1 /* 2 * au1550 psc spi controller driver 3 * may work also with au1200, au1210, au1250 4 * will not work on au1000, au1100 and au1500 (no full spi controller there) 5 * 6 * Copyright (c) 2006 ATRON electronic GmbH 7 * Author: Jan Nikitenko <jan.nikitenko@gmail.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 */ 23 24 #include <linux/init.h> 25 #include <linux/interrupt.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/module.h> 29 #include <linux/device.h> 30 #include <linux/platform_device.h> 31 #include <linux/resource.h> 32 #include <linux/spi/spi.h> 33 #include <linux/spi/spi_bitbang.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/completion.h> 36 #include <asm/mach-au1x00/au1000.h> 37 #include <asm/mach-au1x00/au1xxx_psc.h> 38 #include <asm/mach-au1x00/au1xxx_dbdma.h> 39 40 #include <asm/mach-au1x00/au1550_spi.h> 41 42 static unsigned usedma = 1; 43 module_param(usedma, uint, 0644); 44 45 /* 46 #define AU1550_SPI_DEBUG_LOOPBACK 47 */ 48 49 50 #define AU1550_SPI_DBDMA_DESCRIPTORS 1 51 #define AU1550_SPI_DMA_RXTMP_MINSIZE 2048U 52 53 struct au1550_spi { 54 struct spi_bitbang bitbang; 55 56 volatile psc_spi_t __iomem *regs; 57 int irq; 58 unsigned freq_max; 59 unsigned freq_min; 60 61 unsigned len; 62 unsigned tx_count; 63 unsigned rx_count; 64 const u8 *tx; 65 u8 *rx; 66 67 void (*rx_word)(struct au1550_spi *hw); 68 void (*tx_word)(struct au1550_spi *hw); 69 int (*txrx_bufs)(struct spi_device *spi, struct spi_transfer *t); 70 irqreturn_t (*irq_callback)(struct au1550_spi *hw); 71 72 struct completion master_done; 73 74 unsigned usedma; 75 u32 dma_tx_id; 76 u32 dma_rx_id; 77 u32 dma_tx_ch; 78 u32 dma_rx_ch; 79 80 u8 *dma_rx_tmpbuf; 81 unsigned dma_rx_tmpbuf_size; 82 u32 dma_rx_tmpbuf_addr; 83 84 struct spi_master *master; 85 struct device *dev; 86 struct au1550_spi_info *pdata; 87 struct resource *ioarea; 88 }; 89 90 91 /* we use an 8-bit memory device for dma transfers to/from spi fifo */ 92 static dbdev_tab_t au1550_spi_mem_dbdev = 93 { 94 .dev_id = DBDMA_MEM_CHAN, 95 .dev_flags = DEV_FLAGS_ANYUSE|DEV_FLAGS_SYNC, 96 .dev_tsize = 0, 97 .dev_devwidth = 8, 98 .dev_physaddr = 0x00000000, 99 .dev_intlevel = 0, 100 .dev_intpolarity = 0 101 }; 102 103 static int ddma_memid; /* id to above mem dma device */ 104 105 static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw); 106 107 108 /* 109 * compute BRG and DIV bits to setup spi clock based on main input clock rate 110 * that was specified in platform data structure 111 * according to au1550 datasheet: 112 * psc_tempclk = psc_mainclk / (2 << DIV) 113 * spiclk = psc_tempclk / (2 * (BRG + 1)) 114 * BRG valid range is 4..63 115 * DIV valid range is 0..3 116 */ 117 static u32 au1550_spi_baudcfg(struct au1550_spi *hw, unsigned speed_hz) 118 { 119 u32 mainclk_hz = hw->pdata->mainclk_hz; 120 u32 div, brg; 121 122 for (div = 0; div < 4; div++) { 123 brg = mainclk_hz / speed_hz / (4 << div); 124 /* now we have BRG+1 in brg, so count with that */ 125 if (brg < (4 + 1)) { 126 brg = (4 + 1); /* speed_hz too big */ 127 break; /* set lowest brg (div is == 0) */ 128 } 129 if (brg <= (63 + 1)) 130 break; /* we have valid brg and div */ 131 } 132 if (div == 4) { 133 div = 3; /* speed_hz too small */ 134 brg = (63 + 1); /* set highest brg and div */ 135 } 136 brg--; 137 return PSC_SPICFG_SET_BAUD(brg) | PSC_SPICFG_SET_DIV(div); 138 } 139 140 static inline void au1550_spi_mask_ack_all(struct au1550_spi *hw) 141 { 142 hw->regs->psc_spimsk = 143 PSC_SPIMSK_MM | PSC_SPIMSK_RR | PSC_SPIMSK_RO 144 | PSC_SPIMSK_RU | PSC_SPIMSK_TR | PSC_SPIMSK_TO 145 | PSC_SPIMSK_TU | PSC_SPIMSK_SD | PSC_SPIMSK_MD; 146 au_sync(); 147 148 hw->regs->psc_spievent = 149 PSC_SPIEVNT_MM | PSC_SPIEVNT_RR | PSC_SPIEVNT_RO 150 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TR | PSC_SPIEVNT_TO 151 | PSC_SPIEVNT_TU | PSC_SPIEVNT_SD | PSC_SPIEVNT_MD; 152 au_sync(); 153 } 154 155 static void au1550_spi_reset_fifos(struct au1550_spi *hw) 156 { 157 u32 pcr; 158 159 hw->regs->psc_spipcr = PSC_SPIPCR_RC | PSC_SPIPCR_TC; 160 au_sync(); 161 do { 162 pcr = hw->regs->psc_spipcr; 163 au_sync(); 164 } while (pcr != 0); 165 } 166 167 /* 168 * dma transfers are used for the most common spi word size of 8-bits 169 * we cannot easily change already set up dma channels' width, so if we wanted 170 * dma support for more than 8-bit words (up to 24 bits), we would need to 171 * setup dma channels from scratch on each spi transfer, based on bits_per_word 172 * instead we have pre set up 8 bit dma channels supporting spi 4 to 8 bits 173 * transfers, and 9 to 24 bits spi transfers will be done in pio irq based mode 174 * callbacks to handle dma or pio are set up in au1550_spi_bits_handlers_set() 175 */ 176 static void au1550_spi_chipsel(struct spi_device *spi, int value) 177 { 178 struct au1550_spi *hw = spi_master_get_devdata(spi->master); 179 unsigned cspol = spi->mode & SPI_CS_HIGH ? 1 : 0; 180 u32 cfg, stat; 181 182 switch (value) { 183 case BITBANG_CS_INACTIVE: 184 if (hw->pdata->deactivate_cs) 185 hw->pdata->deactivate_cs(hw->pdata, spi->chip_select, 186 cspol); 187 break; 188 189 case BITBANG_CS_ACTIVE: 190 au1550_spi_bits_handlers_set(hw, spi->bits_per_word); 191 192 cfg = hw->regs->psc_spicfg; 193 au_sync(); 194 hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE; 195 au_sync(); 196 197 if (spi->mode & SPI_CPOL) 198 cfg |= PSC_SPICFG_BI; 199 else 200 cfg &= ~PSC_SPICFG_BI; 201 if (spi->mode & SPI_CPHA) 202 cfg &= ~PSC_SPICFG_CDE; 203 else 204 cfg |= PSC_SPICFG_CDE; 205 206 if (spi->mode & SPI_LSB_FIRST) 207 cfg |= PSC_SPICFG_MLF; 208 else 209 cfg &= ~PSC_SPICFG_MLF; 210 211 if (hw->usedma && spi->bits_per_word <= 8) 212 cfg &= ~PSC_SPICFG_DD_DISABLE; 213 else 214 cfg |= PSC_SPICFG_DD_DISABLE; 215 cfg = PSC_SPICFG_CLR_LEN(cfg); 216 cfg |= PSC_SPICFG_SET_LEN(spi->bits_per_word); 217 218 cfg = PSC_SPICFG_CLR_BAUD(cfg); 219 cfg &= ~PSC_SPICFG_SET_DIV(3); 220 cfg |= au1550_spi_baudcfg(hw, spi->max_speed_hz); 221 222 hw->regs->psc_spicfg = cfg | PSC_SPICFG_DE_ENABLE; 223 au_sync(); 224 do { 225 stat = hw->regs->psc_spistat; 226 au_sync(); 227 } while ((stat & PSC_SPISTAT_DR) == 0); 228 229 if (hw->pdata->activate_cs) 230 hw->pdata->activate_cs(hw->pdata, spi->chip_select, 231 cspol); 232 break; 233 } 234 } 235 236 static int au1550_spi_setupxfer(struct spi_device *spi, struct spi_transfer *t) 237 { 238 struct au1550_spi *hw = spi_master_get_devdata(spi->master); 239 unsigned bpw, hz; 240 u32 cfg, stat; 241 242 bpw = spi->bits_per_word; 243 hz = spi->max_speed_hz; 244 if (t) { 245 if (t->bits_per_word) 246 bpw = t->bits_per_word; 247 if (t->speed_hz) 248 hz = t->speed_hz; 249 } 250 251 if (bpw < 4 || bpw > 24) { 252 dev_err(&spi->dev, "setupxfer: invalid bits_per_word=%d\n", 253 bpw); 254 return -EINVAL; 255 } 256 if (hz > spi->max_speed_hz || hz > hw->freq_max || hz < hw->freq_min) { 257 dev_err(&spi->dev, "setupxfer: clock rate=%d out of range\n", 258 hz); 259 return -EINVAL; 260 } 261 262 au1550_spi_bits_handlers_set(hw, spi->bits_per_word); 263 264 cfg = hw->regs->psc_spicfg; 265 au_sync(); 266 hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE; 267 au_sync(); 268 269 if (hw->usedma && bpw <= 8) 270 cfg &= ~PSC_SPICFG_DD_DISABLE; 271 else 272 cfg |= PSC_SPICFG_DD_DISABLE; 273 cfg = PSC_SPICFG_CLR_LEN(cfg); 274 cfg |= PSC_SPICFG_SET_LEN(bpw); 275 276 cfg = PSC_SPICFG_CLR_BAUD(cfg); 277 cfg &= ~PSC_SPICFG_SET_DIV(3); 278 cfg |= au1550_spi_baudcfg(hw, hz); 279 280 hw->regs->psc_spicfg = cfg; 281 au_sync(); 282 283 if (cfg & PSC_SPICFG_DE_ENABLE) { 284 do { 285 stat = hw->regs->psc_spistat; 286 au_sync(); 287 } while ((stat & PSC_SPISTAT_DR) == 0); 288 } 289 290 au1550_spi_reset_fifos(hw); 291 au1550_spi_mask_ack_all(hw); 292 return 0; 293 } 294 295 static int au1550_spi_setup(struct spi_device *spi) 296 { 297 struct au1550_spi *hw = spi_master_get_devdata(spi->master); 298 299 if (spi->bits_per_word < 4 || spi->bits_per_word > 24) { 300 dev_err(&spi->dev, "setup: invalid bits_per_word=%d\n", 301 spi->bits_per_word); 302 return -EINVAL; 303 } 304 305 if (spi->max_speed_hz == 0) 306 spi->max_speed_hz = hw->freq_max; 307 if (spi->max_speed_hz > hw->freq_max 308 || spi->max_speed_hz < hw->freq_min) 309 return -EINVAL; 310 /* 311 * NOTE: cannot change speed and other hw settings immediately, 312 * otherwise sharing of spi bus is not possible, 313 * so do not call setupxfer(spi, NULL) here 314 */ 315 return 0; 316 } 317 318 /* 319 * for dma spi transfers, we have to setup rx channel, otherwise there is 320 * no reliable way how to recognize that spi transfer is done 321 * dma complete callbacks are called before real spi transfer is finished 322 * and if only tx dma channel is set up (and rx fifo overflow event masked) 323 * spi master done event irq is not generated unless rx fifo is empty (emptied) 324 * so we need rx tmp buffer to use for rx dma if user does not provide one 325 */ 326 static int au1550_spi_dma_rxtmp_alloc(struct au1550_spi *hw, unsigned size) 327 { 328 hw->dma_rx_tmpbuf = kmalloc(size, GFP_KERNEL); 329 if (!hw->dma_rx_tmpbuf) 330 return -ENOMEM; 331 hw->dma_rx_tmpbuf_size = size; 332 hw->dma_rx_tmpbuf_addr = dma_map_single(hw->dev, hw->dma_rx_tmpbuf, 333 size, DMA_FROM_DEVICE); 334 if (dma_mapping_error(hw->dev, hw->dma_rx_tmpbuf_addr)) { 335 kfree(hw->dma_rx_tmpbuf); 336 hw->dma_rx_tmpbuf = 0; 337 hw->dma_rx_tmpbuf_size = 0; 338 return -EFAULT; 339 } 340 return 0; 341 } 342 343 static void au1550_spi_dma_rxtmp_free(struct au1550_spi *hw) 344 { 345 dma_unmap_single(hw->dev, hw->dma_rx_tmpbuf_addr, 346 hw->dma_rx_tmpbuf_size, DMA_FROM_DEVICE); 347 kfree(hw->dma_rx_tmpbuf); 348 hw->dma_rx_tmpbuf = 0; 349 hw->dma_rx_tmpbuf_size = 0; 350 } 351 352 static int au1550_spi_dma_txrxb(struct spi_device *spi, struct spi_transfer *t) 353 { 354 struct au1550_spi *hw = spi_master_get_devdata(spi->master); 355 dma_addr_t dma_tx_addr; 356 dma_addr_t dma_rx_addr; 357 u32 res; 358 359 hw->len = t->len; 360 hw->tx_count = 0; 361 hw->rx_count = 0; 362 363 hw->tx = t->tx_buf; 364 hw->rx = t->rx_buf; 365 dma_tx_addr = t->tx_dma; 366 dma_rx_addr = t->rx_dma; 367 368 /* 369 * check if buffers are already dma mapped, map them otherwise: 370 * - first map the TX buffer, so cache data gets written to memory 371 * - then map the RX buffer, so that cache entries (with 372 * soon-to-be-stale data) get removed 373 * use rx buffer in place of tx if tx buffer was not provided 374 * use temp rx buffer (preallocated or realloc to fit) for rx dma 375 */ 376 if (t->tx_buf) { 377 if (t->tx_dma == 0) { /* if DMA_ADDR_INVALID, map it */ 378 dma_tx_addr = dma_map_single(hw->dev, 379 (void *)t->tx_buf, 380 t->len, DMA_TO_DEVICE); 381 if (dma_mapping_error(hw->dev, dma_tx_addr)) 382 dev_err(hw->dev, "tx dma map error\n"); 383 } 384 } 385 386 if (t->rx_buf) { 387 if (t->rx_dma == 0) { /* if DMA_ADDR_INVALID, map it */ 388 dma_rx_addr = dma_map_single(hw->dev, 389 (void *)t->rx_buf, 390 t->len, DMA_FROM_DEVICE); 391 if (dma_mapping_error(hw->dev, dma_rx_addr)) 392 dev_err(hw->dev, "rx dma map error\n"); 393 } 394 } else { 395 if (t->len > hw->dma_rx_tmpbuf_size) { 396 int ret; 397 398 au1550_spi_dma_rxtmp_free(hw); 399 ret = au1550_spi_dma_rxtmp_alloc(hw, max(t->len, 400 AU1550_SPI_DMA_RXTMP_MINSIZE)); 401 if (ret < 0) 402 return ret; 403 } 404 hw->rx = hw->dma_rx_tmpbuf; 405 dma_rx_addr = hw->dma_rx_tmpbuf_addr; 406 dma_sync_single_for_device(hw->dev, dma_rx_addr, 407 t->len, DMA_FROM_DEVICE); 408 } 409 410 if (!t->tx_buf) { 411 dma_sync_single_for_device(hw->dev, dma_rx_addr, 412 t->len, DMA_BIDIRECTIONAL); 413 hw->tx = hw->rx; 414 } 415 416 /* put buffers on the ring */ 417 res = au1xxx_dbdma_put_dest(hw->dma_rx_ch, virt_to_phys(hw->rx), 418 t->len, DDMA_FLAGS_IE); 419 if (!res) 420 dev_err(hw->dev, "rx dma put dest error\n"); 421 422 res = au1xxx_dbdma_put_source(hw->dma_tx_ch, virt_to_phys(hw->tx), 423 t->len, DDMA_FLAGS_IE); 424 if (!res) 425 dev_err(hw->dev, "tx dma put source error\n"); 426 427 au1xxx_dbdma_start(hw->dma_rx_ch); 428 au1xxx_dbdma_start(hw->dma_tx_ch); 429 430 /* by default enable nearly all events interrupt */ 431 hw->regs->psc_spimsk = PSC_SPIMSK_SD; 432 au_sync(); 433 434 /* start the transfer */ 435 hw->regs->psc_spipcr = PSC_SPIPCR_MS; 436 au_sync(); 437 438 wait_for_completion(&hw->master_done); 439 440 au1xxx_dbdma_stop(hw->dma_tx_ch); 441 au1xxx_dbdma_stop(hw->dma_rx_ch); 442 443 if (!t->rx_buf) { 444 /* using the temporal preallocated and premapped buffer */ 445 dma_sync_single_for_cpu(hw->dev, dma_rx_addr, t->len, 446 DMA_FROM_DEVICE); 447 } 448 /* unmap buffers if mapped above */ 449 if (t->rx_buf && t->rx_dma == 0 ) 450 dma_unmap_single(hw->dev, dma_rx_addr, t->len, 451 DMA_FROM_DEVICE); 452 if (t->tx_buf && t->tx_dma == 0 ) 453 dma_unmap_single(hw->dev, dma_tx_addr, t->len, 454 DMA_TO_DEVICE); 455 456 return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count; 457 } 458 459 static irqreturn_t au1550_spi_dma_irq_callback(struct au1550_spi *hw) 460 { 461 u32 stat, evnt; 462 463 stat = hw->regs->psc_spistat; 464 evnt = hw->regs->psc_spievent; 465 au_sync(); 466 if ((stat & PSC_SPISTAT_DI) == 0) { 467 dev_err(hw->dev, "Unexpected IRQ!\n"); 468 return IRQ_NONE; 469 } 470 471 if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO 472 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TO 473 | PSC_SPIEVNT_TU | PSC_SPIEVNT_SD)) 474 != 0) { 475 /* 476 * due to an spi error we consider transfer as done, 477 * so mask all events until before next transfer start 478 * and stop the possibly running dma immediatelly 479 */ 480 au1550_spi_mask_ack_all(hw); 481 au1xxx_dbdma_stop(hw->dma_rx_ch); 482 au1xxx_dbdma_stop(hw->dma_tx_ch); 483 484 /* get number of transferred bytes */ 485 hw->rx_count = hw->len - au1xxx_get_dma_residue(hw->dma_rx_ch); 486 hw->tx_count = hw->len - au1xxx_get_dma_residue(hw->dma_tx_ch); 487 488 au1xxx_dbdma_reset(hw->dma_rx_ch); 489 au1xxx_dbdma_reset(hw->dma_tx_ch); 490 au1550_spi_reset_fifos(hw); 491 492 if (evnt == PSC_SPIEVNT_RO) 493 dev_err(hw->dev, 494 "dma transfer: receive FIFO overflow!\n"); 495 else 496 dev_err(hw->dev, 497 "dma transfer: unexpected SPI error " 498 "(event=0x%x stat=0x%x)!\n", evnt, stat); 499 500 complete(&hw->master_done); 501 return IRQ_HANDLED; 502 } 503 504 if ((evnt & PSC_SPIEVNT_MD) != 0) { 505 /* transfer completed successfully */ 506 au1550_spi_mask_ack_all(hw); 507 hw->rx_count = hw->len; 508 hw->tx_count = hw->len; 509 complete(&hw->master_done); 510 } 511 return IRQ_HANDLED; 512 } 513 514 515 /* routines to handle different word sizes in pio mode */ 516 #define AU1550_SPI_RX_WORD(size, mask) \ 517 static void au1550_spi_rx_word_##size(struct au1550_spi *hw) \ 518 { \ 519 u32 fifoword = hw->regs->psc_spitxrx & (u32)(mask); \ 520 au_sync(); \ 521 if (hw->rx) { \ 522 *(u##size *)hw->rx = (u##size)fifoword; \ 523 hw->rx += (size) / 8; \ 524 } \ 525 hw->rx_count += (size) / 8; \ 526 } 527 528 #define AU1550_SPI_TX_WORD(size, mask) \ 529 static void au1550_spi_tx_word_##size(struct au1550_spi *hw) \ 530 { \ 531 u32 fifoword = 0; \ 532 if (hw->tx) { \ 533 fifoword = *(u##size *)hw->tx & (u32)(mask); \ 534 hw->tx += (size) / 8; \ 535 } \ 536 hw->tx_count += (size) / 8; \ 537 if (hw->tx_count >= hw->len) \ 538 fifoword |= PSC_SPITXRX_LC; \ 539 hw->regs->psc_spitxrx = fifoword; \ 540 au_sync(); \ 541 } 542 543 AU1550_SPI_RX_WORD(8,0xff) 544 AU1550_SPI_RX_WORD(16,0xffff) 545 AU1550_SPI_RX_WORD(32,0xffffff) 546 AU1550_SPI_TX_WORD(8,0xff) 547 AU1550_SPI_TX_WORD(16,0xffff) 548 AU1550_SPI_TX_WORD(32,0xffffff) 549 550 static int au1550_spi_pio_txrxb(struct spi_device *spi, struct spi_transfer *t) 551 { 552 u32 stat, mask; 553 struct au1550_spi *hw = spi_master_get_devdata(spi->master); 554 555 hw->tx = t->tx_buf; 556 hw->rx = t->rx_buf; 557 hw->len = t->len; 558 hw->tx_count = 0; 559 hw->rx_count = 0; 560 561 /* by default enable nearly all events after filling tx fifo */ 562 mask = PSC_SPIMSK_SD; 563 564 /* fill the transmit FIFO */ 565 while (hw->tx_count < hw->len) { 566 567 hw->tx_word(hw); 568 569 if (hw->tx_count >= hw->len) { 570 /* mask tx fifo request interrupt as we are done */ 571 mask |= PSC_SPIMSK_TR; 572 } 573 574 stat = hw->regs->psc_spistat; 575 au_sync(); 576 if (stat & PSC_SPISTAT_TF) 577 break; 578 } 579 580 /* enable event interrupts */ 581 hw->regs->psc_spimsk = mask; 582 au_sync(); 583 584 /* start the transfer */ 585 hw->regs->psc_spipcr = PSC_SPIPCR_MS; 586 au_sync(); 587 588 wait_for_completion(&hw->master_done); 589 590 return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count; 591 } 592 593 static irqreturn_t au1550_spi_pio_irq_callback(struct au1550_spi *hw) 594 { 595 int busy; 596 u32 stat, evnt; 597 598 stat = hw->regs->psc_spistat; 599 evnt = hw->regs->psc_spievent; 600 au_sync(); 601 if ((stat & PSC_SPISTAT_DI) == 0) { 602 dev_err(hw->dev, "Unexpected IRQ!\n"); 603 return IRQ_NONE; 604 } 605 606 if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO 607 | PSC_SPIEVNT_RU | PSC_SPIEVNT_TO 608 | PSC_SPIEVNT_SD)) 609 != 0) { 610 /* 611 * due to an error we consider transfer as done, 612 * so mask all events until before next transfer start 613 */ 614 au1550_spi_mask_ack_all(hw); 615 au1550_spi_reset_fifos(hw); 616 dev_err(hw->dev, 617 "pio transfer: unexpected SPI error " 618 "(event=0x%x stat=0x%x)!\n", evnt, stat); 619 complete(&hw->master_done); 620 return IRQ_HANDLED; 621 } 622 623 /* 624 * while there is something to read from rx fifo 625 * or there is a space to write to tx fifo: 626 */ 627 do { 628 busy = 0; 629 stat = hw->regs->psc_spistat; 630 au_sync(); 631 632 /* 633 * Take care to not let the Rx FIFO overflow. 634 * 635 * We only write a byte if we have read one at least. Initially, 636 * the write fifo is full, so we should read from the read fifo 637 * first. 638 * In case we miss a word from the read fifo, we should get a 639 * RO event and should back out. 640 */ 641 if (!(stat & PSC_SPISTAT_RE) && hw->rx_count < hw->len) { 642 hw->rx_word(hw); 643 busy = 1; 644 645 if (!(stat & PSC_SPISTAT_TF) && hw->tx_count < hw->len) 646 hw->tx_word(hw); 647 } 648 } while (busy); 649 650 hw->regs->psc_spievent = PSC_SPIEVNT_RR | PSC_SPIEVNT_TR; 651 au_sync(); 652 653 /* 654 * Restart the SPI transmission in case of a transmit underflow. 655 * This seems to work despite the notes in the Au1550 data book 656 * of Figure 8-4 with flowchart for SPI master operation: 657 * 658 * """Note 1: An XFR Error Interrupt occurs, unless masked, 659 * for any of the following events: Tx FIFO Underflow, 660 * Rx FIFO Overflow, or Multiple-master Error 661 * Note 2: In case of a Tx Underflow Error, all zeroes are 662 * transmitted.""" 663 * 664 * By simply restarting the spi transfer on Tx Underflow Error, 665 * we assume that spi transfer was paused instead of zeroes 666 * transmittion mentioned in the Note 2 of Au1550 data book. 667 */ 668 if (evnt & PSC_SPIEVNT_TU) { 669 hw->regs->psc_spievent = PSC_SPIEVNT_TU | PSC_SPIEVNT_MD; 670 au_sync(); 671 hw->regs->psc_spipcr = PSC_SPIPCR_MS; 672 au_sync(); 673 } 674 675 if (hw->rx_count >= hw->len) { 676 /* transfer completed successfully */ 677 au1550_spi_mask_ack_all(hw); 678 complete(&hw->master_done); 679 } 680 return IRQ_HANDLED; 681 } 682 683 static int au1550_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t) 684 { 685 struct au1550_spi *hw = spi_master_get_devdata(spi->master); 686 return hw->txrx_bufs(spi, t); 687 } 688 689 static irqreturn_t au1550_spi_irq(int irq, void *dev) 690 { 691 struct au1550_spi *hw = dev; 692 return hw->irq_callback(hw); 693 } 694 695 static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw) 696 { 697 if (bpw <= 8) { 698 if (hw->usedma) { 699 hw->txrx_bufs = &au1550_spi_dma_txrxb; 700 hw->irq_callback = &au1550_spi_dma_irq_callback; 701 } else { 702 hw->rx_word = &au1550_spi_rx_word_8; 703 hw->tx_word = &au1550_spi_tx_word_8; 704 hw->txrx_bufs = &au1550_spi_pio_txrxb; 705 hw->irq_callback = &au1550_spi_pio_irq_callback; 706 } 707 } else if (bpw <= 16) { 708 hw->rx_word = &au1550_spi_rx_word_16; 709 hw->tx_word = &au1550_spi_tx_word_16; 710 hw->txrx_bufs = &au1550_spi_pio_txrxb; 711 hw->irq_callback = &au1550_spi_pio_irq_callback; 712 } else { 713 hw->rx_word = &au1550_spi_rx_word_32; 714 hw->tx_word = &au1550_spi_tx_word_32; 715 hw->txrx_bufs = &au1550_spi_pio_txrxb; 716 hw->irq_callback = &au1550_spi_pio_irq_callback; 717 } 718 } 719 720 static void __init au1550_spi_setup_psc_as_spi(struct au1550_spi *hw) 721 { 722 u32 stat, cfg; 723 724 /* set up the PSC for SPI mode */ 725 hw->regs->psc_ctrl = PSC_CTRL_DISABLE; 726 au_sync(); 727 hw->regs->psc_sel = PSC_SEL_PS_SPIMODE; 728 au_sync(); 729 730 hw->regs->psc_spicfg = 0; 731 au_sync(); 732 733 hw->regs->psc_ctrl = PSC_CTRL_ENABLE; 734 au_sync(); 735 736 do { 737 stat = hw->regs->psc_spistat; 738 au_sync(); 739 } while ((stat & PSC_SPISTAT_SR) == 0); 740 741 742 cfg = hw->usedma ? 0 : PSC_SPICFG_DD_DISABLE; 743 cfg |= PSC_SPICFG_SET_LEN(8); 744 cfg |= PSC_SPICFG_RT_FIFO8 | PSC_SPICFG_TT_FIFO8; 745 /* use minimal allowed brg and div values as initial setting: */ 746 cfg |= PSC_SPICFG_SET_BAUD(4) | PSC_SPICFG_SET_DIV(0); 747 748 #ifdef AU1550_SPI_DEBUG_LOOPBACK 749 cfg |= PSC_SPICFG_LB; 750 #endif 751 752 hw->regs->psc_spicfg = cfg; 753 au_sync(); 754 755 au1550_spi_mask_ack_all(hw); 756 757 hw->regs->psc_spicfg |= PSC_SPICFG_DE_ENABLE; 758 au_sync(); 759 760 do { 761 stat = hw->regs->psc_spistat; 762 au_sync(); 763 } while ((stat & PSC_SPISTAT_DR) == 0); 764 765 au1550_spi_reset_fifos(hw); 766 } 767 768 769 static int __init au1550_spi_probe(struct platform_device *pdev) 770 { 771 struct au1550_spi *hw; 772 struct spi_master *master; 773 struct resource *r; 774 int err = 0; 775 776 master = spi_alloc_master(&pdev->dev, sizeof(struct au1550_spi)); 777 if (master == NULL) { 778 dev_err(&pdev->dev, "No memory for spi_master\n"); 779 err = -ENOMEM; 780 goto err_nomem; 781 } 782 783 /* the spi->mode bits understood by this driver: */ 784 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST; 785 786 hw = spi_master_get_devdata(master); 787 788 hw->master = spi_master_get(master); 789 hw->pdata = pdev->dev.platform_data; 790 hw->dev = &pdev->dev; 791 792 if (hw->pdata == NULL) { 793 dev_err(&pdev->dev, "No platform data supplied\n"); 794 err = -ENOENT; 795 goto err_no_pdata; 796 } 797 798 r = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 799 if (!r) { 800 dev_err(&pdev->dev, "no IRQ\n"); 801 err = -ENODEV; 802 goto err_no_iores; 803 } 804 hw->irq = r->start; 805 806 hw->usedma = 0; 807 r = platform_get_resource(pdev, IORESOURCE_DMA, 0); 808 if (r) { 809 hw->dma_tx_id = r->start; 810 r = platform_get_resource(pdev, IORESOURCE_DMA, 1); 811 if (r) { 812 hw->dma_rx_id = r->start; 813 if (usedma && ddma_memid) { 814 if (pdev->dev.dma_mask == NULL) 815 dev_warn(&pdev->dev, "no dma mask\n"); 816 else 817 hw->usedma = 1; 818 } 819 } 820 } 821 822 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 823 if (!r) { 824 dev_err(&pdev->dev, "no mmio resource\n"); 825 err = -ENODEV; 826 goto err_no_iores; 827 } 828 829 hw->ioarea = request_mem_region(r->start, sizeof(psc_spi_t), 830 pdev->name); 831 if (!hw->ioarea) { 832 dev_err(&pdev->dev, "Cannot reserve iomem region\n"); 833 err = -ENXIO; 834 goto err_no_iores; 835 } 836 837 hw->regs = (psc_spi_t __iomem *)ioremap(r->start, sizeof(psc_spi_t)); 838 if (!hw->regs) { 839 dev_err(&pdev->dev, "cannot ioremap\n"); 840 err = -ENXIO; 841 goto err_ioremap; 842 } 843 844 platform_set_drvdata(pdev, hw); 845 846 init_completion(&hw->master_done); 847 848 hw->bitbang.master = hw->master; 849 hw->bitbang.setup_transfer = au1550_spi_setupxfer; 850 hw->bitbang.chipselect = au1550_spi_chipsel; 851 hw->bitbang.master->setup = au1550_spi_setup; 852 hw->bitbang.txrx_bufs = au1550_spi_txrx_bufs; 853 854 if (hw->usedma) { 855 hw->dma_tx_ch = au1xxx_dbdma_chan_alloc(ddma_memid, 856 hw->dma_tx_id, NULL, (void *)hw); 857 if (hw->dma_tx_ch == 0) { 858 dev_err(&pdev->dev, 859 "Cannot allocate tx dma channel\n"); 860 err = -ENXIO; 861 goto err_no_txdma; 862 } 863 au1xxx_dbdma_set_devwidth(hw->dma_tx_ch, 8); 864 if (au1xxx_dbdma_ring_alloc(hw->dma_tx_ch, 865 AU1550_SPI_DBDMA_DESCRIPTORS) == 0) { 866 dev_err(&pdev->dev, 867 "Cannot allocate tx dma descriptors\n"); 868 err = -ENXIO; 869 goto err_no_txdma_descr; 870 } 871 872 873 hw->dma_rx_ch = au1xxx_dbdma_chan_alloc(hw->dma_rx_id, 874 ddma_memid, NULL, (void *)hw); 875 if (hw->dma_rx_ch == 0) { 876 dev_err(&pdev->dev, 877 "Cannot allocate rx dma channel\n"); 878 err = -ENXIO; 879 goto err_no_rxdma; 880 } 881 au1xxx_dbdma_set_devwidth(hw->dma_rx_ch, 8); 882 if (au1xxx_dbdma_ring_alloc(hw->dma_rx_ch, 883 AU1550_SPI_DBDMA_DESCRIPTORS) == 0) { 884 dev_err(&pdev->dev, 885 "Cannot allocate rx dma descriptors\n"); 886 err = -ENXIO; 887 goto err_no_rxdma_descr; 888 } 889 890 err = au1550_spi_dma_rxtmp_alloc(hw, 891 AU1550_SPI_DMA_RXTMP_MINSIZE); 892 if (err < 0) { 893 dev_err(&pdev->dev, 894 "Cannot allocate initial rx dma tmp buffer\n"); 895 goto err_dma_rxtmp_alloc; 896 } 897 } 898 899 au1550_spi_bits_handlers_set(hw, 8); 900 901 err = request_irq(hw->irq, au1550_spi_irq, 0, pdev->name, hw); 902 if (err) { 903 dev_err(&pdev->dev, "Cannot claim IRQ\n"); 904 goto err_no_irq; 905 } 906 907 master->bus_num = pdev->id; 908 master->num_chipselect = hw->pdata->num_chipselect; 909 910 /* 911 * precompute valid range for spi freq - from au1550 datasheet: 912 * psc_tempclk = psc_mainclk / (2 << DIV) 913 * spiclk = psc_tempclk / (2 * (BRG + 1)) 914 * BRG valid range is 4..63 915 * DIV valid range is 0..3 916 * round the min and max frequencies to values that would still 917 * produce valid brg and div 918 */ 919 { 920 int min_div = (2 << 0) * (2 * (4 + 1)); 921 int max_div = (2 << 3) * (2 * (63 + 1)); 922 hw->freq_max = hw->pdata->mainclk_hz / min_div; 923 hw->freq_min = hw->pdata->mainclk_hz / (max_div + 1) + 1; 924 } 925 926 au1550_spi_setup_psc_as_spi(hw); 927 928 err = spi_bitbang_start(&hw->bitbang); 929 if (err) { 930 dev_err(&pdev->dev, "Failed to register SPI master\n"); 931 goto err_register; 932 } 933 934 dev_info(&pdev->dev, 935 "spi master registered: bus_num=%d num_chipselect=%d\n", 936 master->bus_num, master->num_chipselect); 937 938 return 0; 939 940 err_register: 941 free_irq(hw->irq, hw); 942 943 err_no_irq: 944 au1550_spi_dma_rxtmp_free(hw); 945 946 err_dma_rxtmp_alloc: 947 err_no_rxdma_descr: 948 if (hw->usedma) 949 au1xxx_dbdma_chan_free(hw->dma_rx_ch); 950 951 err_no_rxdma: 952 err_no_txdma_descr: 953 if (hw->usedma) 954 au1xxx_dbdma_chan_free(hw->dma_tx_ch); 955 956 err_no_txdma: 957 iounmap((void __iomem *)hw->regs); 958 959 err_ioremap: 960 release_resource(hw->ioarea); 961 kfree(hw->ioarea); 962 963 err_no_iores: 964 err_no_pdata: 965 spi_master_put(hw->master); 966 967 err_nomem: 968 return err; 969 } 970 971 static int __exit au1550_spi_remove(struct platform_device *pdev) 972 { 973 struct au1550_spi *hw = platform_get_drvdata(pdev); 974 975 dev_info(&pdev->dev, "spi master remove: bus_num=%d\n", 976 hw->master->bus_num); 977 978 spi_bitbang_stop(&hw->bitbang); 979 free_irq(hw->irq, hw); 980 iounmap((void __iomem *)hw->regs); 981 release_resource(hw->ioarea); 982 kfree(hw->ioarea); 983 984 if (hw->usedma) { 985 au1550_spi_dma_rxtmp_free(hw); 986 au1xxx_dbdma_chan_free(hw->dma_rx_ch); 987 au1xxx_dbdma_chan_free(hw->dma_tx_ch); 988 } 989 990 platform_set_drvdata(pdev, NULL); 991 992 spi_master_put(hw->master); 993 return 0; 994 } 995 996 /* work with hotplug and coldplug */ 997 MODULE_ALIAS("platform:au1550-spi"); 998 999 static struct platform_driver au1550_spi_drv = { 1000 .remove = __exit_p(au1550_spi_remove), 1001 .driver = { 1002 .name = "au1550-spi", 1003 .owner = THIS_MODULE, 1004 }, 1005 }; 1006 1007 static int __init au1550_spi_init(void) 1008 { 1009 /* 1010 * create memory device with 8 bits dev_devwidth 1011 * needed for proper byte ordering to spi fifo 1012 */ 1013 if (usedma) { 1014 ddma_memid = au1xxx_ddma_add_device(&au1550_spi_mem_dbdev); 1015 if (!ddma_memid) 1016 printk(KERN_ERR "au1550-spi: cannot add memory" 1017 "dbdma device\n"); 1018 } 1019 return platform_driver_probe(&au1550_spi_drv, au1550_spi_probe); 1020 } 1021 module_init(au1550_spi_init); 1022 1023 static void __exit au1550_spi_exit(void) 1024 { 1025 if (usedma && ddma_memid) 1026 au1xxx_ddma_del_device(ddma_memid); 1027 platform_driver_unregister(&au1550_spi_drv); 1028 } 1029 module_exit(au1550_spi_exit); 1030 1031 MODULE_DESCRIPTION("Au1550 PSC SPI Driver"); 1032 MODULE_AUTHOR("Jan Nikitenko <jan.nikitenko@gmail.com>"); 1033 MODULE_LICENSE("GPL"); 1034