xref: /openbmc/linux/drivers/spi/spi-au1550.c (revision 089a49b6)
1 /*
2  * au1550 psc spi controller driver
3  * may work also with au1200, au1210, au1250
4  * will not work on au1000, au1100 and au1500 (no full spi controller there)
5  *
6  * Copyright (c) 2006 ATRON electronic GmbH
7  * Author: Jan Nikitenko <jan.nikitenko@gmail.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  */
23 
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/platform_device.h>
31 #include <linux/resource.h>
32 #include <linux/spi/spi.h>
33 #include <linux/spi/spi_bitbang.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/completion.h>
36 #include <asm/mach-au1x00/au1000.h>
37 #include <asm/mach-au1x00/au1xxx_psc.h>
38 #include <asm/mach-au1x00/au1xxx_dbdma.h>
39 
40 #include <asm/mach-au1x00/au1550_spi.h>
41 
42 static unsigned usedma = 1;
43 module_param(usedma, uint, 0644);
44 
45 /*
46 #define AU1550_SPI_DEBUG_LOOPBACK
47 */
48 
49 
50 #define AU1550_SPI_DBDMA_DESCRIPTORS 1
51 #define AU1550_SPI_DMA_RXTMP_MINSIZE 2048U
52 
53 struct au1550_spi {
54 	struct spi_bitbang bitbang;
55 
56 	volatile psc_spi_t __iomem *regs;
57 	int irq;
58 	unsigned freq_max;
59 	unsigned freq_min;
60 
61 	unsigned len;
62 	unsigned tx_count;
63 	unsigned rx_count;
64 	const u8 *tx;
65 	u8 *rx;
66 
67 	void (*rx_word)(struct au1550_spi *hw);
68 	void (*tx_word)(struct au1550_spi *hw);
69 	int (*txrx_bufs)(struct spi_device *spi, struct spi_transfer *t);
70 	irqreturn_t (*irq_callback)(struct au1550_spi *hw);
71 
72 	struct completion master_done;
73 
74 	unsigned usedma;
75 	u32 dma_tx_id;
76 	u32 dma_rx_id;
77 	u32 dma_tx_ch;
78 	u32 dma_rx_ch;
79 
80 	u8 *dma_rx_tmpbuf;
81 	unsigned dma_rx_tmpbuf_size;
82 	u32 dma_rx_tmpbuf_addr;
83 
84 	struct spi_master *master;
85 	struct device *dev;
86 	struct au1550_spi_info *pdata;
87 	struct resource *ioarea;
88 };
89 
90 
91 /* we use an 8-bit memory device for dma transfers to/from spi fifo */
92 static dbdev_tab_t au1550_spi_mem_dbdev =
93 {
94 	.dev_id			= DBDMA_MEM_CHAN,
95 	.dev_flags		= DEV_FLAGS_ANYUSE|DEV_FLAGS_SYNC,
96 	.dev_tsize		= 0,
97 	.dev_devwidth		= 8,
98 	.dev_physaddr		= 0x00000000,
99 	.dev_intlevel		= 0,
100 	.dev_intpolarity	= 0
101 };
102 
103 static int ddma_memid;	/* id to above mem dma device */
104 
105 static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw);
106 
107 
108 /*
109  *  compute BRG and DIV bits to setup spi clock based on main input clock rate
110  *  that was specified in platform data structure
111  *  according to au1550 datasheet:
112  *    psc_tempclk = psc_mainclk / (2 << DIV)
113  *    spiclk = psc_tempclk / (2 * (BRG + 1))
114  *    BRG valid range is 4..63
115  *    DIV valid range is 0..3
116  */
117 static u32 au1550_spi_baudcfg(struct au1550_spi *hw, unsigned speed_hz)
118 {
119 	u32 mainclk_hz = hw->pdata->mainclk_hz;
120 	u32 div, brg;
121 
122 	for (div = 0; div < 4; div++) {
123 		brg = mainclk_hz / speed_hz / (4 << div);
124 		/* now we have BRG+1 in brg, so count with that */
125 		if (brg < (4 + 1)) {
126 			brg = (4 + 1);	/* speed_hz too big */
127 			break;		/* set lowest brg (div is == 0) */
128 		}
129 		if (brg <= (63 + 1))
130 			break;		/* we have valid brg and div */
131 	}
132 	if (div == 4) {
133 		div = 3;		/* speed_hz too small */
134 		brg = (63 + 1);		/* set highest brg and div */
135 	}
136 	brg--;
137 	return PSC_SPICFG_SET_BAUD(brg) | PSC_SPICFG_SET_DIV(div);
138 }
139 
140 static inline void au1550_spi_mask_ack_all(struct au1550_spi *hw)
141 {
142 	hw->regs->psc_spimsk =
143 		  PSC_SPIMSK_MM | PSC_SPIMSK_RR | PSC_SPIMSK_RO
144 		| PSC_SPIMSK_RU | PSC_SPIMSK_TR | PSC_SPIMSK_TO
145 		| PSC_SPIMSK_TU | PSC_SPIMSK_SD | PSC_SPIMSK_MD;
146 	au_sync();
147 
148 	hw->regs->psc_spievent =
149 		  PSC_SPIEVNT_MM | PSC_SPIEVNT_RR | PSC_SPIEVNT_RO
150 		| PSC_SPIEVNT_RU | PSC_SPIEVNT_TR | PSC_SPIEVNT_TO
151 		| PSC_SPIEVNT_TU | PSC_SPIEVNT_SD | PSC_SPIEVNT_MD;
152 	au_sync();
153 }
154 
155 static void au1550_spi_reset_fifos(struct au1550_spi *hw)
156 {
157 	u32 pcr;
158 
159 	hw->regs->psc_spipcr = PSC_SPIPCR_RC | PSC_SPIPCR_TC;
160 	au_sync();
161 	do {
162 		pcr = hw->regs->psc_spipcr;
163 		au_sync();
164 	} while (pcr != 0);
165 }
166 
167 /*
168  * dma transfers are used for the most common spi word size of 8-bits
169  * we cannot easily change already set up dma channels' width, so if we wanted
170  * dma support for more than 8-bit words (up to 24 bits), we would need to
171  * setup dma channels from scratch on each spi transfer, based on bits_per_word
172  * instead we have pre set up 8 bit dma channels supporting spi 4 to 8 bits
173  * transfers, and 9 to 24 bits spi transfers will be done in pio irq based mode
174  * callbacks to handle dma or pio are set up in au1550_spi_bits_handlers_set()
175  */
176 static void au1550_spi_chipsel(struct spi_device *spi, int value)
177 {
178 	struct au1550_spi *hw = spi_master_get_devdata(spi->master);
179 	unsigned cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
180 	u32 cfg, stat;
181 
182 	switch (value) {
183 	case BITBANG_CS_INACTIVE:
184 		if (hw->pdata->deactivate_cs)
185 			hw->pdata->deactivate_cs(hw->pdata, spi->chip_select,
186 					cspol);
187 		break;
188 
189 	case BITBANG_CS_ACTIVE:
190 		au1550_spi_bits_handlers_set(hw, spi->bits_per_word);
191 
192 		cfg = hw->regs->psc_spicfg;
193 		au_sync();
194 		hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE;
195 		au_sync();
196 
197 		if (spi->mode & SPI_CPOL)
198 			cfg |= PSC_SPICFG_BI;
199 		else
200 			cfg &= ~PSC_SPICFG_BI;
201 		if (spi->mode & SPI_CPHA)
202 			cfg &= ~PSC_SPICFG_CDE;
203 		else
204 			cfg |= PSC_SPICFG_CDE;
205 
206 		if (spi->mode & SPI_LSB_FIRST)
207 			cfg |= PSC_SPICFG_MLF;
208 		else
209 			cfg &= ~PSC_SPICFG_MLF;
210 
211 		if (hw->usedma && spi->bits_per_word <= 8)
212 			cfg &= ~PSC_SPICFG_DD_DISABLE;
213 		else
214 			cfg |= PSC_SPICFG_DD_DISABLE;
215 		cfg = PSC_SPICFG_CLR_LEN(cfg);
216 		cfg |= PSC_SPICFG_SET_LEN(spi->bits_per_word);
217 
218 		cfg = PSC_SPICFG_CLR_BAUD(cfg);
219 		cfg &= ~PSC_SPICFG_SET_DIV(3);
220 		cfg |= au1550_spi_baudcfg(hw, spi->max_speed_hz);
221 
222 		hw->regs->psc_spicfg = cfg | PSC_SPICFG_DE_ENABLE;
223 		au_sync();
224 		do {
225 			stat = hw->regs->psc_spistat;
226 			au_sync();
227 		} while ((stat & PSC_SPISTAT_DR) == 0);
228 
229 		if (hw->pdata->activate_cs)
230 			hw->pdata->activate_cs(hw->pdata, spi->chip_select,
231 					cspol);
232 		break;
233 	}
234 }
235 
236 static int au1550_spi_setupxfer(struct spi_device *spi, struct spi_transfer *t)
237 {
238 	struct au1550_spi *hw = spi_master_get_devdata(spi->master);
239 	unsigned bpw, hz;
240 	u32 cfg, stat;
241 
242 	bpw = spi->bits_per_word;
243 	hz = spi->max_speed_hz;
244 	if (t) {
245 		if (t->bits_per_word)
246 			bpw = t->bits_per_word;
247 		if (t->speed_hz)
248 			hz = t->speed_hz;
249 	}
250 
251 	if (hz > spi->max_speed_hz || hz > hw->freq_max || hz < hw->freq_min) {
252 		dev_err(&spi->dev, "setupxfer: clock rate=%d out of range\n",
253 			hz);
254 		return -EINVAL;
255 	}
256 
257 	au1550_spi_bits_handlers_set(hw, spi->bits_per_word);
258 
259 	cfg = hw->regs->psc_spicfg;
260 	au_sync();
261 	hw->regs->psc_spicfg = cfg & ~PSC_SPICFG_DE_ENABLE;
262 	au_sync();
263 
264 	if (hw->usedma && bpw <= 8)
265 		cfg &= ~PSC_SPICFG_DD_DISABLE;
266 	else
267 		cfg |= PSC_SPICFG_DD_DISABLE;
268 	cfg = PSC_SPICFG_CLR_LEN(cfg);
269 	cfg |= PSC_SPICFG_SET_LEN(bpw);
270 
271 	cfg = PSC_SPICFG_CLR_BAUD(cfg);
272 	cfg &= ~PSC_SPICFG_SET_DIV(3);
273 	cfg |= au1550_spi_baudcfg(hw, hz);
274 
275 	hw->regs->psc_spicfg = cfg;
276 	au_sync();
277 
278 	if (cfg & PSC_SPICFG_DE_ENABLE) {
279 		do {
280 			stat = hw->regs->psc_spistat;
281 			au_sync();
282 		} while ((stat & PSC_SPISTAT_DR) == 0);
283 	}
284 
285 	au1550_spi_reset_fifos(hw);
286 	au1550_spi_mask_ack_all(hw);
287 	return 0;
288 }
289 
290 static int au1550_spi_setup(struct spi_device *spi)
291 {
292 	struct au1550_spi *hw = spi_master_get_devdata(spi->master);
293 
294 	if (spi->max_speed_hz == 0)
295 		spi->max_speed_hz = hw->freq_max;
296 	if (spi->max_speed_hz > hw->freq_max
297 			|| spi->max_speed_hz < hw->freq_min)
298 		return -EINVAL;
299 	/*
300 	 * NOTE: cannot change speed and other hw settings immediately,
301 	 *       otherwise sharing of spi bus is not possible,
302 	 *       so do not call setupxfer(spi, NULL) here
303 	 */
304 	return 0;
305 }
306 
307 /*
308  * for dma spi transfers, we have to setup rx channel, otherwise there is
309  * no reliable way how to recognize that spi transfer is done
310  * dma complete callbacks are called before real spi transfer is finished
311  * and if only tx dma channel is set up (and rx fifo overflow event masked)
312  * spi master done event irq is not generated unless rx fifo is empty (emptied)
313  * so we need rx tmp buffer to use for rx dma if user does not provide one
314  */
315 static int au1550_spi_dma_rxtmp_alloc(struct au1550_spi *hw, unsigned size)
316 {
317 	hw->dma_rx_tmpbuf = kmalloc(size, GFP_KERNEL);
318 	if (!hw->dma_rx_tmpbuf)
319 		return -ENOMEM;
320 	hw->dma_rx_tmpbuf_size = size;
321 	hw->dma_rx_tmpbuf_addr = dma_map_single(hw->dev, hw->dma_rx_tmpbuf,
322 			size, DMA_FROM_DEVICE);
323 	if (dma_mapping_error(hw->dev, hw->dma_rx_tmpbuf_addr)) {
324 		kfree(hw->dma_rx_tmpbuf);
325 		hw->dma_rx_tmpbuf = 0;
326 		hw->dma_rx_tmpbuf_size = 0;
327 		return -EFAULT;
328 	}
329 	return 0;
330 }
331 
332 static void au1550_spi_dma_rxtmp_free(struct au1550_spi *hw)
333 {
334 	dma_unmap_single(hw->dev, hw->dma_rx_tmpbuf_addr,
335 			hw->dma_rx_tmpbuf_size, DMA_FROM_DEVICE);
336 	kfree(hw->dma_rx_tmpbuf);
337 	hw->dma_rx_tmpbuf = 0;
338 	hw->dma_rx_tmpbuf_size = 0;
339 }
340 
341 static int au1550_spi_dma_txrxb(struct spi_device *spi, struct spi_transfer *t)
342 {
343 	struct au1550_spi *hw = spi_master_get_devdata(spi->master);
344 	dma_addr_t dma_tx_addr;
345 	dma_addr_t dma_rx_addr;
346 	u32 res;
347 
348 	hw->len = t->len;
349 	hw->tx_count = 0;
350 	hw->rx_count = 0;
351 
352 	hw->tx = t->tx_buf;
353 	hw->rx = t->rx_buf;
354 	dma_tx_addr = t->tx_dma;
355 	dma_rx_addr = t->rx_dma;
356 
357 	/*
358 	 * check if buffers are already dma mapped, map them otherwise:
359 	 * - first map the TX buffer, so cache data gets written to memory
360 	 * - then map the RX buffer, so that cache entries (with
361 	 *   soon-to-be-stale data) get removed
362 	 * use rx buffer in place of tx if tx buffer was not provided
363 	 * use temp rx buffer (preallocated or realloc to fit) for rx dma
364 	 */
365 	if (t->tx_buf) {
366 		if (t->tx_dma == 0) {	/* if DMA_ADDR_INVALID, map it */
367 			dma_tx_addr = dma_map_single(hw->dev,
368 					(void *)t->tx_buf,
369 					t->len, DMA_TO_DEVICE);
370 			if (dma_mapping_error(hw->dev, dma_tx_addr))
371 				dev_err(hw->dev, "tx dma map error\n");
372 		}
373 	}
374 
375 	if (t->rx_buf) {
376 		if (t->rx_dma == 0) {	/* if DMA_ADDR_INVALID, map it */
377 			dma_rx_addr = dma_map_single(hw->dev,
378 					(void *)t->rx_buf,
379 					t->len, DMA_FROM_DEVICE);
380 			if (dma_mapping_error(hw->dev, dma_rx_addr))
381 				dev_err(hw->dev, "rx dma map error\n");
382 		}
383 	} else {
384 		if (t->len > hw->dma_rx_tmpbuf_size) {
385 			int ret;
386 
387 			au1550_spi_dma_rxtmp_free(hw);
388 			ret = au1550_spi_dma_rxtmp_alloc(hw, max(t->len,
389 					AU1550_SPI_DMA_RXTMP_MINSIZE));
390 			if (ret < 0)
391 				return ret;
392 		}
393 		hw->rx = hw->dma_rx_tmpbuf;
394 		dma_rx_addr = hw->dma_rx_tmpbuf_addr;
395 		dma_sync_single_for_device(hw->dev, dma_rx_addr,
396 			t->len, DMA_FROM_DEVICE);
397 	}
398 
399 	if (!t->tx_buf) {
400 		dma_sync_single_for_device(hw->dev, dma_rx_addr,
401 				t->len, DMA_BIDIRECTIONAL);
402 		hw->tx = hw->rx;
403 	}
404 
405 	/* put buffers on the ring */
406 	res = au1xxx_dbdma_put_dest(hw->dma_rx_ch, virt_to_phys(hw->rx),
407 				    t->len, DDMA_FLAGS_IE);
408 	if (!res)
409 		dev_err(hw->dev, "rx dma put dest error\n");
410 
411 	res = au1xxx_dbdma_put_source(hw->dma_tx_ch, virt_to_phys(hw->tx),
412 				      t->len, DDMA_FLAGS_IE);
413 	if (!res)
414 		dev_err(hw->dev, "tx dma put source error\n");
415 
416 	au1xxx_dbdma_start(hw->dma_rx_ch);
417 	au1xxx_dbdma_start(hw->dma_tx_ch);
418 
419 	/* by default enable nearly all events interrupt */
420 	hw->regs->psc_spimsk = PSC_SPIMSK_SD;
421 	au_sync();
422 
423 	/* start the transfer */
424 	hw->regs->psc_spipcr = PSC_SPIPCR_MS;
425 	au_sync();
426 
427 	wait_for_completion(&hw->master_done);
428 
429 	au1xxx_dbdma_stop(hw->dma_tx_ch);
430 	au1xxx_dbdma_stop(hw->dma_rx_ch);
431 
432 	if (!t->rx_buf) {
433 		/* using the temporal preallocated and premapped buffer */
434 		dma_sync_single_for_cpu(hw->dev, dma_rx_addr, t->len,
435 			DMA_FROM_DEVICE);
436 	}
437 	/* unmap buffers if mapped above */
438 	if (t->rx_buf && t->rx_dma == 0 )
439 		dma_unmap_single(hw->dev, dma_rx_addr, t->len,
440 			DMA_FROM_DEVICE);
441 	if (t->tx_buf && t->tx_dma == 0 )
442 		dma_unmap_single(hw->dev, dma_tx_addr, t->len,
443 			DMA_TO_DEVICE);
444 
445 	return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count;
446 }
447 
448 static irqreturn_t au1550_spi_dma_irq_callback(struct au1550_spi *hw)
449 {
450 	u32 stat, evnt;
451 
452 	stat = hw->regs->psc_spistat;
453 	evnt = hw->regs->psc_spievent;
454 	au_sync();
455 	if ((stat & PSC_SPISTAT_DI) == 0) {
456 		dev_err(hw->dev, "Unexpected IRQ!\n");
457 		return IRQ_NONE;
458 	}
459 
460 	if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO
461 				| PSC_SPIEVNT_RU | PSC_SPIEVNT_TO
462 				| PSC_SPIEVNT_TU | PSC_SPIEVNT_SD))
463 			!= 0) {
464 		/*
465 		 * due to an spi error we consider transfer as done,
466 		 * so mask all events until before next transfer start
467 		 * and stop the possibly running dma immediately
468 		 */
469 		au1550_spi_mask_ack_all(hw);
470 		au1xxx_dbdma_stop(hw->dma_rx_ch);
471 		au1xxx_dbdma_stop(hw->dma_tx_ch);
472 
473 		/* get number of transferred bytes */
474 		hw->rx_count = hw->len - au1xxx_get_dma_residue(hw->dma_rx_ch);
475 		hw->tx_count = hw->len - au1xxx_get_dma_residue(hw->dma_tx_ch);
476 
477 		au1xxx_dbdma_reset(hw->dma_rx_ch);
478 		au1xxx_dbdma_reset(hw->dma_tx_ch);
479 		au1550_spi_reset_fifos(hw);
480 
481 		if (evnt == PSC_SPIEVNT_RO)
482 			dev_err(hw->dev,
483 				"dma transfer: receive FIFO overflow!\n");
484 		else
485 			dev_err(hw->dev,
486 				"dma transfer: unexpected SPI error "
487 				"(event=0x%x stat=0x%x)!\n", evnt, stat);
488 
489 		complete(&hw->master_done);
490 		return IRQ_HANDLED;
491 	}
492 
493 	if ((evnt & PSC_SPIEVNT_MD) != 0) {
494 		/* transfer completed successfully */
495 		au1550_spi_mask_ack_all(hw);
496 		hw->rx_count = hw->len;
497 		hw->tx_count = hw->len;
498 		complete(&hw->master_done);
499 	}
500 	return IRQ_HANDLED;
501 }
502 
503 
504 /* routines to handle different word sizes in pio mode */
505 #define AU1550_SPI_RX_WORD(size, mask)					\
506 static void au1550_spi_rx_word_##size(struct au1550_spi *hw)		\
507 {									\
508 	u32 fifoword = hw->regs->psc_spitxrx & (u32)(mask);		\
509 	au_sync();							\
510 	if (hw->rx) {							\
511 		*(u##size *)hw->rx = (u##size)fifoword;			\
512 		hw->rx += (size) / 8;					\
513 	}								\
514 	hw->rx_count += (size) / 8;					\
515 }
516 
517 #define AU1550_SPI_TX_WORD(size, mask)					\
518 static void au1550_spi_tx_word_##size(struct au1550_spi *hw)		\
519 {									\
520 	u32 fifoword = 0;						\
521 	if (hw->tx) {							\
522 		fifoword = *(u##size *)hw->tx & (u32)(mask);		\
523 		hw->tx += (size) / 8;					\
524 	}								\
525 	hw->tx_count += (size) / 8;					\
526 	if (hw->tx_count >= hw->len)					\
527 		fifoword |= PSC_SPITXRX_LC;				\
528 	hw->regs->psc_spitxrx = fifoword;				\
529 	au_sync();							\
530 }
531 
532 AU1550_SPI_RX_WORD(8,0xff)
533 AU1550_SPI_RX_WORD(16,0xffff)
534 AU1550_SPI_RX_WORD(32,0xffffff)
535 AU1550_SPI_TX_WORD(8,0xff)
536 AU1550_SPI_TX_WORD(16,0xffff)
537 AU1550_SPI_TX_WORD(32,0xffffff)
538 
539 static int au1550_spi_pio_txrxb(struct spi_device *spi, struct spi_transfer *t)
540 {
541 	u32 stat, mask;
542 	struct au1550_spi *hw = spi_master_get_devdata(spi->master);
543 
544 	hw->tx = t->tx_buf;
545 	hw->rx = t->rx_buf;
546 	hw->len = t->len;
547 	hw->tx_count = 0;
548 	hw->rx_count = 0;
549 
550 	/* by default enable nearly all events after filling tx fifo */
551 	mask = PSC_SPIMSK_SD;
552 
553 	/* fill the transmit FIFO */
554 	while (hw->tx_count < hw->len) {
555 
556 		hw->tx_word(hw);
557 
558 		if (hw->tx_count >= hw->len) {
559 			/* mask tx fifo request interrupt as we are done */
560 			mask |= PSC_SPIMSK_TR;
561 		}
562 
563 		stat = hw->regs->psc_spistat;
564 		au_sync();
565 		if (stat & PSC_SPISTAT_TF)
566 			break;
567 	}
568 
569 	/* enable event interrupts */
570 	hw->regs->psc_spimsk = mask;
571 	au_sync();
572 
573 	/* start the transfer */
574 	hw->regs->psc_spipcr = PSC_SPIPCR_MS;
575 	au_sync();
576 
577 	wait_for_completion(&hw->master_done);
578 
579 	return hw->rx_count < hw->tx_count ? hw->rx_count : hw->tx_count;
580 }
581 
582 static irqreturn_t au1550_spi_pio_irq_callback(struct au1550_spi *hw)
583 {
584 	int busy;
585 	u32 stat, evnt;
586 
587 	stat = hw->regs->psc_spistat;
588 	evnt = hw->regs->psc_spievent;
589 	au_sync();
590 	if ((stat & PSC_SPISTAT_DI) == 0) {
591 		dev_err(hw->dev, "Unexpected IRQ!\n");
592 		return IRQ_NONE;
593 	}
594 
595 	if ((evnt & (PSC_SPIEVNT_MM | PSC_SPIEVNT_RO
596 				| PSC_SPIEVNT_RU | PSC_SPIEVNT_TO
597 				| PSC_SPIEVNT_SD))
598 			!= 0) {
599 		/*
600 		 * due to an error we consider transfer as done,
601 		 * so mask all events until before next transfer start
602 		 */
603 		au1550_spi_mask_ack_all(hw);
604 		au1550_spi_reset_fifos(hw);
605 		dev_err(hw->dev,
606 			"pio transfer: unexpected SPI error "
607 			"(event=0x%x stat=0x%x)!\n", evnt, stat);
608 		complete(&hw->master_done);
609 		return IRQ_HANDLED;
610 	}
611 
612 	/*
613 	 * while there is something to read from rx fifo
614 	 * or there is a space to write to tx fifo:
615 	 */
616 	do {
617 		busy = 0;
618 		stat = hw->regs->psc_spistat;
619 		au_sync();
620 
621 		/*
622 		 * Take care to not let the Rx FIFO overflow.
623 		 *
624 		 * We only write a byte if we have read one at least. Initially,
625 		 * the write fifo is full, so we should read from the read fifo
626 		 * first.
627 		 * In case we miss a word from the read fifo, we should get a
628 		 * RO event and should back out.
629 		 */
630 		if (!(stat & PSC_SPISTAT_RE) && hw->rx_count < hw->len) {
631 			hw->rx_word(hw);
632 			busy = 1;
633 
634 			if (!(stat & PSC_SPISTAT_TF) && hw->tx_count < hw->len)
635 				hw->tx_word(hw);
636 		}
637 	} while (busy);
638 
639 	hw->regs->psc_spievent = PSC_SPIEVNT_RR | PSC_SPIEVNT_TR;
640 	au_sync();
641 
642 	/*
643 	 * Restart the SPI transmission in case of a transmit underflow.
644 	 * This seems to work despite the notes in the Au1550 data book
645 	 * of Figure 8-4 with flowchart for SPI master operation:
646 	 *
647 	 * """Note 1: An XFR Error Interrupt occurs, unless masked,
648 	 * for any of the following events: Tx FIFO Underflow,
649 	 * Rx FIFO Overflow, or Multiple-master Error
650 	 *    Note 2: In case of a Tx Underflow Error, all zeroes are
651 	 * transmitted."""
652 	 *
653 	 * By simply restarting the spi transfer on Tx Underflow Error,
654 	 * we assume that spi transfer was paused instead of zeroes
655 	 * transmittion mentioned in the Note 2 of Au1550 data book.
656 	 */
657 	if (evnt & PSC_SPIEVNT_TU) {
658 		hw->regs->psc_spievent = PSC_SPIEVNT_TU | PSC_SPIEVNT_MD;
659 		au_sync();
660 		hw->regs->psc_spipcr = PSC_SPIPCR_MS;
661 		au_sync();
662 	}
663 
664 	if (hw->rx_count >= hw->len) {
665 		/* transfer completed successfully */
666 		au1550_spi_mask_ack_all(hw);
667 		complete(&hw->master_done);
668 	}
669 	return IRQ_HANDLED;
670 }
671 
672 static int au1550_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t)
673 {
674 	struct au1550_spi *hw = spi_master_get_devdata(spi->master);
675 	return hw->txrx_bufs(spi, t);
676 }
677 
678 static irqreturn_t au1550_spi_irq(int irq, void *dev)
679 {
680 	struct au1550_spi *hw = dev;
681 	return hw->irq_callback(hw);
682 }
683 
684 static void au1550_spi_bits_handlers_set(struct au1550_spi *hw, int bpw)
685 {
686 	if (bpw <= 8) {
687 		if (hw->usedma) {
688 			hw->txrx_bufs = &au1550_spi_dma_txrxb;
689 			hw->irq_callback = &au1550_spi_dma_irq_callback;
690 		} else {
691 			hw->rx_word = &au1550_spi_rx_word_8;
692 			hw->tx_word = &au1550_spi_tx_word_8;
693 			hw->txrx_bufs = &au1550_spi_pio_txrxb;
694 			hw->irq_callback = &au1550_spi_pio_irq_callback;
695 		}
696 	} else if (bpw <= 16) {
697 		hw->rx_word = &au1550_spi_rx_word_16;
698 		hw->tx_word = &au1550_spi_tx_word_16;
699 		hw->txrx_bufs = &au1550_spi_pio_txrxb;
700 		hw->irq_callback = &au1550_spi_pio_irq_callback;
701 	} else {
702 		hw->rx_word = &au1550_spi_rx_word_32;
703 		hw->tx_word = &au1550_spi_tx_word_32;
704 		hw->txrx_bufs = &au1550_spi_pio_txrxb;
705 		hw->irq_callback = &au1550_spi_pio_irq_callback;
706 	}
707 }
708 
709 static void au1550_spi_setup_psc_as_spi(struct au1550_spi *hw)
710 {
711 	u32 stat, cfg;
712 
713 	/* set up the PSC for SPI mode */
714 	hw->regs->psc_ctrl = PSC_CTRL_DISABLE;
715 	au_sync();
716 	hw->regs->psc_sel = PSC_SEL_PS_SPIMODE;
717 	au_sync();
718 
719 	hw->regs->psc_spicfg = 0;
720 	au_sync();
721 
722 	hw->regs->psc_ctrl = PSC_CTRL_ENABLE;
723 	au_sync();
724 
725 	do {
726 		stat = hw->regs->psc_spistat;
727 		au_sync();
728 	} while ((stat & PSC_SPISTAT_SR) == 0);
729 
730 
731 	cfg = hw->usedma ? 0 : PSC_SPICFG_DD_DISABLE;
732 	cfg |= PSC_SPICFG_SET_LEN(8);
733 	cfg |= PSC_SPICFG_RT_FIFO8 | PSC_SPICFG_TT_FIFO8;
734 	/* use minimal allowed brg and div values as initial setting: */
735 	cfg |= PSC_SPICFG_SET_BAUD(4) | PSC_SPICFG_SET_DIV(0);
736 
737 #ifdef AU1550_SPI_DEBUG_LOOPBACK
738 	cfg |= PSC_SPICFG_LB;
739 #endif
740 
741 	hw->regs->psc_spicfg = cfg;
742 	au_sync();
743 
744 	au1550_spi_mask_ack_all(hw);
745 
746 	hw->regs->psc_spicfg |= PSC_SPICFG_DE_ENABLE;
747 	au_sync();
748 
749 	do {
750 		stat = hw->regs->psc_spistat;
751 		au_sync();
752 	} while ((stat & PSC_SPISTAT_DR) == 0);
753 
754 	au1550_spi_reset_fifos(hw);
755 }
756 
757 
758 static int au1550_spi_probe(struct platform_device *pdev)
759 {
760 	struct au1550_spi *hw;
761 	struct spi_master *master;
762 	struct resource *r;
763 	int err = 0;
764 
765 	master = spi_alloc_master(&pdev->dev, sizeof(struct au1550_spi));
766 	if (master == NULL) {
767 		dev_err(&pdev->dev, "No memory for spi_master\n");
768 		err = -ENOMEM;
769 		goto err_nomem;
770 	}
771 
772 	/* the spi->mode bits understood by this driver: */
773 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
774 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 24);
775 
776 	hw = spi_master_get_devdata(master);
777 
778 	hw->master = spi_master_get(master);
779 	hw->pdata = dev_get_platdata(&pdev->dev);
780 	hw->dev = &pdev->dev;
781 
782 	if (hw->pdata == NULL) {
783 		dev_err(&pdev->dev, "No platform data supplied\n");
784 		err = -ENOENT;
785 		goto err_no_pdata;
786 	}
787 
788 	r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
789 	if (!r) {
790 		dev_err(&pdev->dev, "no IRQ\n");
791 		err = -ENODEV;
792 		goto err_no_iores;
793 	}
794 	hw->irq = r->start;
795 
796 	hw->usedma = 0;
797 	r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
798 	if (r) {
799 		hw->dma_tx_id = r->start;
800 		r = platform_get_resource(pdev, IORESOURCE_DMA, 1);
801 		if (r) {
802 			hw->dma_rx_id = r->start;
803 			if (usedma && ddma_memid) {
804 				if (pdev->dev.dma_mask == NULL)
805 					dev_warn(&pdev->dev, "no dma mask\n");
806 				else
807 					hw->usedma = 1;
808 			}
809 		}
810 	}
811 
812 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
813 	if (!r) {
814 		dev_err(&pdev->dev, "no mmio resource\n");
815 		err = -ENODEV;
816 		goto err_no_iores;
817 	}
818 
819 	hw->ioarea = request_mem_region(r->start, sizeof(psc_spi_t),
820 					pdev->name);
821 	if (!hw->ioarea) {
822 		dev_err(&pdev->dev, "Cannot reserve iomem region\n");
823 		err = -ENXIO;
824 		goto err_no_iores;
825 	}
826 
827 	hw->regs = (psc_spi_t __iomem *)ioremap(r->start, sizeof(psc_spi_t));
828 	if (!hw->regs) {
829 		dev_err(&pdev->dev, "cannot ioremap\n");
830 		err = -ENXIO;
831 		goto err_ioremap;
832 	}
833 
834 	platform_set_drvdata(pdev, hw);
835 
836 	init_completion(&hw->master_done);
837 
838 	hw->bitbang.master = hw->master;
839 	hw->bitbang.setup_transfer = au1550_spi_setupxfer;
840 	hw->bitbang.chipselect = au1550_spi_chipsel;
841 	hw->bitbang.master->setup = au1550_spi_setup;
842 	hw->bitbang.txrx_bufs = au1550_spi_txrx_bufs;
843 
844 	if (hw->usedma) {
845 		hw->dma_tx_ch = au1xxx_dbdma_chan_alloc(ddma_memid,
846 			hw->dma_tx_id, NULL, (void *)hw);
847 		if (hw->dma_tx_ch == 0) {
848 			dev_err(&pdev->dev,
849 				"Cannot allocate tx dma channel\n");
850 			err = -ENXIO;
851 			goto err_no_txdma;
852 		}
853 		au1xxx_dbdma_set_devwidth(hw->dma_tx_ch, 8);
854 		if (au1xxx_dbdma_ring_alloc(hw->dma_tx_ch,
855 			AU1550_SPI_DBDMA_DESCRIPTORS) == 0) {
856 			dev_err(&pdev->dev,
857 				"Cannot allocate tx dma descriptors\n");
858 			err = -ENXIO;
859 			goto err_no_txdma_descr;
860 		}
861 
862 
863 		hw->dma_rx_ch = au1xxx_dbdma_chan_alloc(hw->dma_rx_id,
864 			ddma_memid, NULL, (void *)hw);
865 		if (hw->dma_rx_ch == 0) {
866 			dev_err(&pdev->dev,
867 				"Cannot allocate rx dma channel\n");
868 			err = -ENXIO;
869 			goto err_no_rxdma;
870 		}
871 		au1xxx_dbdma_set_devwidth(hw->dma_rx_ch, 8);
872 		if (au1xxx_dbdma_ring_alloc(hw->dma_rx_ch,
873 			AU1550_SPI_DBDMA_DESCRIPTORS) == 0) {
874 			dev_err(&pdev->dev,
875 				"Cannot allocate rx dma descriptors\n");
876 			err = -ENXIO;
877 			goto err_no_rxdma_descr;
878 		}
879 
880 		err = au1550_spi_dma_rxtmp_alloc(hw,
881 			AU1550_SPI_DMA_RXTMP_MINSIZE);
882 		if (err < 0) {
883 			dev_err(&pdev->dev,
884 				"Cannot allocate initial rx dma tmp buffer\n");
885 			goto err_dma_rxtmp_alloc;
886 		}
887 	}
888 
889 	au1550_spi_bits_handlers_set(hw, 8);
890 
891 	err = request_irq(hw->irq, au1550_spi_irq, 0, pdev->name, hw);
892 	if (err) {
893 		dev_err(&pdev->dev, "Cannot claim IRQ\n");
894 		goto err_no_irq;
895 	}
896 
897 	master->bus_num = pdev->id;
898 	master->num_chipselect = hw->pdata->num_chipselect;
899 
900 	/*
901 	 *  precompute valid range for spi freq - from au1550 datasheet:
902 	 *    psc_tempclk = psc_mainclk / (2 << DIV)
903 	 *    spiclk = psc_tempclk / (2 * (BRG + 1))
904 	 *    BRG valid range is 4..63
905 	 *    DIV valid range is 0..3
906 	 *  round the min and max frequencies to values that would still
907 	 *  produce valid brg and div
908 	 */
909 	{
910 		int min_div = (2 << 0) * (2 * (4 + 1));
911 		int max_div = (2 << 3) * (2 * (63 + 1));
912 		hw->freq_max = hw->pdata->mainclk_hz / min_div;
913 		hw->freq_min = hw->pdata->mainclk_hz / (max_div + 1) + 1;
914 	}
915 
916 	au1550_spi_setup_psc_as_spi(hw);
917 
918 	err = spi_bitbang_start(&hw->bitbang);
919 	if (err) {
920 		dev_err(&pdev->dev, "Failed to register SPI master\n");
921 		goto err_register;
922 	}
923 
924 	dev_info(&pdev->dev,
925 		"spi master registered: bus_num=%d num_chipselect=%d\n",
926 		master->bus_num, master->num_chipselect);
927 
928 	return 0;
929 
930 err_register:
931 	free_irq(hw->irq, hw);
932 
933 err_no_irq:
934 	au1550_spi_dma_rxtmp_free(hw);
935 
936 err_dma_rxtmp_alloc:
937 err_no_rxdma_descr:
938 	if (hw->usedma)
939 		au1xxx_dbdma_chan_free(hw->dma_rx_ch);
940 
941 err_no_rxdma:
942 err_no_txdma_descr:
943 	if (hw->usedma)
944 		au1xxx_dbdma_chan_free(hw->dma_tx_ch);
945 
946 err_no_txdma:
947 	iounmap((void __iomem *)hw->regs);
948 
949 err_ioremap:
950 	release_resource(hw->ioarea);
951 	kfree(hw->ioarea);
952 
953 err_no_iores:
954 err_no_pdata:
955 	spi_master_put(hw->master);
956 
957 err_nomem:
958 	return err;
959 }
960 
961 static int au1550_spi_remove(struct platform_device *pdev)
962 {
963 	struct au1550_spi *hw = platform_get_drvdata(pdev);
964 
965 	dev_info(&pdev->dev, "spi master remove: bus_num=%d\n",
966 		hw->master->bus_num);
967 
968 	spi_bitbang_stop(&hw->bitbang);
969 	free_irq(hw->irq, hw);
970 	iounmap((void __iomem *)hw->regs);
971 	release_resource(hw->ioarea);
972 	kfree(hw->ioarea);
973 
974 	if (hw->usedma) {
975 		au1550_spi_dma_rxtmp_free(hw);
976 		au1xxx_dbdma_chan_free(hw->dma_rx_ch);
977 		au1xxx_dbdma_chan_free(hw->dma_tx_ch);
978 	}
979 
980 	spi_master_put(hw->master);
981 	return 0;
982 }
983 
984 /* work with hotplug and coldplug */
985 MODULE_ALIAS("platform:au1550-spi");
986 
987 static struct platform_driver au1550_spi_drv = {
988 	.remove = au1550_spi_remove,
989 	.driver = {
990 		.name = "au1550-spi",
991 		.owner = THIS_MODULE,
992 	},
993 };
994 
995 static int __init au1550_spi_init(void)
996 {
997 	/*
998 	 * create memory device with 8 bits dev_devwidth
999 	 * needed for proper byte ordering to spi fifo
1000 	 */
1001 	if (usedma) {
1002 		ddma_memid = au1xxx_ddma_add_device(&au1550_spi_mem_dbdev);
1003 		if (!ddma_memid)
1004 			printk(KERN_ERR "au1550-spi: cannot add memory"
1005 					"dbdma device\n");
1006 	}
1007 	return platform_driver_probe(&au1550_spi_drv, au1550_spi_probe);
1008 }
1009 module_init(au1550_spi_init);
1010 
1011 static void __exit au1550_spi_exit(void)
1012 {
1013 	if (usedma && ddma_memid)
1014 		au1xxx_ddma_del_device(ddma_memid);
1015 	platform_driver_unregister(&au1550_spi_drv);
1016 }
1017 module_exit(au1550_spi_exit);
1018 
1019 MODULE_DESCRIPTION("Au1550 PSC SPI Driver");
1020 MODULE_AUTHOR("Jan Nikitenko <jan.nikitenko@gmail.com>");
1021 MODULE_LICENSE("GPL");
1022