1 /* 2 * au1550 psc spi controller driver 3 * may work also with au1200, au1210, au1250 4 * will not work on au1000, au1100 and au1500 (no full spi controller there) 5 * 6 * Copyright (c) 2006 ATRON electronic GmbH 7 * Author: Jan Nikitenko <jan.nikitenko@gmail.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 */ 23 24 #include <linux/init.h> 25 #include <linux/interrupt.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/module.h> 29 #include <linux/device.h> 30 #include <linux/platform_device.h> 31 #include <linux/resource.h> 32 #include <linux/spi/spi.h> 33 #include <linux/spi/spi_bitbang.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/completion.h> 36 #include <asm/mach-au1x00/au1000.h> 37 #include <asm/mach-au1x00/au1xxx_psc.h> 38 #include <asm/mach-au1x00/au1xxx_dbdma.h> 39 40 #include <asm/mach-au1x00/au1550_spi.h> 41 42 static unsigned usedma = 1; 43 module_param(usedma, uint, 0644); 44 45 /* 46 #define AU1550_SPI_DEBUG_LOOPBACK 47 */ 48 49 50 #define AU1550_SPI_DBDMA_DESCRIPTORS 1 51 #define AU1550_SPI_DMA_RXTMP_MINSIZE 2048U 52 53 struct au1550_spi { 54 struct spi_bitbang bitbang; 55 56 volatile psc_spi_t __iomem *regs; 57 int irq; 58 59 unsigned len; 60 unsigned tx_count; 61 unsigned rx_count; 62 const u8 *tx; 63 u8 *rx; 64 65 void (*rx_word)(struct au1550_spi *hw); 66 void (*tx_word)(struct au1550_spi *hw); 67 int (*txrx_bufs)(struct spi_device *spi, struct spi_transfer *t); 68 irqreturn_t (*irq_callback)(struct au1550_spi *hw); 69 70 struct completion master_done; 71 72 unsigned usedma; 73 u32 dma_tx_id; 74 u32 dma_rx_id; 75 u32 dma_tx_ch; 76 u32 dma_rx_ch; 77 78 u8 *dma_rx_tmpbuf; 79 unsigned dma_rx_tmpbuf_size; 80 u32 dma_rx_tmpbuf_addr; 81 82 struct spi_master *master; 83 struct device *dev; 84 struct au1550_spi_info *pdata; 85 struct resource *ioarea; 86 }; 87 88 89 /* we use an 8-bit memory device for dma transfers to/from spi fifo */ 90 static dbdev_tab_t au1550_spi_mem_dbdev = 91 { 92 .dev_id = DBDMA_MEM_CHAN, 93 .dev_flags = DEV_FLAGS_ANYUSE|DEV_FLAGS_SYNC, 94 .dev_tsize = 0, 95 .dev_devwidth = 8, 96 .dev_physaddr = 0x00000000, 97 .dev_intlevel = 0, 98 .dev_intpolarity = 0 99 }; 100 101 static int ddma_memid; /* id to above mem dma device */ 102 103 static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw); 104 105 106 /* 107 * compute BRG and DIV bits to setup spi clock based on main input clock rate 108 * that was specified in platform data structure 109 * according to au1550 datasheet: 110 * psc_tempclk = psc_mainclk / (2 << DIV) 111 * spiclk = psc_tempclk / (2 * (BRG + 1)) 112 * BRG valid range is 4..63 113 * DIV valid range is 0..3 114 */ 115 static u32 au1550_spi_baudcfg(struct au1550_spi *hw, unsigned speed_hz) 116 { 117 u32 mainclk_hz = hw->pdata->mainclk_hz; 118 u32 div, brg; 119 120 for (div = 0; div < 4; div++) { 121 brg = mainclk_hz / speed_hz / (4 << div); 122 /* now we have BRG+1 in brg, so count with that */ 123 if (brg < (4 + 1)) { 124 brg = (4 + 1); /* speed_hz too big */ 125 break; /* set lowest brg (div is == 0) */ 126 } 127 if (brg <= (63 + 1)) 128 break; /* we have valid brg and div */ 129 } 130 if (div == 4) { 131 div = 3; /* speed_hz too small */ 132 brg = (63 + 1); /* set highest brg and div */ 133 } 134 brg--; 135 return PSC_SPICFG_SET_BAUD(brg) | PSC_SPICFG_SET_DIV(div); 136 } 137 138 static inline void au1550_spi_mask_ack_all(struct au1550_spi *hw) 139 { 140 hw->regs->psc_spimsk = 141 PSC_SPIMSK_MM | PSC_SPIMSK_RR | PSC_SPIMSK_RO 142 | PSC_SPIMSK_RU | PSC_SPIMSK_TR | PSC_SPIMSK_TO 143 | PSC_SPIMSK_TU | PSC_SPIMSK_SD | PSC_SPIMSK_MD; 144 au_sync(); 145 146 hw->regs->psc_spievent = 147 PSC_SPIEVNT_MM | PSC_SPIEVNT_RR | PSC_SPIEVNT_RO 148 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TR | PSC_SPIEVNT_TO 149 | PSC_SPIEVNT_TU | PSC_SPIEVNT_SD | PSC_SPIEVNT_MD; 150 au_sync(); 151 } 152 153 static void au1550_spi_reset_fifos(struct au1550_spi *hw) 154 { 155 u32 pcr; 156 157 hw->regs->psc_spipcr = PSC_SPIPCR_RC | PSC_SPIPCR_TC; 158 au_sync(); 159 do { 160 pcr = hw->regs->psc_spipcr; 161 au_sync(); 162 } while (pcr != 0); 163 } 164 165 /* 166 * dma transfers are used for the most common spi word size of 8-bits 167 * we cannot easily change already set up dma channels' width, so if we wanted 168 * dma support for more than 8-bit words (up to 24 bits), we would need to 169 * setup dma channels from scratch on each spi transfer, based on bits_per_word 170 * instead we have pre set up 8 bit dma channels supporting spi 4 to 8 bits 171 * transfers, and 9 to 24 bits spi transfers will be done in pio irq based mode 172 * callbacks to handle dma or pio are set up in au1550_spi_bits_handlers_set() 173 */ 174 static void au1550_spi_chipsel(struct spi_device *spi, int value) 175 { 176 struct au1550_spi *hw = spi_master_get_devdata(spi->master); 177 unsigned cspol = spi->mode & SPI_CS_HIGH ? 1 : 0; 178 u32 cfg, stat; 179 180 switch (value) { 181 case BITBANG_CS_INACTIVE: 182 if (hw->pdata->deactivate_cs) 183 hw->pdata->deactivate_cs(hw->pdata, spi->chip_select, 184 cspol); 185 break; 186 187 case BITBANG_CS_ACTIVE: 188 au1550_spi_bits_handlers_set(hw, spi->bits_per_word); 189 190 cfg = hw->regs->psc_spicfg; 191 au_sync(); 192 hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE; 193 au_sync(); 194 195 if (spi->mode & SPI_CPOL) 196 cfg |= PSC_SPICFG_BI; 197 else 198 cfg &= ~PSC_SPICFG_BI; 199 if (spi->mode & SPI_CPHA) 200 cfg &= ~PSC_SPICFG_CDE; 201 else 202 cfg |= PSC_SPICFG_CDE; 203 204 if (spi->mode & SPI_LSB_FIRST) 205 cfg |= PSC_SPICFG_MLF; 206 else 207 cfg &= ~PSC_SPICFG_MLF; 208 209 if (hw->usedma && spi->bits_per_word <= 8) 210 cfg &= ~PSC_SPICFG_DD_DISABLE; 211 else 212 cfg |= PSC_SPICFG_DD_DISABLE; 213 cfg = PSC_SPICFG_CLR_LEN(cfg); 214 cfg |= PSC_SPICFG_SET_LEN(spi->bits_per_word); 215 216 cfg = PSC_SPICFG_CLR_BAUD(cfg); 217 cfg &= ~PSC_SPICFG_SET_DIV(3); 218 cfg |= au1550_spi_baudcfg(hw, spi->max_speed_hz); 219 220 hw->regs->psc_spicfg = cfg | PSC_SPICFG_DE_ENABLE; 221 au_sync(); 222 do { 223 stat = hw->regs->psc_spistat; 224 au_sync(); 225 } while ((stat & PSC_SPISTAT_DR) == 0); 226 227 if (hw->pdata->activate_cs) 228 hw->pdata->activate_cs(hw->pdata, spi->chip_select, 229 cspol); 230 break; 231 } 232 } 233 234 static int au1550_spi_setupxfer(struct spi_device *spi, struct spi_transfer *t) 235 { 236 struct au1550_spi *hw = spi_master_get_devdata(spi->master); 237 unsigned bpw, hz; 238 u32 cfg, stat; 239 240 bpw = spi->bits_per_word; 241 hz = spi->max_speed_hz; 242 if (t) { 243 if (t->bits_per_word) 244 bpw = t->bits_per_word; 245 if (t->speed_hz) 246 hz = t->speed_hz; 247 } 248 249 if (!hz) 250 return -EINVAL; 251 252 au1550_spi_bits_handlers_set(hw, spi->bits_per_word); 253 254 cfg = hw->regs->psc_spicfg; 255 au_sync(); 256 hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE; 257 au_sync(); 258 259 if (hw->usedma && bpw <= 8) 260 cfg &= ~PSC_SPICFG_DD_DISABLE; 261 else 262 cfg |= PSC_SPICFG_DD_DISABLE; 263 cfg = PSC_SPICFG_CLR_LEN(cfg); 264 cfg |= PSC_SPICFG_SET_LEN(bpw); 265 266 cfg = PSC_SPICFG_CLR_BAUD(cfg); 267 cfg &= ~PSC_SPICFG_SET_DIV(3); 268 cfg |= au1550_spi_baudcfg(hw, hz); 269 270 hw->regs->psc_spicfg = cfg; 271 au_sync(); 272 273 if (cfg & PSC_SPICFG_DE_ENABLE) { 274 do { 275 stat = hw->regs->psc_spistat; 276 au_sync(); 277 } while ((stat & PSC_SPISTAT_DR) == 0); 278 } 279 280 au1550_spi_reset_fifos(hw); 281 au1550_spi_mask_ack_all(hw); 282 return 0; 283 } 284 285 /* 286 * for dma spi transfers, we have to setup rx channel, otherwise there is 287 * no reliable way how to recognize that spi transfer is done 288 * dma complete callbacks are called before real spi transfer is finished 289 * and if only tx dma channel is set up (and rx fifo overflow event masked) 290 * spi master done event irq is not generated unless rx fifo is empty (emptied) 291 * so we need rx tmp buffer to use for rx dma if user does not provide one 292 */ 293 static int au1550_spi_dma_rxtmp_alloc(struct au1550_spi *hw, unsigned size) 294 { 295 hw->dma_rx_tmpbuf = kmalloc(size, GFP_KERNEL); 296 if (!hw->dma_rx_tmpbuf) 297 return -ENOMEM; 298 hw->dma_rx_tmpbuf_size = size; 299 hw->dma_rx_tmpbuf_addr = dma_map_single(hw->dev, hw->dma_rx_tmpbuf, 300 size, DMA_FROM_DEVICE); 301 if (dma_mapping_error(hw->dev, hw->dma_rx_tmpbuf_addr)) { 302 kfree(hw->dma_rx_tmpbuf); 303 hw->dma_rx_tmpbuf = 0; 304 hw->dma_rx_tmpbuf_size = 0; 305 return -EFAULT; 306 } 307 return 0; 308 } 309 310 static void au1550_spi_dma_rxtmp_free(struct au1550_spi *hw) 311 { 312 dma_unmap_single(hw->dev, hw->dma_rx_tmpbuf_addr, 313 hw->dma_rx_tmpbuf_size, DMA_FROM_DEVICE); 314 kfree(hw->dma_rx_tmpbuf); 315 hw->dma_rx_tmpbuf = 0; 316 hw->dma_rx_tmpbuf_size = 0; 317 } 318 319 static int au1550_spi_dma_txrxb(struct spi_device *spi, struct spi_transfer *t) 320 { 321 struct au1550_spi *hw = spi_master_get_devdata(spi->master); 322 dma_addr_t dma_tx_addr; 323 dma_addr_t dma_rx_addr; 324 u32 res; 325 326 hw->len = t->len; 327 hw->tx_count = 0; 328 hw->rx_count = 0; 329 330 hw->tx = t->tx_buf; 331 hw->rx = t->rx_buf; 332 dma_tx_addr = t->tx_dma; 333 dma_rx_addr = t->rx_dma; 334 335 /* 336 * check if buffers are already dma mapped, map them otherwise: 337 * - first map the TX buffer, so cache data gets written to memory 338 * - then map the RX buffer, so that cache entries (with 339 * soon-to-be-stale data) get removed 340 * use rx buffer in place of tx if tx buffer was not provided 341 * use temp rx buffer (preallocated or realloc to fit) for rx dma 342 */ 343 if (t->tx_buf) { 344 if (t->tx_dma == 0) { /* if DMA_ADDR_INVALID, map it */ 345 dma_tx_addr = dma_map_single(hw->dev, 346 (void *)t->tx_buf, 347 t->len, DMA_TO_DEVICE); 348 if (dma_mapping_error(hw->dev, dma_tx_addr)) 349 dev_err(hw->dev, "tx dma map error\n"); 350 } 351 } 352 353 if (t->rx_buf) { 354 if (t->rx_dma == 0) { /* if DMA_ADDR_INVALID, map it */ 355 dma_rx_addr = dma_map_single(hw->dev, 356 (void *)t->rx_buf, 357 t->len, DMA_FROM_DEVICE); 358 if (dma_mapping_error(hw->dev, dma_rx_addr)) 359 dev_err(hw->dev, "rx dma map error\n"); 360 } 361 } else { 362 if (t->len > hw->dma_rx_tmpbuf_size) { 363 int ret; 364 365 au1550_spi_dma_rxtmp_free(hw); 366 ret = au1550_spi_dma_rxtmp_alloc(hw, max(t->len, 367 AU1550_SPI_DMA_RXTMP_MINSIZE)); 368 if (ret < 0) 369 return ret; 370 } 371 hw->rx = hw->dma_rx_tmpbuf; 372 dma_rx_addr = hw->dma_rx_tmpbuf_addr; 373 dma_sync_single_for_device(hw->dev, dma_rx_addr, 374 t->len, DMA_FROM_DEVICE); 375 } 376 377 if (!t->tx_buf) { 378 dma_sync_single_for_device(hw->dev, dma_rx_addr, 379 t->len, DMA_BIDIRECTIONAL); 380 hw->tx = hw->rx; 381 } 382 383 /* put buffers on the ring */ 384 res = au1xxx_dbdma_put_dest(hw->dma_rx_ch, virt_to_phys(hw->rx), 385 t->len, DDMA_FLAGS_IE); 386 if (!res) 387 dev_err(hw->dev, "rx dma put dest error\n"); 388 389 res = au1xxx_dbdma_put_source(hw->dma_tx_ch, virt_to_phys(hw->tx), 390 t->len, DDMA_FLAGS_IE); 391 if (!res) 392 dev_err(hw->dev, "tx dma put source error\n"); 393 394 au1xxx_dbdma_start(hw->dma_rx_ch); 395 au1xxx_dbdma_start(hw->dma_tx_ch); 396 397 /* by default enable nearly all events interrupt */ 398 hw->regs->psc_spimsk = PSC_SPIMSK_SD; 399 au_sync(); 400 401 /* start the transfer */ 402 hw->regs->psc_spipcr = PSC_SPIPCR_MS; 403 au_sync(); 404 405 wait_for_completion(&hw->master_done); 406 407 au1xxx_dbdma_stop(hw->dma_tx_ch); 408 au1xxx_dbdma_stop(hw->dma_rx_ch); 409 410 if (!t->rx_buf) { 411 /* using the temporal preallocated and premapped buffer */ 412 dma_sync_single_for_cpu(hw->dev, dma_rx_addr, t->len, 413 DMA_FROM_DEVICE); 414 } 415 /* unmap buffers if mapped above */ 416 if (t->rx_buf && t->rx_dma == 0 ) 417 dma_unmap_single(hw->dev, dma_rx_addr, t->len, 418 DMA_FROM_DEVICE); 419 if (t->tx_buf && t->tx_dma == 0 ) 420 dma_unmap_single(hw->dev, dma_tx_addr, t->len, 421 DMA_TO_DEVICE); 422 423 return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count; 424 } 425 426 static irqreturn_t au1550_spi_dma_irq_callback(struct au1550_spi *hw) 427 { 428 u32 stat, evnt; 429 430 stat = hw->regs->psc_spistat; 431 evnt = hw->regs->psc_spievent; 432 au_sync(); 433 if ((stat & PSC_SPISTAT_DI) == 0) { 434 dev_err(hw->dev, "Unexpected IRQ!\n"); 435 return IRQ_NONE; 436 } 437 438 if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO 439 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TO 440 | PSC_SPIEVNT_TU | PSC_SPIEVNT_SD)) 441 != 0) { 442 /* 443 * due to an spi error we consider transfer as done, 444 * so mask all events until before next transfer start 445 * and stop the possibly running dma immediately 446 */ 447 au1550_spi_mask_ack_all(hw); 448 au1xxx_dbdma_stop(hw->dma_rx_ch); 449 au1xxx_dbdma_stop(hw->dma_tx_ch); 450 451 /* get number of transferred bytes */ 452 hw->rx_count = hw->len - au1xxx_get_dma_residue(hw->dma_rx_ch); 453 hw->tx_count = hw->len - au1xxx_get_dma_residue(hw->dma_tx_ch); 454 455 au1xxx_dbdma_reset(hw->dma_rx_ch); 456 au1xxx_dbdma_reset(hw->dma_tx_ch); 457 au1550_spi_reset_fifos(hw); 458 459 if (evnt == PSC_SPIEVNT_RO) 460 dev_err(hw->dev, 461 "dma transfer: receive FIFO overflow!\n"); 462 else 463 dev_err(hw->dev, 464 "dma transfer: unexpected SPI error " 465 "(event=0x%x stat=0x%x)!\n", evnt, stat); 466 467 complete(&hw->master_done); 468 return IRQ_HANDLED; 469 } 470 471 if ((evnt & PSC_SPIEVNT_MD) != 0) { 472 /* transfer completed successfully */ 473 au1550_spi_mask_ack_all(hw); 474 hw->rx_count = hw->len; 475 hw->tx_count = hw->len; 476 complete(&hw->master_done); 477 } 478 return IRQ_HANDLED; 479 } 480 481 482 /* routines to handle different word sizes in pio mode */ 483 #define AU1550_SPI_RX_WORD(size, mask) \ 484 static void au1550_spi_rx_word_##size(struct au1550_spi *hw) \ 485 { \ 486 u32 fifoword = hw->regs->psc_spitxrx & (u32)(mask); \ 487 au_sync(); \ 488 if (hw->rx) { \ 489 *(u##size *)hw->rx = (u##size)fifoword; \ 490 hw->rx += (size) / 8; \ 491 } \ 492 hw->rx_count += (size) / 8; \ 493 } 494 495 #define AU1550_SPI_TX_WORD(size, mask) \ 496 static void au1550_spi_tx_word_##size(struct au1550_spi *hw) \ 497 { \ 498 u32 fifoword = 0; \ 499 if (hw->tx) { \ 500 fifoword = *(u##size *)hw->tx & (u32)(mask); \ 501 hw->tx += (size) / 8; \ 502 } \ 503 hw->tx_count += (size) / 8; \ 504 if (hw->tx_count >= hw->len) \ 505 fifoword |= PSC_SPITXRX_LC; \ 506 hw->regs->psc_spitxrx = fifoword; \ 507 au_sync(); \ 508 } 509 510 AU1550_SPI_RX_WORD(8,0xff) 511 AU1550_SPI_RX_WORD(16,0xffff) 512 AU1550_SPI_RX_WORD(32,0xffffff) 513 AU1550_SPI_TX_WORD(8,0xff) 514 AU1550_SPI_TX_WORD(16,0xffff) 515 AU1550_SPI_TX_WORD(32,0xffffff) 516 517 static int au1550_spi_pio_txrxb(struct spi_device *spi, struct spi_transfer *t) 518 { 519 u32 stat, mask; 520 struct au1550_spi *hw = spi_master_get_devdata(spi->master); 521 522 hw->tx = t->tx_buf; 523 hw->rx = t->rx_buf; 524 hw->len = t->len; 525 hw->tx_count = 0; 526 hw->rx_count = 0; 527 528 /* by default enable nearly all events after filling tx fifo */ 529 mask = PSC_SPIMSK_SD; 530 531 /* fill the transmit FIFO */ 532 while (hw->tx_count < hw->len) { 533 534 hw->tx_word(hw); 535 536 if (hw->tx_count >= hw->len) { 537 /* mask tx fifo request interrupt as we are done */ 538 mask |= PSC_SPIMSK_TR; 539 } 540 541 stat = hw->regs->psc_spistat; 542 au_sync(); 543 if (stat & PSC_SPISTAT_TF) 544 break; 545 } 546 547 /* enable event interrupts */ 548 hw->regs->psc_spimsk = mask; 549 au_sync(); 550 551 /* start the transfer */ 552 hw->regs->psc_spipcr = PSC_SPIPCR_MS; 553 au_sync(); 554 555 wait_for_completion(&hw->master_done); 556 557 return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count; 558 } 559 560 static irqreturn_t au1550_spi_pio_irq_callback(struct au1550_spi *hw) 561 { 562 int busy; 563 u32 stat, evnt; 564 565 stat = hw->regs->psc_spistat; 566 evnt = hw->regs->psc_spievent; 567 au_sync(); 568 if ((stat & PSC_SPISTAT_DI) == 0) { 569 dev_err(hw->dev, "Unexpected IRQ!\n"); 570 return IRQ_NONE; 571 } 572 573 if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO 574 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TO 575 | PSC_SPIEVNT_SD)) 576 != 0) { 577 /* 578 * due to an error we consider transfer as done, 579 * so mask all events until before next transfer start 580 */ 581 au1550_spi_mask_ack_all(hw); 582 au1550_spi_reset_fifos(hw); 583 dev_err(hw->dev, 584 "pio transfer: unexpected SPI error " 585 "(event=0x%x stat=0x%x)!\n", evnt, stat); 586 complete(&hw->master_done); 587 return IRQ_HANDLED; 588 } 589 590 /* 591 * while there is something to read from rx fifo 592 * or there is a space to write to tx fifo: 593 */ 594 do { 595 busy = 0; 596 stat = hw->regs->psc_spistat; 597 au_sync(); 598 599 /* 600 * Take care to not let the Rx FIFO overflow. 601 * 602 * We only write a byte if we have read one at least. Initially, 603 * the write fifo is full, so we should read from the read fifo 604 * first. 605 * In case we miss a word from the read fifo, we should get a 606 * RO event and should back out. 607 */ 608 if (!(stat & PSC_SPISTAT_RE) && hw->rx_count < hw->len) { 609 hw->rx_word(hw); 610 busy = 1; 611 612 if (!(stat & PSC_SPISTAT_TF) && hw->tx_count < hw->len) 613 hw->tx_word(hw); 614 } 615 } while (busy); 616 617 hw->regs->psc_spievent = PSC_SPIEVNT_RR | PSC_SPIEVNT_TR; 618 au_sync(); 619 620 /* 621 * Restart the SPI transmission in case of a transmit underflow. 622 * This seems to work despite the notes in the Au1550 data book 623 * of Figure 8-4 with flowchart for SPI master operation: 624 * 625 * """Note 1: An XFR Error Interrupt occurs, unless masked, 626 * for any of the following events: Tx FIFO Underflow, 627 * Rx FIFO Overflow, or Multiple-master Error 628 * Note 2: In case of a Tx Underflow Error, all zeroes are 629 * transmitted.""" 630 * 631 * By simply restarting the spi transfer on Tx Underflow Error, 632 * we assume that spi transfer was paused instead of zeroes 633 * transmittion mentioned in the Note 2 of Au1550 data book. 634 */ 635 if (evnt & PSC_SPIEVNT_TU) { 636 hw->regs->psc_spievent = PSC_SPIEVNT_TU | PSC_SPIEVNT_MD; 637 au_sync(); 638 hw->regs->psc_spipcr = PSC_SPIPCR_MS; 639 au_sync(); 640 } 641 642 if (hw->rx_count >= hw->len) { 643 /* transfer completed successfully */ 644 au1550_spi_mask_ack_all(hw); 645 complete(&hw->master_done); 646 } 647 return IRQ_HANDLED; 648 } 649 650 static int au1550_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t) 651 { 652 struct au1550_spi *hw = spi_master_get_devdata(spi->master); 653 return hw->txrx_bufs(spi, t); 654 } 655 656 static irqreturn_t au1550_spi_irq(int irq, void *dev) 657 { 658 struct au1550_spi *hw = dev; 659 return hw->irq_callback(hw); 660 } 661 662 static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw) 663 { 664 if (bpw <= 8) { 665 if (hw->usedma) { 666 hw->txrx_bufs = &au1550_spi_dma_txrxb; 667 hw->irq_callback = &au1550_spi_dma_irq_callback; 668 } else { 669 hw->rx_word = &au1550_spi_rx_word_8; 670 hw->tx_word = &au1550_spi_tx_word_8; 671 hw->txrx_bufs = &au1550_spi_pio_txrxb; 672 hw->irq_callback = &au1550_spi_pio_irq_callback; 673 } 674 } else if (bpw <= 16) { 675 hw->rx_word = &au1550_spi_rx_word_16; 676 hw->tx_word = &au1550_spi_tx_word_16; 677 hw->txrx_bufs = &au1550_spi_pio_txrxb; 678 hw->irq_callback = &au1550_spi_pio_irq_callback; 679 } else { 680 hw->rx_word = &au1550_spi_rx_word_32; 681 hw->tx_word = &au1550_spi_tx_word_32; 682 hw->txrx_bufs = &au1550_spi_pio_txrxb; 683 hw->irq_callback = &au1550_spi_pio_irq_callback; 684 } 685 } 686 687 static void au1550_spi_setup_psc_as_spi(struct au1550_spi *hw) 688 { 689 u32 stat, cfg; 690 691 /* set up the PSC for SPI mode */ 692 hw->regs->psc_ctrl = PSC_CTRL_DISABLE; 693 au_sync(); 694 hw->regs->psc_sel = PSC_SEL_PS_SPIMODE; 695 au_sync(); 696 697 hw->regs->psc_spicfg = 0; 698 au_sync(); 699 700 hw->regs->psc_ctrl = PSC_CTRL_ENABLE; 701 au_sync(); 702 703 do { 704 stat = hw->regs->psc_spistat; 705 au_sync(); 706 } while ((stat & PSC_SPISTAT_SR) == 0); 707 708 709 cfg = hw->usedma ? 0 : PSC_SPICFG_DD_DISABLE; 710 cfg |= PSC_SPICFG_SET_LEN(8); 711 cfg |= PSC_SPICFG_RT_FIFO8 | PSC_SPICFG_TT_FIFO8; 712 /* use minimal allowed brg and div values as initial setting: */ 713 cfg |= PSC_SPICFG_SET_BAUD(4) | PSC_SPICFG_SET_DIV(0); 714 715 #ifdef AU1550_SPI_DEBUG_LOOPBACK 716 cfg |= PSC_SPICFG_LB; 717 #endif 718 719 hw->regs->psc_spicfg = cfg; 720 au_sync(); 721 722 au1550_spi_mask_ack_all(hw); 723 724 hw->regs->psc_spicfg |= PSC_SPICFG_DE_ENABLE; 725 au_sync(); 726 727 do { 728 stat = hw->regs->psc_spistat; 729 au_sync(); 730 } while ((stat & PSC_SPISTAT_DR) == 0); 731 732 au1550_spi_reset_fifos(hw); 733 } 734 735 736 static int au1550_spi_probe(struct platform_device *pdev) 737 { 738 struct au1550_spi *hw; 739 struct spi_master *master; 740 struct resource *r; 741 int err = 0; 742 743 master = spi_alloc_master(&pdev->dev, sizeof(struct au1550_spi)); 744 if (master == NULL) { 745 dev_err(&pdev->dev, "No memory for spi_master\n"); 746 err = -ENOMEM; 747 goto err_nomem; 748 } 749 750 /* the spi->mode bits understood by this driver: */ 751 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST; 752 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 24); 753 754 hw = spi_master_get_devdata(master); 755 756 hw->master = master; 757 hw->pdata = dev_get_platdata(&pdev->dev); 758 hw->dev = &pdev->dev; 759 760 if (hw->pdata == NULL) { 761 dev_err(&pdev->dev, "No platform data supplied\n"); 762 err = -ENOENT; 763 goto err_no_pdata; 764 } 765 766 r = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 767 if (!r) { 768 dev_err(&pdev->dev, "no IRQ\n"); 769 err = -ENODEV; 770 goto err_no_iores; 771 } 772 hw->irq = r->start; 773 774 hw->usedma = 0; 775 r = platform_get_resource(pdev, IORESOURCE_DMA, 0); 776 if (r) { 777 hw->dma_tx_id = r->start; 778 r = platform_get_resource(pdev, IORESOURCE_DMA, 1); 779 if (r) { 780 hw->dma_rx_id = r->start; 781 if (usedma && ddma_memid) { 782 if (pdev->dev.dma_mask == NULL) 783 dev_warn(&pdev->dev, "no dma mask\n"); 784 else 785 hw->usedma = 1; 786 } 787 } 788 } 789 790 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 791 if (!r) { 792 dev_err(&pdev->dev, "no mmio resource\n"); 793 err = -ENODEV; 794 goto err_no_iores; 795 } 796 797 hw->ioarea = request_mem_region(r->start, sizeof(psc_spi_t), 798 pdev->name); 799 if (!hw->ioarea) { 800 dev_err(&pdev->dev, "Cannot reserve iomem region\n"); 801 err = -ENXIO; 802 goto err_no_iores; 803 } 804 805 hw->regs = (psc_spi_t __iomem *)ioremap(r->start, sizeof(psc_spi_t)); 806 if (!hw->regs) { 807 dev_err(&pdev->dev, "cannot ioremap\n"); 808 err = -ENXIO; 809 goto err_ioremap; 810 } 811 812 platform_set_drvdata(pdev, hw); 813 814 init_completion(&hw->master_done); 815 816 hw->bitbang.master = hw->master; 817 hw->bitbang.setup_transfer = au1550_spi_setupxfer; 818 hw->bitbang.chipselect = au1550_spi_chipsel; 819 hw->bitbang.txrx_bufs = au1550_spi_txrx_bufs; 820 821 if (hw->usedma) { 822 hw->dma_tx_ch = au1xxx_dbdma_chan_alloc(ddma_memid, 823 hw->dma_tx_id, NULL, (void *)hw); 824 if (hw->dma_tx_ch == 0) { 825 dev_err(&pdev->dev, 826 "Cannot allocate tx dma channel\n"); 827 err = -ENXIO; 828 goto err_no_txdma; 829 } 830 au1xxx_dbdma_set_devwidth(hw->dma_tx_ch, 8); 831 if (au1xxx_dbdma_ring_alloc(hw->dma_tx_ch, 832 AU1550_SPI_DBDMA_DESCRIPTORS) == 0) { 833 dev_err(&pdev->dev, 834 "Cannot allocate tx dma descriptors\n"); 835 err = -ENXIO; 836 goto err_no_txdma_descr; 837 } 838 839 840 hw->dma_rx_ch = au1xxx_dbdma_chan_alloc(hw->dma_rx_id, 841 ddma_memid, NULL, (void *)hw); 842 if (hw->dma_rx_ch == 0) { 843 dev_err(&pdev->dev, 844 "Cannot allocate rx dma channel\n"); 845 err = -ENXIO; 846 goto err_no_rxdma; 847 } 848 au1xxx_dbdma_set_devwidth(hw->dma_rx_ch, 8); 849 if (au1xxx_dbdma_ring_alloc(hw->dma_rx_ch, 850 AU1550_SPI_DBDMA_DESCRIPTORS) == 0) { 851 dev_err(&pdev->dev, 852 "Cannot allocate rx dma descriptors\n"); 853 err = -ENXIO; 854 goto err_no_rxdma_descr; 855 } 856 857 err = au1550_spi_dma_rxtmp_alloc(hw, 858 AU1550_SPI_DMA_RXTMP_MINSIZE); 859 if (err < 0) { 860 dev_err(&pdev->dev, 861 "Cannot allocate initial rx dma tmp buffer\n"); 862 goto err_dma_rxtmp_alloc; 863 } 864 } 865 866 au1550_spi_bits_handlers_set(hw, 8); 867 868 err = request_irq(hw->irq, au1550_spi_irq, 0, pdev->name, hw); 869 if (err) { 870 dev_err(&pdev->dev, "Cannot claim IRQ\n"); 871 goto err_no_irq; 872 } 873 874 master->bus_num = pdev->id; 875 master->num_chipselect = hw->pdata->num_chipselect; 876 877 /* 878 * precompute valid range for spi freq - from au1550 datasheet: 879 * psc_tempclk = psc_mainclk / (2 << DIV) 880 * spiclk = psc_tempclk / (2 * (BRG + 1)) 881 * BRG valid range is 4..63 882 * DIV valid range is 0..3 883 * round the min and max frequencies to values that would still 884 * produce valid brg and div 885 */ 886 { 887 int min_div = (2 << 0) * (2 * (4 + 1)); 888 int max_div = (2 << 3) * (2 * (63 + 1)); 889 master->max_speed_hz = hw->pdata->mainclk_hz / min_div; 890 master->min_speed_hz = 891 hw->pdata->mainclk_hz / (max_div + 1) + 1; 892 } 893 894 au1550_spi_setup_psc_as_spi(hw); 895 896 err = spi_bitbang_start(&hw->bitbang); 897 if (err) { 898 dev_err(&pdev->dev, "Failed to register SPI master\n"); 899 goto err_register; 900 } 901 902 dev_info(&pdev->dev, 903 "spi master registered: bus_num=%d num_chipselect=%d\n", 904 master->bus_num, master->num_chipselect); 905 906 return 0; 907 908 err_register: 909 free_irq(hw->irq, hw); 910 911 err_no_irq: 912 au1550_spi_dma_rxtmp_free(hw); 913 914 err_dma_rxtmp_alloc: 915 err_no_rxdma_descr: 916 if (hw->usedma) 917 au1xxx_dbdma_chan_free(hw->dma_rx_ch); 918 919 err_no_rxdma: 920 err_no_txdma_descr: 921 if (hw->usedma) 922 au1xxx_dbdma_chan_free(hw->dma_tx_ch); 923 924 err_no_txdma: 925 iounmap((void __iomem *)hw->regs); 926 927 err_ioremap: 928 release_resource(hw->ioarea); 929 kfree(hw->ioarea); 930 931 err_no_iores: 932 err_no_pdata: 933 spi_master_put(hw->master); 934 935 err_nomem: 936 return err; 937 } 938 939 static int au1550_spi_remove(struct platform_device *pdev) 940 { 941 struct au1550_spi *hw = platform_get_drvdata(pdev); 942 943 dev_info(&pdev->dev, "spi master remove: bus_num=%d\n", 944 hw->master->bus_num); 945 946 spi_bitbang_stop(&hw->bitbang); 947 free_irq(hw->irq, hw); 948 iounmap((void __iomem *)hw->regs); 949 release_resource(hw->ioarea); 950 kfree(hw->ioarea); 951 952 if (hw->usedma) { 953 au1550_spi_dma_rxtmp_free(hw); 954 au1xxx_dbdma_chan_free(hw->dma_rx_ch); 955 au1xxx_dbdma_chan_free(hw->dma_tx_ch); 956 } 957 958 spi_master_put(hw->master); 959 return 0; 960 } 961 962 /* work with hotplug and coldplug */ 963 MODULE_ALIAS("platform:au1550-spi"); 964 965 static struct platform_driver au1550_spi_drv = { 966 .probe = au1550_spi_probe, 967 .remove = au1550_spi_remove, 968 .driver = { 969 .name = "au1550-spi", 970 .owner = THIS_MODULE, 971 }, 972 }; 973 974 static int __init au1550_spi_init(void) 975 { 976 /* 977 * create memory device with 8 bits dev_devwidth 978 * needed for proper byte ordering to spi fifo 979 */ 980 switch (alchemy_get_cputype()) { 981 case ALCHEMY_CPU_AU1550: 982 case ALCHEMY_CPU_AU1200: 983 case ALCHEMY_CPU_AU1300: 984 break; 985 default: 986 return -ENODEV; 987 } 988 989 if (usedma) { 990 ddma_memid = au1xxx_ddma_add_device(&au1550_spi_mem_dbdev); 991 if (!ddma_memid) 992 printk(KERN_ERR "au1550-spi: cannot add memory" 993 "dbdma device\n"); 994 } 995 return platform_driver_register(&au1550_spi_drv); 996 } 997 module_init(au1550_spi_init); 998 999 static void __exit au1550_spi_exit(void) 1000 { 1001 if (usedma && ddma_memid) 1002 au1xxx_ddma_del_device(ddma_memid); 1003 platform_driver_unregister(&au1550_spi_drv); 1004 } 1005 module_exit(au1550_spi_exit); 1006 1007 MODULE_DESCRIPTION("Au1550 PSC SPI Driver"); 1008 MODULE_AUTHOR("Jan Nikitenko <jan.nikitenko@gmail.com>"); 1009 MODULE_LICENSE("GPL"); 1010