 		.irq_name = "spi_lr_fullness_reached",
1310 		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1311 		.mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1312 	},
1313 	{
1314 		.irq_name = "spi_lr_session_aborted",
1315 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1316 		.mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1317 	},
1318 	{
1319 		.irq_name = "spi_lr_impatient",
1320 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1321 		.mask = INTR_BSPI_LR_IMPATIENT_MASK,
1322 	},
1323 	{
1324 		.irq_name = "spi_lr_session_done",
1325 		.irq_handler = bcm_qspi_bspi_lr_l2_isr,
1326 		.mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1327 	},
1328 #ifdef QSPI_INT_DEBUG
1329 	/* this interrupt is for debug purposes only, dont request irq */
1330 	{
1331 		.irq_name = "spi_lr_overread",
1332 		.irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1333 		.mask = INTR_BSPI_LR_OVERREAD_MASK,
1334 	},
1335 #endif
1336 	{
1337 		.irq_name = "mspi_done",
1338 		.irq_handler = bcm_qspi_mspi_l2_isr,
1339 		.mask = INTR_MSPI_DONE_MASK,
1340 	},
1341 	{
1342 		.irq_name = "mspi_halted",
1343 		.irq_handler = bcm_qspi_mspi_l2_isr,
1344 		.mask = INTR_MSPI_HALTED_MASK,
1345 	},
1346 	{
1347 		/* single muxed L1 interrupt source */
1348 		.irq_name = "spi_l1_intr",
1349 		.irq_handler = bcm_qspi_l1_isr,
1350 		.irq_source = MUXED_L1,
1351 		.mask = QSPI_INTERRUPTS_ALL,
1352 	},
1353 };
1354 
1355 static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1356 {
1357 	u32 val = 0;
1358 
1359 	val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1360 	qspi->bspi_maj_rev = (val >> 8) & 0xff;
1361 	qspi->bspi_min_rev = val & 0xff;
1362 	if (!(bcm_qspi_bspi_ver_three(qspi))) {
1363 		/* Force mapping of BSPI address -> flash offset */
1364 		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1365 		bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1366 	}
1367 	qspi->bspi_enabled = 1;
1368 	bcm_qspi_disable_bspi(qspi);
1369 	bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1370 	bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1371 }
1372 
1373 static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1374 {
1375 	struct bcm_qspi_parms parms;
1376 
1377 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1378 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1379 	bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1380 	bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1381 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1382 
1383 	parms.mode = SPI_MODE_3;
1384 	parms.bits_per_word = 8;
1385 	parms.speed_hz = qspi->max_speed_hz;
1386 	bcm_qspi_hw_set_parms(qspi, &parms);
1387 
1388 	if (has_bspi(qspi))
1389 		bcm_qspi_bspi_init(qspi);
1390 }
1391 
1392 static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1393 {
1394 	u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1395 
1396 	bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1397 	if (has_bspi(qspi))
1398 		bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1399 
1400 	/* clear interrupt */
1401 	bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status & ~1);
1402 }
1403 
1404 static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1405 	.exec_op = bcm_qspi_exec_mem_op,
1406 };
1407 
1408 struct bcm_qspi_data {
1409 	bool	has_mspi_rev;
1410 	bool	has_spcr3_sysclk;
1411 };
1412 
1413 static const struct bcm_qspi_data bcm_qspi_no_rev_data = {
1414 	.has_mspi_rev	= false,
1415 	.has_spcr3_sysclk = false,
1416 };
1417 
1418 static const struct bcm_qspi_data bcm_qspi_rev_data = {
1419 	.has_mspi_rev	= true,
1420 	.has_spcr3_sysclk = false,
1421 };
1422 
1423 static const struct bcm_qspi_data bcm_qspi_spcr3_data = {
1424 	.has_mspi_rev	= true,
1425 	.has_spcr3_sysclk = true,
1426 };
1427 
1428 static const struct of_device_id bcm_qspi_of_match[] = {
1429 	{
1430 		.compatible = "brcm,spi-bcm7445-qspi",
1431 		.data = &bcm_qspi_rev_data,
1432 
1433 	},
1434 	{
1435 		.compatible = "brcm,spi-bcm-qspi",
1436 		.data = &bcm_qspi_no_rev_data,
1437 	},
1438 	{
1439 		.compatible = "brcm,spi-bcm7216-qspi",
1440 		.data = &bcm_qspi_spcr3_data,
1441 	},
1442 	{
1443 		.compatible = "brcm,spi-bcm7278-qspi",
1444 		.data = &bcm_qspi_spcr3_data,
1445 	},
1446 	{},
1447 };
1448 MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1449 
1450 int bcm_qspi_probe(struct platform_device *pdev,
1451 		   struct bcm_qspi_soc_intc *soc_intc)
1452 {
1453 	const struct of_device_id *of_id = NULL;
1454 	const struct bcm_qspi_data *data;
1455 	struct device *dev = &pdev->dev;
1456 	struct bcm_qspi *qspi;
1457 	struct spi_master *master;
1458 	struct resource *res;
1459 	int irq, ret = 0, num_ints = 0;
1460 	u32 val;
1461 	u32 rev = 0;
1462 	const char *name = NULL;
1463 	int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1464 
1465 	/* We only support device-tree instantiation */
1466 	if (!dev->of_node)
1467 		return -ENODEV;
1468 
1469 	of_id = of_match_node(bcm_qspi_of_match, dev->of_node);
1470 	if (!of_id)
1471 		return -ENODEV;
1472 
1473 	data = of_id->data;
1474 
1475 	master = devm_spi_alloc_master(dev, sizeof(struct bcm_qspi));
1476 	if (!master) {
1477 		dev_err(dev, "error allocating spi_master\n");
1478 		return -ENOMEM;
1479 	}
1480 
1481 	qspi = spi_master_get_devdata(master);
1482 
1483 	qspi->clk = devm_clk_get_optional(&pdev->dev, NULL);
1484 	if (IS_ERR(qspi->clk))
1485 		return PTR_ERR(qspi->clk);
1486 
1487 	qspi->pdev = pdev;
1488 	qspi->trans_pos.trans = NULL;
1489 	qspi->trans_pos.byte = 0;
1490 	qspi->trans_pos.mspi_last_trans = true;
1491 	qspi->master = master;
1492 
1493 	master->bus_num = -1;
1494 	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD |
1495 				SPI_3WIRE;
1496 	master->setup = bcm_qspi_setup;
1497 	master->transfer_one = bcm_qspi_transfer_one;
1498 	master->mem_ops = &bcm_qspi_mem_ops;
1499 	master->cleanup = bcm_qspi_cleanup;
1500 	master->dev.of_node = dev->of_node;
1501 	master->num_chipselect = NUM_CHIPSELECT;
1502 	master->use_gpio_descriptors = true;
1503 
1504 	qspi->big_endian = of_device_is_big_endian(dev->of_node);
1505 
1506 	if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1507 		master->num_chipselect = val;
1508 
1509 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1510 	if (!res)
1511 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1512 						   "mspi");
1513 
1514 	if (res) {
1515 		qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1516 		if (IS_ERR(qspi->base[MSPI]))
1517 			return PTR_ERR(qspi->base[MSPI]);
1518 	} else {
1519 		return 0;
1520 	}
1521 
1522 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1523 	if (res) {
1524 		qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1525 		if (IS_ERR(qspi->base[BSPI]))
1526 			return PTR_ERR(qspi->base[BSPI]);
1527 		qspi->bspi_mode = true;
1528 	} else {
1529 		qspi->bspi_mode = false;
1530 	}
1531 
1532 	dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1533 
1534 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1535 	if (res) {
1536 		qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1537 		if (IS_ERR(qspi->base[CHIP_SELECT]))
1538 			return PTR_ERR(qspi->base[CHIP_SELECT]);
1539 	}
1540 
1541 	qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1542 				GFP_KERNEL);
1543 	if (!qspi->dev_ids)
1544 		return -ENOMEM;
1545 
1546 	/*
1547 	 * Some SoCs integrate spi controller (e.g., its interrupt bits)
1548 	 * in specific ways
1549 	 */
1550 	if (soc_intc) {
1551 		qspi->soc_intc = soc_intc;
1552 		soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1553 	} else {
1554 		qspi->soc_intc = NULL;
1555 	}
1556 
1557 	if (qspi->clk) {
1558 		ret = clk_prepare_enable(qspi->clk);
1559 		if (ret) {
1560 			dev_err(dev, "failed to prepare clock\n");
1561 			goto qspi_probe_err;
1562 		}
1563 		qspi->base_clk = clk_get_rate(qspi->clk);
1564 	} else {
1565 		qspi->base_clk = MSPI_BASE_FREQ;
1566 	}
1567 
1568 	if (data->has_mspi_rev) {
1569 		rev = bcm_qspi_read(qspi, MSPI, MSPI_REV);
1570 		/* some older revs do not have a MSPI_REV register */
1571 		if ((rev & 0xff) == 0xff)
1572 			rev = 0;
1573 	}
1574 
1575 	qspi->mspi_maj_rev = (rev >> 4) & 0xf;
1576 	qspi->mspi_min_rev = rev & 0xf;
1577 	qspi->mspi_spcr3_sysclk = data->has_spcr3_sysclk;
1578 
1579 	qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
1580 
1581 	/*
1582 	 * On SW resets it is possible to have the mask still enabled
1583 	 * Need to disable the mask and clear the status while we init
1584 	 */
1585 	bcm_qspi_hw_uninit(qspi);
1586 
1587 	for (val = 0; val < num_irqs; val++) {
1588 		irq = -1;
1589 		name = qspi_irq_tab[val].irq_name;
1590 		if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1591 			/* get the l2 interrupts */
1592 			irq = platform_get_irq_byname_optional(pdev, name);
1593 		} else if (!num_ints && soc_intc) {
1594 			/* all mspi, bspi intrs muxed to one L1 intr */
1595 			irq = platform_get_irq(pdev, 0);
1596 		}
1597 
1598 		if (irq  >= 0) {
1599 			ret = devm_request_irq(&pdev->dev, irq,
1600 					       qspi_irq_tab[val].irq_handler, 0,
1601 					       name,
1602 					       &qspi->dev_ids[val]);
1603 			if (ret < 0) {
1604 				dev_err(&pdev->dev, "IRQ %s not found\n", name);
1605 				goto qspi_unprepare_err;
1606 			}
1607 
1608 			qspi->dev_ids[val].dev = qspi;
1609 			qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1610 			num_ints++;
1611 			dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1612 				qspi_irq_tab[val].irq_name,
1613 				irq);
1614 		}
1615 	}
1616 
1617 	if (!num_ints) {
1618 		dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1619 		ret = -EINVAL;
1620 		goto qspi_unprepare_err;
1621 	}
1622 
1623 	bcm_qspi_hw_init(qspi);
1624 	init_completion(&qspi->mspi_done);
1625 	init_completion(&qspi->bspi_done);
1626 	qspi->curr_cs = -1;
1627 
1628 	platform_set_drvdata(pdev, qspi);
1629 
1630 	qspi->xfer_mode.width = -1;
1631 	qspi->xfer_mode.addrlen = -1;
1632 	qspi->xfer_mode.hp = -1;
1633 
1634 	ret = spi_register_master(master);
1635 	if (ret < 0) {
1636 		dev_err(dev, "can't register master\n");
1637 		goto qspi_reg_err;
1638 	}
1639 
1640 	return 0;
1641 
1642 qspi_reg_err:
1643 	bcm_qspi_hw_uninit(qspi);
1644 qspi_unprepare_err:
1645 	clk_disable_unprepare(qspi->clk);
1646 qspi_probe_err:
1647 	kfree(qspi->dev_ids);
1648 	return ret;
1649 }
1650 /* probe function to be called by SoC specific platform driver probe */
1651 EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1652 
1653 int bcm_qspi_remove(struct platform_device *pdev)
1654 {
1655 	struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1656 
1657 	spi_unregister_master(qspi->master);
1658 	bcm_qspi_hw_uninit(qspi);
1659 	clk_disable_unprepare(qspi->clk);
1660 	kfree(qspi->dev_ids);
1661 
1662 	return 0;
1663 }
1664 /* function to be called by SoC specific platform driver remove() */
1665 EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1666 
1667 static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1668 {
1669 	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1670 
1671 	/* store the override strap value */
1672 	if (!bcm_qspi_bspi_ver_three(qspi))
1673 		qspi->s3_strap_override_ctrl =
1674 			bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1675 
1676 	spi_master_suspend(qspi->master);
1677 	clk_disable_unprepare(qspi->clk);
1678 	bcm_qspi_hw_uninit(qspi);
1679 
1680 	return 0;
1681 };
1682 
1683 static int __maybe_unused bcm_qspi_resume(struct device *dev)
1684 {
1685 	struct bcm_qspi *qspi = dev_get_drvdata(dev);
1686 	int ret = 0;
1687 
1688 	bcm_qspi_hw_init(qspi);
1689 	bcm_qspi_chip_select(qspi, qspi->curr_cs);
1690 	if (qspi->soc_intc)
1691 		/* enable MSPI interrupt */
1692 		qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1693 						 true);
1694 
1695 	ret = clk_prepare_enable(qspi->clk);
1696 	if (!ret)
1697 		spi_master_resume(qspi->master);
1698 
1699 	return ret;
1700 }
1701 
1702 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1703 
1704 /* pm_ops to be called by SoC specific platform driver */
1705 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1706 
1707 MODULE_AUTHOR("Kamal Dasu");
1708 MODULE_DESCRIPTION("Broadcom QSPI driver");
1709 MODULE_LICENSE("GPL v2");
1710 MODULE_ALIAS("platform:" DRIVER_NAME);
1711