xref: /openbmc/linux/drivers/spi/spi-au1550.c (revision c819e2cf)
1 /*
2  * au1550 psc spi controller driver
3  * may work also with au1200, au1210, au1250
4  * will not work on au1000, au1100 and au1500 (no full spi controller there)
5  *
6  * Copyright (c) 2006 ATRON electronic GmbH
7  * Author: Jan Nikitenko <jan.nikitenko@gmail.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23 
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/platform_device.h>
31 #include <linux/resource.h>
32 #include <linux/spi/spi.h>
33 #include <linux/spi/spi_bitbang.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/completion.h>
36 #include <asm/mach-au1x00/au1000.h>
37 #include <asm/mach-au1x00/au1xxx_psc.h>
38 #include <asm/mach-au1x00/au1xxx_dbdma.h>
39 
40 #include <asm/mach-au1x00/au1550_spi.h>
41 
42 static unsigned usedma = 1;
43 module_param(usedma, uint, 0644);
44 
45 /*
46 #define AU1550_SPI_DEBUG_LOOPBACK
47 */
48 
49 
50 #define AU1550_SPI_DBDMA_DESCRIPTORS 1
51 #define AU1550_SPI_DMA_RXTMP_MINSIZE 2048U
52 
53 struct au1550_spi {
54 	struct spi_bitbang bitbang;
55 
56 	volatile psc_spi_t __iomem *regs;
57 	int irq;
58 
59 	unsigned len;
60 	unsigned tx_count;
61 	unsigned rx_count;
62 	const u8 *tx;
63 	u8 *rx;
64 
65 	void (*rx_word)(struct au1550_spi *hw);
66 	void (*tx_word)(struct au1550_spi *hw);
67 	int (*txrx_bufs)(struct spi_device *spi, struct spi_transfer *t);
68 	irqreturn_t (*irq_callback)(struct au1550_spi *hw);
69 
70 	struct completion master_done;
71 
72 	unsigned usedma;
73 	u32 dma_tx_id;
74 	u32 dma_rx_id;
75 	u32 dma_tx_ch;
76 	u32 dma_rx_ch;
77 
78 	u8 *dma_rx_tmpbuf;
79 	unsigned dma_rx_tmpbuf_size;
80 	u32 dma_rx_tmpbuf_addr;
81 
82 	struct spi_master *master;
83 	struct device *dev;
84 	struct au1550_spi_info *pdata;
85 	struct resource *ioarea;
86 };
87 
88 
89 /* we use an 8-bit memory device for dma transfers to/from spi fifo */
90 static dbdev_tab_t au1550_spi_mem_dbdev =
91 {
92 	.dev_id			= DBDMA_MEM_CHAN,
93 	.dev_flags		= DEV_FLAGS_ANYUSE|DEV_FLAGS_SYNC,
94 	.dev_tsize		= 0,
95 	.dev_devwidth		= 8,
96 	.dev_physaddr		= 0x00000000,
97 	.dev_intlevel		= 0,
98 	.dev_intpolarity	= 0
99 };
100 
101 static int ddma_memid;	/* id to above mem dma device */
102 
103 static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw);
104 
105 
106 /*
107  *  compute BRG and DIV bits to setup spi clock based on main input clock rate
108  *  that was specified in platform data structure
109  *  according to au1550 datasheet:
110  *    psc_tempclk = psc_mainclk / (2 << DIV)
111  *    spiclk = psc_tempclk / (2 * (BRG + 1))
112  *    BRG valid range is 4..63
113  *    DIV valid range is 0..3
114  */
115 static u32 au1550_spi_baudcfg(struct au1550_spi *hw, unsigned speed_hz)
116 {
117 	u32 mainclk_hz = hw->pdata->mainclk_hz;
118 	u32 div, brg;
119 
120 	for (div = 0; div < 4; div++) {
121 		brg = mainclk_hz / speed_hz / (4 << div);
122 		/* now we have BRG+1 in brg, so count with that */
123 		if (brg < (4 + 1)) {
124 			brg = (4 + 1);	/* speed_hz too big */
125 			break;		/* set lowest brg (div is == 0) */
126 		}
127 		if (brg <= (63 + 1))
128 			break;		/* we have valid brg and div */
129 	}
130 	if (div == 4) {
131 		div = 3;		/* speed_hz too small */
132 		brg = (63 + 1);		/* set highest brg and div */
133 	}
134 	brg--;
135 	return PSC_SPICFG_SET_BAUD(brg) | PSC_SPICFG_SET_DIV(div);
136 }
137 
138 static inline void au1550_spi_mask_ack_all(struct au1550_spi *hw)
139 {
140 	hw->regs->psc_spimsk =
141 		  PSC_SPIMSK_MM | PSC_SPIMSK_RR | PSC_SPIMSK_RO
142 		| PSC_SPIMSK_RU | PSC_SPIMSK_TR | PSC_SPIMSK_TO
143 		| PSC_SPIMSK_TU | PSC_SPIMSK_SD | PSC_SPIMSK_MD;
144 	wmb(); /* drain writebuffer */
145 
146 	hw->regs->psc_spievent =
147 		  PSC_SPIEVNT_MM | PSC_SPIEVNT_RR | PSC_SPIEVNT_RO
148 		| PSC_SPIEVNT_RU | PSC_SPIEVNT_TR | PSC_SPIEVNT_TO
149 		| PSC_SPIEVNT_TU | PSC_SPIEVNT_SD | PSC_SPIEVNT_MD;
150 	wmb(); /* drain writebuffer */
151 }
152 
153 static void au1550_spi_reset_fifos(struct au1550_spi *hw)
154 {
155 	u32 pcr;
156 
157 	hw->regs->psc_spipcr = PSC_SPIPCR_RC | PSC_SPIPCR_TC;
158 	wmb(); /* drain writebuffer */
159 	do {
160 		pcr = hw->regs->psc_spipcr;
161 		wmb(); /* drain writebuffer */
162 	} while (pcr != 0);
163 }
164 
165 /*
166  * dma transfers are used for the most common spi word size of 8-bits
167  * we cannot easily change already set up dma channels' width, so if we wanted
168  * dma support for more than 8-bit words (up to 24 bits), we would need to
169  * setup dma channels from scratch on each spi transfer, based on bits_per_word
170  * instead we have pre set up 8 bit dma channels supporting spi 4 to 8 bits
171  * transfers, and 9 to 24 bits spi transfers will be done in pio irq based mode
172  * callbacks to handle dma or pio are set up in au1550_spi_bits_handlers_set()
173  */
174 static void au1550_spi_chipsel(struct spi_device *spi, int value)
175 {
176 	struct au1550_spi *hw = spi_master_get_devdata(spi->master);
177 	unsigned cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
178 	u32 cfg, stat;
179 
180 	switch (value) {
181 	case BITBANG_CS_INACTIVE:
182 		if (hw->pdata->deactivate_cs)
183 			hw->pdata->deactivate_cs(hw->pdata, spi->chip_select,
184 					cspol);
185 		break;
186 
187 	case BITBANG_CS_ACTIVE:
188 		au1550_spi_bits_handlers_set(hw, spi->bits_per_word);
189 
190 		cfg = hw->regs->psc_spicfg;
191 		wmb(); /* drain writebuffer */
192 		hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE;
193 		wmb(); /* drain writebuffer */
194 
195 		if (spi->mode & SPI_CPOL)
196 			cfg |= PSC_SPICFG_BI;
197 		else
198 			cfg &= ~PSC_SPICFG_BI;
199 		if (spi->mode & SPI_CPHA)
200 			cfg &= ~PSC_SPICFG_CDE;
201 		else
202 			cfg |= PSC_SPICFG_CDE;
203 
204 		if (spi->mode & SPI_LSB_FIRST)
205 			cfg |= PSC_SPICFG_MLF;
206 		else
207 			cfg &= ~PSC_SPICFG_MLF;
208 
209 		if (hw->usedma && spi->bits_per_word <= 8)
210 			cfg &= ~PSC_SPICFG_DD_DISABLE;
211 		else
212 			cfg |= PSC_SPICFG_DD_DISABLE;
213 		cfg = PSC_SPICFG_CLR_LEN(cfg);
214 		cfg |= PSC_SPICFG_SET_LEN(spi->bits_per_word);
215 
216 		cfg = PSC_SPICFG_CLR_BAUD(cfg);
217 		cfg &= ~PSC_SPICFG_SET_DIV(3);
218 		cfg |= au1550_spi_baudcfg(hw, spi->max_speed_hz);
219 
220 		hw->regs->psc_spicfg = cfg | PSC_SPICFG_DE_ENABLE;
221 		wmb(); /* drain writebuffer */
222 		do {
223 			stat = hw->regs->psc_spistat;
224 			wmb(); /* drain writebuffer */
225 		} while ((stat & PSC_SPISTAT_DR) == 0);
226 
227 		if (hw->pdata->activate_cs)
228 			hw->pdata->activate_cs(hw->pdata, spi->chip_select,
229 					cspol);
230 		break;
231 	}
232 }
233 
234 static int au1550_spi_setupxfer(struct spi_device *spi, struct spi_transfer *t)
235 {
236 	struct au1550_spi *hw = spi_master_get_devdata(spi->master);
237 	unsigned bpw, hz;
238 	u32 cfg, stat;
239 
240 	bpw = spi->bits_per_word;
241 	hz = spi->max_speed_hz;
242 	if (t) {
243 		if (t->bits_per_word)
244 			bpw = t->bits_per_word;
245 		if (t->speed_hz)
246 			hz = t->speed_hz;
247 	}
248 
249 	if (!hz)
250 		return -EINVAL;
251 
252 	au1550_spi_bits_handlers_set(hw, spi->bits_per_word);
253 
254 	cfg = hw->regs->psc_spicfg;
255 	wmb(); /* drain writebuffer */
256 	hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE;
257 	wmb(); /* drain writebuffer */
258 
259 	if (hw->usedma && bpw <= 8)
260 		cfg &= ~PSC_SPICFG_DD_DISABLE;
261 	else
262 		cfg |= PSC_SPICFG_DD_DISABLE;
263 	cfg = PSC_SPICFG_CLR_LEN(cfg);
264 	cfg |= PSC_SPICFG_SET_LEN(bpw);
265 
266 	cfg = PSC_SPICFG_CLR_BAUD(cfg);
267 	cfg &= ~PSC_SPICFG_SET_DIV(3);
268 	cfg |= au1550_spi_baudcfg(hw, hz);
269 
270 	hw->regs->psc_spicfg = cfg;
271 	wmb(); /* drain writebuffer */
272 
273 	if (cfg & PSC_SPICFG_DE_ENABLE) {
274 		do {
275 			stat = hw->regs->psc_spistat;
276 			wmb(); /* drain writebuffer */
277 		} while ((stat & PSC_SPISTAT_DR) == 0);
278 	}
279 
280 	au1550_spi_reset_fifos(hw);
281 	au1550_spi_mask_ack_all(hw);
282 	return 0;
283 }
284 
285 /*
286  * for dma spi transfers, we have to setup rx channel, otherwise there is
287  * no reliable way how to recognize that spi transfer is done
288  * dma complete callbacks are called before real spi transfer is finished
289  * and if only tx dma channel is set up (and rx fifo overflow event masked)
290  * spi master done event irq is not generated unless rx fifo is empty (emptied)
291  * so we need rx tmp buffer to use for rx dma if user does not provide one
292  */
293 static int au1550_spi_dma_rxtmp_alloc(struct au1550_spi *hw, unsigned size)
294 {
295 	hw->dma_rx_tmpbuf = kmalloc(size, GFP_KERNEL);
296 	if (!hw->dma_rx_tmpbuf)
297 		return -ENOMEM;
298 	hw->dma_rx_tmpbuf_size = size;
299 	hw->dma_rx_tmpbuf_addr = dma_map_single(hw->dev, hw->dma_rx_tmpbuf,
300 			size, DMA_FROM_DEVICE);
301 	if (dma_mapping_error(hw->dev, hw->dma_rx_tmpbuf_addr)) {
302 		kfree(hw->dma_rx_tmpbuf);
303 		hw->dma_rx_tmpbuf = 0;
304 		hw->dma_rx_tmpbuf_size = 0;
305 		return -EFAULT;
306 	}
307 	return 0;
308 }
309 
310 static void au1550_spi_dma_rxtmp_free(struct au1550_spi *hw)
311 {
312 	dma_unmap_single(hw->dev, hw->dma_rx_tmpbuf_addr,
313 			hw->dma_rx_tmpbuf_size, DMA_FROM_DEVICE);
314 	kfree(hw->dma_rx_tmpbuf);
315 	hw->dma_rx_tmpbuf = 0;
316 	hw->dma_rx_tmpbuf_size = 0;
317 }
318 
319 static int au1550_spi_dma_txrxb(struct spi_device *spi, struct spi_transfer *t)
320 {
321 	struct au1550_spi *hw = spi_master_get_devdata(spi->master);
322 	dma_addr_t dma_tx_addr;
323 	dma_addr_t dma_rx_addr;
324 	u32 res;
325 
326 	hw->len = t->len;
327 	hw->tx_count = 0;
328 	hw->rx_count = 0;
329 
330 	hw->tx = t->tx_buf;
331 	hw->rx = t->rx_buf;
332 	dma_tx_addr = t->tx_dma;
333 	dma_rx_addr = t->rx_dma;
334 
335 	/*
336 	 * check if buffers are already dma mapped, map them otherwise:
337 	 * - first map the TX buffer, so cache data gets written to memory
338 	 * - then map the RX buffer, so that cache entries (with
339 	 *   soon-to-be-stale data) get removed
340 	 * use rx buffer in place of tx if tx buffer was not provided
341 	 * use temp rx buffer (preallocated or realloc to fit) for rx dma
342 	 */
343 	if (t->tx_buf) {
344 		if (t->tx_dma == 0) {	/* if DMA_ADDR_INVALID, map it */
345 			dma_tx_addr = dma_map_single(hw->dev,
346 					(void *)t->tx_buf,
347 					t->len, DMA_TO_DEVICE);
348 			if (dma_mapping_error(hw->dev, dma_tx_addr))
349 				dev_err(hw->dev, "tx dma map error\n");
350 		}
351 	}
352 
353 	if (t->rx_buf) {
354 		if (t->rx_dma == 0) {	/* if DMA_ADDR_INVALID, map it */
355 			dma_rx_addr = dma_map_single(hw->dev,
356 					(void *)t->rx_buf,
357 					t->len, DMA_FROM_DEVICE);
358 			if (dma_mapping_error(hw->dev, dma_rx_addr))
359 				dev_err(hw->dev, "rx dma map error\n");
360 		}
361 	} else {
362 		if (t->len > hw->dma_rx_tmpbuf_size) {
363 			int ret;
364 
365 			au1550_spi_dma_rxtmp_free(hw);
366 			ret = au1550_spi_dma_rxtmp_alloc(hw, max(t->len,
367 					AU1550_SPI_DMA_RXTMP_MINSIZE));
368 			if (ret < 0)
369 				return ret;
370 		}
371 		hw->rx = hw->dma_rx_tmpbuf;
372 		dma_rx_addr = hw->dma_rx_tmpbuf_addr;
373 		dma_sync_single_for_device(hw->dev, dma_rx_addr,
374 			t->len, DMA_FROM_DEVICE);
375 	}
376 
377 	if (!t->tx_buf) {
378 		dma_sync_single_for_device(hw->dev, dma_rx_addr,
379 				t->len, DMA_BIDIRECTIONAL);
380 		hw->tx = hw->rx;
381 	}
382 
383 	/* put buffers on the ring */
384 	res = au1xxx_dbdma_put_dest(hw->dma_rx_ch, virt_to_phys(hw->rx),
385 				    t->len, DDMA_FLAGS_IE);
386 	if (!res)
387 		dev_err(hw->dev, "rx dma put dest error\n");
388 
389 	res = au1xxx_dbdma_put_source(hw->dma_tx_ch, virt_to_phys(hw->tx),
390 				      t->len, DDMA_FLAGS_IE);
391 	if (!res)
392 		dev_err(hw->dev, "tx dma put source error\n");
393 
394 	au1xxx_dbdma_start(hw->dma_rx_ch);
395 	au1xxx_dbdma_start(hw->dma_tx_ch);
396 
397 	/* by default enable nearly all events interrupt */
398 	hw->regs->psc_spimsk = PSC_SPIMSK_SD;
399 	wmb(); /* drain writebuffer */
400 
401 	/* start the transfer */
402 	hw->regs->psc_spipcr = PSC_SPIPCR_MS;
403 	wmb(); /* drain writebuffer */
404 
405 	wait_for_completion(&hw->master_done);
406 
407 	au1xxx_dbdma_stop(hw->dma_tx_ch);
408 	au1xxx_dbdma_stop(hw->dma_rx_ch);
409 
410 	if (!t->rx_buf) {
411 		/* using the temporal preallocated and premapped buffer */
412 		dma_sync_single_for_cpu(hw->dev, dma_rx_addr, t->len,
413 			DMA_FROM_DEVICE);
414 	}
415 	/* unmap buffers if mapped above */
416 	if (t->rx_buf && t->rx_dma == 0 )
417 		dma_unmap_single(hw->dev, dma_rx_addr, t->len,
418 			DMA_FROM_DEVICE);
419 	if (t->tx_buf && t->tx_dma == 0 )
420 		dma_unmap_single(hw->dev, dma_tx_addr, t->len,
421 			DMA_TO_DEVICE);
422 
423 	return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count;
424 }
425 
426 static irqreturn_t au1550_spi_dma_irq_callback(struct au1550_spi *hw)
427 {
428 	u32 stat, evnt;
429 
430 	stat = hw->regs->psc_spistat;
431 	evnt = hw->regs->psc_spievent;
432 	wmb(); /* drain writebuffer */
433 	if ((stat & PSC_SPISTAT_DI) == 0) {
434 		dev_err(hw->dev, "Unexpected IRQ!\n");
435 		return IRQ_NONE;
436 	}
437 
438 	if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO
439 				| PSC_SPIEVNT_RU | PSC_SPIEVNT_TO
440 				| PSC_SPIEVNT_TU | PSC_SPIEVNT_SD))
441 			!= 0) {
442 		/*
443 		 * due to an spi error we consider transfer as done,
444 		 * so mask all events until before next transfer start
445 		 * and stop the possibly running dma immediately
446 		 */
447 		au1550_spi_mask_ack_all(hw);
448 		au1xxx_dbdma_stop(hw->dma_rx_ch);
449 		au1xxx_dbdma_stop(hw->dma_tx_ch);
450 
451 		/* get number of transferred bytes */
452 		hw->rx_count = hw->len - au1xxx_get_dma_residue(hw->dma_rx_ch);
453 		hw->tx_count = hw->len - au1xxx_get_dma_residue(hw->dma_tx_ch);
454 
455 		au1xxx_dbdma_reset(hw->dma_rx_ch);
456 		au1xxx_dbdma_reset(hw->dma_tx_ch);
457 		au1550_spi_reset_fifos(hw);
458 
459 		if (evnt == PSC_SPIEVNT_RO)
460 			dev_err(hw->dev,
461 				"dma transfer: receive FIFO overflow!\n");
462 		else
463 			dev_err(hw->dev,
464 				"dma transfer: unexpected SPI error "
465 				"(event=0x%x stat=0x%x)!\n", evnt, stat);
466 
467 		complete(&hw->master_done);
468 		return IRQ_HANDLED;
469 	}
470 
471 	if ((evnt & PSC_SPIEVNT_MD) != 0) {
472 		/* transfer completed successfully */
473 		au1550_spi_mask_ack_all(hw);
474 		hw->rx_count = hw->len;
475 		hw->tx_count = hw->len;
476 		complete(&hw->master_done);
477 	}
478 	return IRQ_HANDLED;
479 }
480 
481 
482 /* routines to handle different word sizes in pio mode */
483 #define AU1550_SPI_RX_WORD(size, mask)					\
484 static void au1550_spi_rx_word_##size(struct au1550_spi *hw)		\
485 {									\
486 	u32 fifoword = hw->regs->psc_spitxrx & (u32)(mask);		\
487 	wmb(); /* drain writebuffer */					\
488 	if (hw->rx) {							\
489 		*(u##size *)hw->rx = (u##size)fifoword;			\
490 		hw->rx += (size) / 8;					\
491 	}								\
492 	hw->rx_count += (size) / 8;					\
493 }
494 
495 #define AU1550_SPI_TX_WORD(size, mask)					\
496 static void au1550_spi_tx_word_##size(struct au1550_spi *hw)		\
497 {									\
498 	u32 fifoword = 0;						\
499 	if (hw->tx) {							\
500 		fifoword = *(u##size *)hw->tx & (u32)(mask);		\
501 		hw->tx += (size) / 8;					\
502 	}								\
503 	hw->tx_count += (size) / 8;					\
504 	if (hw->tx_count >= hw->len)					\
505 		fifoword |= PSC_SPITXRX_LC;				\
506 	hw->regs->psc_spitxrx = fifoword;				\
507 	wmb(); /* drain writebuffer */					\
508 }
509 
510 AU1550_SPI_RX_WORD(8,0xff)
511 AU1550_SPI_RX_WORD(16,0xffff)
512 AU1550_SPI_RX_WORD(32,0xffffff)
513 AU1550_SPI_TX_WORD(8,0xff)
514 AU1550_SPI_TX_WORD(16,0xffff)
515 AU1550_SPI_TX_WORD(32,0xffffff)
516 
517 static int au1550_spi_pio_txrxb(struct spi_device *spi, struct spi_transfer *t)
518 {
519 	u32 stat, mask;
520 	struct au1550_spi *hw = spi_master_get_devdata(spi->master);
521 
522 	hw->tx = t->tx_buf;
523 	hw->rx = t->rx_buf;
524 	hw->len = t->len;
525 	hw->tx_count = 0;
526 	hw->rx_count = 0;
527 
528 	/* by default enable nearly all events after filling tx fifo */
529 	mask = PSC_SPIMSK_SD;
530 
531 	/* fill the transmit FIFO */
532 	while (hw->tx_count < hw->len) {
533 
534 		hw->tx_word(hw);
535 
536 		if (hw->tx_count >= hw->len) {
537 			/* mask tx fifo request interrupt as we are done */
538 			mask |= PSC_SPIMSK_TR;
539 		}
540 
541 		stat = hw->regs->psc_spistat;
542 		wmb(); /* drain writebuffer */
543 		if (stat & PSC_SPISTAT_TF)
544 			break;
545 	}
546 
547 	/* enable event interrupts */
548 	hw->regs->psc_spimsk = mask;
549 	wmb(); /* drain writebuffer */
550 
551 	/* start the transfer */
552 	hw->regs->psc_spipcr = PSC_SPIPCR_MS;
553 	wmb(); /* drain writebuffer */
554 
555 	wait_for_completion(&hw->master_done);
556 
557 	return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count;
558 }
559 
560 static irqreturn_t au1550_spi_pio_irq_callback(struct au1550_spi *hw)
561 {
562 	int busy;
563 	u32 stat, evnt;
564 
565 	stat = hw->regs->psc_spistat;
566 	evnt = hw->regs->psc_spievent;
567 	wmb(); /* drain writebuffer */
568 	if ((stat & PSC_SPISTAT_DI) == 0) {
569 		dev_err(hw->dev, "Unexpected IRQ!\n");
570 		return IRQ_NONE;
571 	}
572 
573 	if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO
574 				| PSC_SPIEVNT_RU | PSC_SPIEVNT_TO
575 				| PSC_SPIEVNT_SD))
576 			!= 0) {
577 		/*
578 		 * due to an error we consider transfer as done,
579 		 * so mask all events until before next transfer start
580 		 */
581 		au1550_spi_mask_ack_all(hw);
582 		au1550_spi_reset_fifos(hw);
583 		dev_err(hw->dev,
584 			"pio transfer: unexpected SPI error "
585 			"(event=0x%x stat=0x%x)!\n", evnt, stat);
586 		complete(&hw->master_done);
587 		return IRQ_HANDLED;
588 	}
589 
590 	/*
591 	 * while there is something to read from rx fifo
592 	 * or there is a space to write to tx fifo:
593 	 */
594 	do {
595 		busy = 0;
596 		stat = hw->regs->psc_spistat;
597 		wmb(); /* drain writebuffer */
598 
599 		/*
600 		 * Take care to not let the Rx FIFO overflow.
601 		 *
602 		 * We only write a byte if we have read one at least. Initially,
603 		 * the write fifo is full, so we should read from the read fifo
604 		 * first.
605 		 * In case we miss a word from the read fifo, we should get a
606 		 * RO event and should back out.
607 		 */
608 		if (!(stat & PSC_SPISTAT_RE) && hw->rx_count < hw->len) {
609 			hw->rx_word(hw);
610 			busy = 1;
611 
612 			if (!(stat & PSC_SPISTAT_TF) && hw->tx_count < hw->len)
613 				hw->tx_word(hw);
614 		}
615 	} while (busy);
616 
617 	hw->regs->psc_spievent = PSC_SPIEVNT_RR | PSC_SPIEVNT_TR;
618 	wmb(); /* drain writebuffer */
619 
620 	/*
621 	 * Restart the SPI transmission in case of a transmit underflow.
622 	 * This seems to work despite the notes in the Au1550 data book
623 	 * of Figure 8-4 with flowchart for SPI master operation:
624 	 *
625 	 * """Note 1: An XFR Error Interrupt occurs, unless masked,
626 	 * for any of the following events: Tx FIFO Underflow,
627 	 * Rx FIFO Overflow, or Multiple-master Error
628 	 *    Note 2: In case of a Tx Underflow Error, all zeroes are
629 	 * transmitted."""
630 	 *
631 	 * By simply restarting the spi transfer on Tx Underflow Error,
632 	 * we assume that spi transfer was paused instead of zeroes
633 	 * transmittion mentioned in the Note 2 of Au1550 data book.
634 	 */
635 	if (evnt & PSC_SPIEVNT_TU) {
636 		hw->regs->psc_spievent = PSC_SPIEVNT_TU | PSC_SPIEVNT_MD;
637 		wmb(); /* drain writebuffer */
638 		hw->regs->psc_spipcr = PSC_SPIPCR_MS;
639 		wmb(); /* drain writebuffer */
640 	}
641 
642 	if (hw->rx_count >= hw->len) {
643 		/* transfer completed successfully */
644 		au1550_spi_mask_ack_all(hw);
645 		complete(&hw->master_done);
646 	}
647 	return IRQ_HANDLED;
648 }
649 
650 static int au1550_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
651 {
652 	struct au1550_spi *hw = spi_master_get_devdata(spi->master);
653 	return hw->txrx_bufs(spi, t);
654 }
655 
656 static irqreturn_t au1550_spi_irq(int irq, void *dev)
657 {
658 	struct au1550_spi *hw = dev;
659 	return hw->irq_callback(hw);
660 }
661 
662 static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw)
663 {
664 	if (bpw <= 8) {
665 		if (hw->usedma) {
666 			hw->txrx_bufs = &au1550_spi_dma_txrxb;
667 			hw->irq_callback = &au1550_spi_dma_irq_callback;
668 		} else {
669 			hw->rx_word = &au1550_spi_rx_word_8;
670 			hw->tx_word = &au1550_spi_tx_word_8;
671 			hw->txrx_bufs = &au1550_spi_pio_txrxb;
672 			hw->irq_callback = &au1550_spi_pio_irq_callback;
673 		}
674 	} else if (bpw <= 16) {
675 		hw->rx_word = &au1550_spi_rx_word_16;
676 		hw->tx_word = &au1550_spi_tx_word_16;
677 		hw->txrx_bufs = &au1550_spi_pio_txrxb;
678 		hw->irq_callback = &au1550_spi_pio_irq_callback;
679 	} else {
680 		hw->rx_word = &au1550_spi_rx_word_32;
681 		hw->tx_word = &au1550_spi_tx_word_32;
682 		hw->txrx_bufs = &au1550_spi_pio_txrxb;
683 		hw->irq_callback = &au1550_spi_pio_irq_callback;
684 	}
685 }
686 
687 static void au1550_spi_setup_psc_as_spi(struct au1550_spi *hw)
688 {
689 	u32 stat, cfg;
690 
691 	/* set up the PSC for SPI mode */
692 	hw->regs->psc_ctrl = PSC_CTRL_DISABLE;
693 	wmb(); /* drain writebuffer */
694 	hw->regs->psc_sel = PSC_SEL_PS_SPIMODE;
695 	wmb(); /* drain writebuffer */
696 
697 	hw->regs->psc_spicfg = 0;
698 	wmb(); /* drain writebuffer */
699 
700 	hw->regs->psc_ctrl = PSC_CTRL_ENABLE;
701 	wmb(); /* drain writebuffer */
702 
703 	do {
704 		stat = hw->regs->psc_spistat;
705 		wmb(); /* drain writebuffer */
706 	} while ((stat & PSC_SPISTAT_SR) == 0);
707 
708 
709 	cfg = hw->usedma ? 0 : PSC_SPICFG_DD_DISABLE;
710 	cfg |= PSC_SPICFG_SET_LEN(8);
711 	cfg |= PSC_SPICFG_RT_FIFO8 | PSC_SPICFG_TT_FIFO8;
712 	/* use minimal allowed brg and div values as initial setting: */
713 	cfg |= PSC_SPICFG_SET_BAUD(4) | PSC_SPICFG_SET_DIV(0);
714 
715 #ifdef AU1550_SPI_DEBUG_LOOPBACK
716 	cfg |= PSC_SPICFG_LB;
717 #endif
718 
719 	hw->regs->psc_spicfg = cfg;
720 	wmb(); /* drain writebuffer */
721 
722 	au1550_spi_mask_ack_all(hw);
723 
724 	hw->regs->psc_spicfg |= PSC_SPICFG_DE_ENABLE;
725 	wmb(); /* drain writebuffer */
726 
727 	do {
728 		stat = hw->regs->psc_spistat;
729 		wmb(); /* drain writebuffer */
730 	} while ((stat & PSC_SPISTAT_DR) == 0);
731 
732 	au1550_spi_reset_fifos(hw);
733 }
734 
735 
736 static int au1550_spi_probe(struct platform_device *pdev)
737 {
738 	struct au1550_spi *hw;
739 	struct spi_master *master;
740 	struct resource *r;
741 	int err = 0;
742 
743 	master = spi_alloc_master(&pdev->dev, sizeof(struct au1550_spi));
744 	if (master == NULL) {
745 		dev_err(&pdev->dev, "No memory for spi_master\n");
746 		err = -ENOMEM;
747 		goto err_nomem;
748 	}
749 
750 	/* the spi->mode bits understood by this driver: */
751 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
752 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 24);
753 
754 	hw = spi_master_get_devdata(master);
755 
756 	hw->master = master;
757 	hw->pdata = dev_get_platdata(&pdev->dev);
758 	hw->dev = &pdev->dev;
759 
760 	if (hw->pdata == NULL) {
761 		dev_err(&pdev->dev, "No platform data supplied\n");
762 		err = -ENOENT;
763 		goto err_no_pdata;
764 	}
765 
766 	r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
767 	if (!r) {
768 		dev_err(&pdev->dev, "no IRQ\n");
769 		err = -ENODEV;
770 		goto err_no_iores;
771 	}
772 	hw->irq = r->start;
773 
774 	hw->usedma = 0;
775 	r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
776 	if (r) {
777 		hw->dma_tx_id = r->start;
778 		r = platform_get_resource(pdev, IORESOURCE_DMA, 1);
779 		if (r) {
780 			hw->dma_rx_id = r->start;
781 			if (usedma && ddma_memid) {
782 				if (pdev->dev.dma_mask == NULL)
783 					dev_warn(&pdev->dev, "no dma mask\n");
784 				else
785 					hw->usedma = 1;
786 			}
787 		}
788 	}
789 
790 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
791 	if (!r) {
792 		dev_err(&pdev->dev, "no mmio resource\n");
793 		err = -ENODEV;
794 		goto err_no_iores;
795 	}
796 
797 	hw->ioarea = request_mem_region(r->start, sizeof(psc_spi_t),
798 					pdev->name);
799 	if (!hw->ioarea) {
800 		dev_err(&pdev->dev, "Cannot reserve iomem region\n");
801 		err = -ENXIO;
802 		goto err_no_iores;
803 	}
804 
805 	hw->regs = (psc_spi_t __iomem *)ioremap(r->start, sizeof(psc_spi_t));
806 	if (!hw->regs) {
807 		dev_err(&pdev->dev, "cannot ioremap\n");
808 		err = -ENXIO;
809 		goto err_ioremap;
810 	}
811 
812 	platform_set_drvdata(pdev, hw);
813 
814 	init_completion(&hw->master_done);
815 
816 	hw->bitbang.master = hw->master;
817 	hw->bitbang.setup_transfer = au1550_spi_setupxfer;
818 	hw->bitbang.chipselect = au1550_spi_chipsel;
819 	hw->bitbang.txrx_bufs = au1550_spi_txrx_bufs;
820 
821 	if (hw->usedma) {
822 		hw->dma_tx_ch = au1xxx_dbdma_chan_alloc(ddma_memid,
823 			hw->dma_tx_id, NULL, (void *)hw);
824 		if (hw->dma_tx_ch == 0) {
825 			dev_err(&pdev->dev,
826 				"Cannot allocate tx dma channel\n");
827 			err = -ENXIO;
828 			goto err_no_txdma;
829 		}
830 		au1xxx_dbdma_set_devwidth(hw->dma_tx_ch, 8);
831 		if (au1xxx_dbdma_ring_alloc(hw->dma_tx_ch,
832 			AU1550_SPI_DBDMA_DESCRIPTORS) == 0) {
833 			dev_err(&pdev->dev,
834 				"Cannot allocate tx dma descriptors\n");
835 			err = -ENXIO;
836 			goto err_no_txdma_descr;
837 		}
838 
839 
840 		hw->dma_rx_ch = au1xxx_dbdma_chan_alloc(hw->dma_rx_id,
841 			ddma_memid, NULL, (void *)hw);
842 		if (hw->dma_rx_ch == 0) {
843 			dev_err(&pdev->dev,
844 				"Cannot allocate rx dma channel\n");
845 			err = -ENXIO;
846 			goto err_no_rxdma;
847 		}
848 		au1xxx_dbdma_set_devwidth(hw->dma_rx_ch, 8);
849 		if (au1xxx_dbdma_ring_alloc(hw->dma_rx_ch,
850 			AU1550_SPI_DBDMA_DESCRIPTORS) == 0) {
851 			dev_err(&pdev->dev,
852 				"Cannot allocate rx dma descriptors\n");
853 			err = -ENXIO;
854 			goto err_no_rxdma_descr;
855 		}
856 
857 		err = au1550_spi_dma_rxtmp_alloc(hw,
858 			AU1550_SPI_DMA_RXTMP_MINSIZE);
859 		if (err < 0) {
860 			dev_err(&pdev->dev,
861 				"Cannot allocate initial rx dma tmp buffer\n");
862 			goto err_dma_rxtmp_alloc;
863 		}
864 	}
865 
866 	au1550_spi_bits_handlers_set(hw, 8);
867 
868 	err = request_irq(hw->irq, au1550_spi_irq, 0, pdev->name, hw);
869 	if (err) {
870 		dev_err(&pdev->dev, "Cannot claim IRQ\n");
871 		goto err_no_irq;
872 	}
873 
874 	master->bus_num = pdev->id;
875 	master->num_chipselect = hw->pdata->num_chipselect;
876 
877 	/*
878 	 *  precompute valid range for spi freq - from au1550 datasheet:
879 	 *    psc_tempclk = psc_mainclk / (2 << DIV)
880 	 *    spiclk = psc_tempclk / (2 * (BRG + 1))
881 	 *    BRG valid range is 4..63
882 	 *    DIV valid range is 0..3
883 	 *  round the min and max frequencies to values that would still
884 	 *  produce valid brg and div
885 	 */
886 	{
887 		int min_div = (2 << 0) * (2 * (4 + 1));
888 		int max_div = (2 << 3) * (2 * (63 + 1));
889 		master->max_speed_hz = hw->pdata->mainclk_hz / min_div;
890 		master->min_speed_hz =
891 				hw->pdata->mainclk_hz / (max_div + 1) + 1;
892 	}
893 
894 	au1550_spi_setup_psc_as_spi(hw);
895 
896 	err = spi_bitbang_start(&hw->bitbang);
897 	if (err) {
898 		dev_err(&pdev->dev, "Failed to register SPI master\n");
899 		goto err_register;
900 	}
901 
902 	dev_info(&pdev->dev,
903 		"spi master registered: bus_num=%d num_chipselect=%d\n",
904 		master->bus_num, master->num_chipselect);
905 
906 	return 0;
907 
908 err_register:
909 	free_irq(hw->irq, hw);
910 
911 err_no_irq:
912 	au1550_spi_dma_rxtmp_free(hw);
913 
914 err_dma_rxtmp_alloc:
915 err_no_rxdma_descr:
916 	if (hw->usedma)
917 		au1xxx_dbdma_chan_free(hw->dma_rx_ch);
918 
919 err_no_rxdma:
920 err_no_txdma_descr:
921 	if (hw->usedma)
922 		au1xxx_dbdma_chan_free(hw->dma_tx_ch);
923 
924 err_no_txdma:
925 	iounmap((void __iomem *)hw->regs);
926 
927 err_ioremap:
928 	release_mem_region(r->start, sizeof(psc_spi_t));
929 
930 err_no_iores:
931 err_no_pdata:
932 	spi_master_put(hw->master);
933 
934 err_nomem:
935 	return err;
936 }
937 
938 static int au1550_spi_remove(struct platform_device *pdev)
939 {
940 	struct au1550_spi *hw = platform_get_drvdata(pdev);
941 
942 	dev_info(&pdev->dev, "spi master remove: bus_num=%d\n",
943 		hw->master->bus_num);
944 
945 	spi_bitbang_stop(&hw->bitbang);
946 	free_irq(hw->irq, hw);
947 	iounmap((void __iomem *)hw->regs);
948 	release_mem_region(hw->ioarea->start, sizeof(psc_spi_t));
949 
950 	if (hw->usedma) {
951 		au1550_spi_dma_rxtmp_free(hw);
952 		au1xxx_dbdma_chan_free(hw->dma_rx_ch);
953 		au1xxx_dbdma_chan_free(hw->dma_tx_ch);
954 	}
955 
956 	spi_master_put(hw->master);
957 	return 0;
958 }
959 
960 /* work with hotplug and coldplug */
961 MODULE_ALIAS("platform:au1550-spi");
962 
963 static struct platform_driver au1550_spi_drv = {
964 	.probe = au1550_spi_probe,
965 	.remove = au1550_spi_remove,
966 	.driver = {
967 		.name = "au1550-spi",
968 	},
969 };
970 
971 static int __init au1550_spi_init(void)
972 {
973 	/*
974 	 * create memory device with 8 bits dev_devwidth
975 	 * needed for proper byte ordering to spi fifo
976 	 */
977 	switch (alchemy_get_cputype()) {
978 	case ALCHEMY_CPU_AU1550:
979 	case ALCHEMY_CPU_AU1200:
980 	case ALCHEMY_CPU_AU1300:
981 		break;
982 	default:
983 		return -ENODEV;
984 	}
985 
986 	if (usedma) {
987 		ddma_memid = au1xxx_ddma_add_device(&au1550_spi_mem_dbdev);
988 		if (!ddma_memid)
989 			printk(KERN_ERR "au1550-spi: cannot add memory"
990 					"dbdma device\n");
991 	}
992 	return platform_driver_register(&au1550_spi_drv);
993 }
994 module_init(au1550_spi_init);
995 
996 static void __exit au1550_spi_exit(void)
997 {
998 	if (usedma && ddma_memid)
999 		au1xxx_ddma_del_device(ddma_memid);
1000 	platform_driver_unregister(&au1550_spi_drv);
1001 }
1002 module_exit(au1550_spi_exit);
1003 
1004 MODULE_DESCRIPTION("Au1550 PSC SPI Driver");
1005 MODULE_AUTHOR("Jan Nikitenko <jan.nikitenko@gmail.com>");
1006 MODULE_LICENSE("GPL");
1007