xref: /openbmc/linux/drivers/spi/spi-atmel.c (revision ff6defa6)
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/atmel.h>
23 #include <linux/platform_data/dma-atmel.h>
24 #include <linux/of.h>
25 
26 #include <linux/io.h>
27 #include <linux/gpio.h>
28 #include <linux/pinctrl/consumer.h>
29 #include <linux/pm_runtime.h>
30 
31 /* SPI register offsets */
32 #define SPI_CR					0x0000
33 #define SPI_MR					0x0004
34 #define SPI_RDR					0x0008
35 #define SPI_TDR					0x000c
36 #define SPI_SR					0x0010
37 #define SPI_IER					0x0014
38 #define SPI_IDR					0x0018
39 #define SPI_IMR					0x001c
40 #define SPI_CSR0				0x0030
41 #define SPI_CSR1				0x0034
42 #define SPI_CSR2				0x0038
43 #define SPI_CSR3				0x003c
44 #define SPI_VERSION				0x00fc
45 #define SPI_RPR					0x0100
46 #define SPI_RCR					0x0104
47 #define SPI_TPR					0x0108
48 #define SPI_TCR					0x010c
49 #define SPI_RNPR				0x0110
50 #define SPI_RNCR				0x0114
51 #define SPI_TNPR				0x0118
52 #define SPI_TNCR				0x011c
53 #define SPI_PTCR				0x0120
54 #define SPI_PTSR				0x0124
55 
56 /* Bitfields in CR */
57 #define SPI_SPIEN_OFFSET			0
58 #define SPI_SPIEN_SIZE				1
59 #define SPI_SPIDIS_OFFSET			1
60 #define SPI_SPIDIS_SIZE				1
61 #define SPI_SWRST_OFFSET			7
62 #define SPI_SWRST_SIZE				1
63 #define SPI_LASTXFER_OFFSET			24
64 #define SPI_LASTXFER_SIZE			1
65 
66 /* Bitfields in MR */
67 #define SPI_MSTR_OFFSET				0
68 #define SPI_MSTR_SIZE				1
69 #define SPI_PS_OFFSET				1
70 #define SPI_PS_SIZE				1
71 #define SPI_PCSDEC_OFFSET			2
72 #define SPI_PCSDEC_SIZE				1
73 #define SPI_FDIV_OFFSET				3
74 #define SPI_FDIV_SIZE				1
75 #define SPI_MODFDIS_OFFSET			4
76 #define SPI_MODFDIS_SIZE			1
77 #define SPI_WDRBT_OFFSET			5
78 #define SPI_WDRBT_SIZE				1
79 #define SPI_LLB_OFFSET				7
80 #define SPI_LLB_SIZE				1
81 #define SPI_PCS_OFFSET				16
82 #define SPI_PCS_SIZE				4
83 #define SPI_DLYBCS_OFFSET			24
84 #define SPI_DLYBCS_SIZE				8
85 
86 /* Bitfields in RDR */
87 #define SPI_RD_OFFSET				0
88 #define SPI_RD_SIZE				16
89 
90 /* Bitfields in TDR */
91 #define SPI_TD_OFFSET				0
92 #define SPI_TD_SIZE				16
93 
94 /* Bitfields in SR */
95 #define SPI_RDRF_OFFSET				0
96 #define SPI_RDRF_SIZE				1
97 #define SPI_TDRE_OFFSET				1
98 #define SPI_TDRE_SIZE				1
99 #define SPI_MODF_OFFSET				2
100 #define SPI_MODF_SIZE				1
101 #define SPI_OVRES_OFFSET			3
102 #define SPI_OVRES_SIZE				1
103 #define SPI_ENDRX_OFFSET			4
104 #define SPI_ENDRX_SIZE				1
105 #define SPI_ENDTX_OFFSET			5
106 #define SPI_ENDTX_SIZE				1
107 #define SPI_RXBUFF_OFFSET			6
108 #define SPI_RXBUFF_SIZE				1
109 #define SPI_TXBUFE_OFFSET			7
110 #define SPI_TXBUFE_SIZE				1
111 #define SPI_NSSR_OFFSET				8
112 #define SPI_NSSR_SIZE				1
113 #define SPI_TXEMPTY_OFFSET			9
114 #define SPI_TXEMPTY_SIZE			1
115 #define SPI_SPIENS_OFFSET			16
116 #define SPI_SPIENS_SIZE				1
117 
118 /* Bitfields in CSR0 */
119 #define SPI_CPOL_OFFSET				0
120 #define SPI_CPOL_SIZE				1
121 #define SPI_NCPHA_OFFSET			1
122 #define SPI_NCPHA_SIZE				1
123 #define SPI_CSAAT_OFFSET			3
124 #define SPI_CSAAT_SIZE				1
125 #define SPI_BITS_OFFSET				4
126 #define SPI_BITS_SIZE				4
127 #define SPI_SCBR_OFFSET				8
128 #define SPI_SCBR_SIZE				8
129 #define SPI_DLYBS_OFFSET			16
130 #define SPI_DLYBS_SIZE				8
131 #define SPI_DLYBCT_OFFSET			24
132 #define SPI_DLYBCT_SIZE				8
133 
134 /* Bitfields in RCR */
135 #define SPI_RXCTR_OFFSET			0
136 #define SPI_RXCTR_SIZE				16
137 
138 /* Bitfields in TCR */
139 #define SPI_TXCTR_OFFSET			0
140 #define SPI_TXCTR_SIZE				16
141 
142 /* Bitfields in RNCR */
143 #define SPI_RXNCR_OFFSET			0
144 #define SPI_RXNCR_SIZE				16
145 
146 /* Bitfields in TNCR */
147 #define SPI_TXNCR_OFFSET			0
148 #define SPI_TXNCR_SIZE				16
149 
150 /* Bitfields in PTCR */
151 #define SPI_RXTEN_OFFSET			0
152 #define SPI_RXTEN_SIZE				1
153 #define SPI_RXTDIS_OFFSET			1
154 #define SPI_RXTDIS_SIZE				1
155 #define SPI_TXTEN_OFFSET			8
156 #define SPI_TXTEN_SIZE				1
157 #define SPI_TXTDIS_OFFSET			9
158 #define SPI_TXTDIS_SIZE				1
159 
160 /* Constants for BITS */
161 #define SPI_BITS_8_BPT				0
162 #define SPI_BITS_9_BPT				1
163 #define SPI_BITS_10_BPT				2
164 #define SPI_BITS_11_BPT				3
165 #define SPI_BITS_12_BPT				4
166 #define SPI_BITS_13_BPT				5
167 #define SPI_BITS_14_BPT				6
168 #define SPI_BITS_15_BPT				7
169 #define SPI_BITS_16_BPT				8
170 
171 /* Bit manipulation macros */
172 #define SPI_BIT(name) \
173 	(1 << SPI_##name##_OFFSET)
174 #define SPI_BF(name, value) \
175 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
176 #define SPI_BFEXT(name, value) \
177 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
178 #define SPI_BFINS(name, value, old) \
179 	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
180 	  | SPI_BF(name, value))
181 
182 /* Register access macros */
183 #define spi_readl(port, reg) \
184 	__raw_readl((port)->regs + SPI_##reg)
185 #define spi_writel(port, reg, value) \
186 	__raw_writel((value), (port)->regs + SPI_##reg)
187 
188 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
189  * cache operations; better heuristics consider wordsize and bitrate.
190  */
191 #define DMA_MIN_BYTES	16
192 
193 #define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
194 
195 #define AUTOSUSPEND_TIMEOUT	2000
196 
197 struct atmel_spi_dma {
198 	struct dma_chan			*chan_rx;
199 	struct dma_chan			*chan_tx;
200 	struct scatterlist		sgrx;
201 	struct scatterlist		sgtx;
202 	struct dma_async_tx_descriptor	*data_desc_rx;
203 	struct dma_async_tx_descriptor	*data_desc_tx;
204 
205 	struct at_dma_slave	dma_slave;
206 };
207 
208 struct atmel_spi_caps {
209 	bool	is_spi2;
210 	bool	has_wdrbt;
211 	bool	has_dma_support;
212 };
213 
214 /*
215  * The core SPI transfer engine just talks to a register bank to set up
216  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
217  * framework provides the base clock, subdivided for each spi_device.
218  */
219 struct atmel_spi {
220 	spinlock_t		lock;
221 	unsigned long		flags;
222 
223 	phys_addr_t		phybase;
224 	void __iomem		*regs;
225 	int			irq;
226 	struct clk		*clk;
227 	struct platform_device	*pdev;
228 
229 	struct spi_transfer	*current_transfer;
230 	int			current_remaining_bytes;
231 	int			done_status;
232 
233 	struct completion	xfer_completion;
234 
235 	/* scratch buffer */
236 	void			*buffer;
237 	dma_addr_t		buffer_dma;
238 
239 	struct atmel_spi_caps	caps;
240 
241 	bool			use_dma;
242 	bool			use_pdc;
243 	/* dmaengine data */
244 	struct atmel_spi_dma	dma;
245 
246 	bool			keep_cs;
247 	bool			cs_active;
248 };
249 
250 /* Controller-specific per-slave state */
251 struct atmel_spi_device {
252 	unsigned int		npcs_pin;
253 	u32			csr;
254 };
255 
256 #define BUFFER_SIZE		PAGE_SIZE
257 #define INVALID_DMA_ADDRESS	0xffffffff
258 
259 /*
260  * Version 2 of the SPI controller has
261  *  - CR.LASTXFER
262  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
263  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
264  *  - SPI_CSRx.CSAAT
265  *  - SPI_CSRx.SBCR allows faster clocking
266  */
267 static bool atmel_spi_is_v2(struct atmel_spi *as)
268 {
269 	return as->caps.is_spi2;
270 }
271 
272 /*
273  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
274  * they assume that spi slave device state will not change on deselect, so
275  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
276  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
277  * controllers have CSAAT and friends.
278  *
279  * Since the CSAAT functionality is a bit weird on newer controllers as
280  * well, we use GPIO to control nCSx pins on all controllers, updating
281  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
282  * support active-high chipselects despite the controller's belief that
283  * only active-low devices/systems exists.
284  *
285  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
286  * right when driven with GPIO.  ("Mode Fault does not allow more than one
287  * Master on Chip Select 0.")  No workaround exists for that ... so for
288  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
289  * and (c) will trigger that first erratum in some cases.
290  */
291 
292 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
293 {
294 	struct atmel_spi_device *asd = spi->controller_state;
295 	unsigned active = spi->mode & SPI_CS_HIGH;
296 	u32 mr;
297 
298 	if (atmel_spi_is_v2(as)) {
299 		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
300 		/* For the low SPI version, there is a issue that PDC transfer
301 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
302 		 */
303 		spi_writel(as, CSR0, asd->csr);
304 		if (as->caps.has_wdrbt) {
305 			spi_writel(as, MR,
306 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
307 					| SPI_BIT(WDRBT)
308 					| SPI_BIT(MODFDIS)
309 					| SPI_BIT(MSTR));
310 		} else {
311 			spi_writel(as, MR,
312 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
313 					| SPI_BIT(MODFDIS)
314 					| SPI_BIT(MSTR));
315 		}
316 
317 		mr = spi_readl(as, MR);
318 		gpio_set_value(asd->npcs_pin, active);
319 	} else {
320 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
321 		int i;
322 		u32 csr;
323 
324 		/* Make sure clock polarity is correct */
325 		for (i = 0; i < spi->master->num_chipselect; i++) {
326 			csr = spi_readl(as, CSR0 + 4 * i);
327 			if ((csr ^ cpol) & SPI_BIT(CPOL))
328 				spi_writel(as, CSR0 + 4 * i,
329 						csr ^ SPI_BIT(CPOL));
330 		}
331 
332 		mr = spi_readl(as, MR);
333 		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
334 		if (spi->chip_select != 0)
335 			gpio_set_value(asd->npcs_pin, active);
336 		spi_writel(as, MR, mr);
337 	}
338 
339 	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
340 			asd->npcs_pin, active ? " (high)" : "",
341 			mr);
342 }
343 
344 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
345 {
346 	struct atmel_spi_device *asd = spi->controller_state;
347 	unsigned active = spi->mode & SPI_CS_HIGH;
348 	u32 mr;
349 
350 	/* only deactivate *this* device; sometimes transfers to
351 	 * another device may be active when this routine is called.
352 	 */
353 	mr = spi_readl(as, MR);
354 	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
355 		mr = SPI_BFINS(PCS, 0xf, mr);
356 		spi_writel(as, MR, mr);
357 	}
358 
359 	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
360 			asd->npcs_pin, active ? " (low)" : "",
361 			mr);
362 
363 	if (atmel_spi_is_v2(as) || spi->chip_select != 0)
364 		gpio_set_value(asd->npcs_pin, !active);
365 }
366 
367 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
368 {
369 	spin_lock_irqsave(&as->lock, as->flags);
370 }
371 
372 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
373 {
374 	spin_unlock_irqrestore(&as->lock, as->flags);
375 }
376 
377 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
378 				struct spi_transfer *xfer)
379 {
380 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
381 }
382 
383 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
384 				struct dma_slave_config *slave_config,
385 				u8 bits_per_word)
386 {
387 	int err = 0;
388 
389 	if (bits_per_word > 8) {
390 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
391 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
392 	} else {
393 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
394 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
395 	}
396 
397 	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
398 	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
399 	slave_config->src_maxburst = 1;
400 	slave_config->dst_maxburst = 1;
401 	slave_config->device_fc = false;
402 
403 	slave_config->direction = DMA_MEM_TO_DEV;
404 	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
405 		dev_err(&as->pdev->dev,
406 			"failed to configure tx dma channel\n");
407 		err = -EINVAL;
408 	}
409 
410 	slave_config->direction = DMA_DEV_TO_MEM;
411 	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
412 		dev_err(&as->pdev->dev,
413 			"failed to configure rx dma channel\n");
414 		err = -EINVAL;
415 	}
416 
417 	return err;
418 }
419 
420 static int atmel_spi_configure_dma(struct atmel_spi *as)
421 {
422 	struct dma_slave_config	slave_config;
423 	struct device *dev = &as->pdev->dev;
424 	int err;
425 
426 	dma_cap_mask_t mask;
427 	dma_cap_zero(mask);
428 	dma_cap_set(DMA_SLAVE, mask);
429 
430 	as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
431 	if (IS_ERR(as->dma.chan_tx)) {
432 		err = PTR_ERR(as->dma.chan_tx);
433 		if (err == -EPROBE_DEFER) {
434 			dev_warn(dev, "no DMA channel available at the moment\n");
435 			return err;
436 		}
437 		dev_err(dev,
438 			"DMA TX channel not available, SPI unable to use DMA\n");
439 		err = -EBUSY;
440 		goto error;
441 	}
442 
443 	/*
444 	 * No reason to check EPROBE_DEFER here since we have already requested
445 	 * tx channel. If it fails here, it's for another reason.
446 	 */
447 	as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
448 
449 	if (!as->dma.chan_rx) {
450 		dev_err(dev,
451 			"DMA RX channel not available, SPI unable to use DMA\n");
452 		err = -EBUSY;
453 		goto error;
454 	}
455 
456 	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
457 	if (err)
458 		goto error;
459 
460 	dev_info(&as->pdev->dev,
461 			"Using %s (tx) and %s (rx) for DMA transfers\n",
462 			dma_chan_name(as->dma.chan_tx),
463 			dma_chan_name(as->dma.chan_rx));
464 	return 0;
465 error:
466 	if (as->dma.chan_rx)
467 		dma_release_channel(as->dma.chan_rx);
468 	if (!IS_ERR(as->dma.chan_tx))
469 		dma_release_channel(as->dma.chan_tx);
470 	return err;
471 }
472 
473 static void atmel_spi_stop_dma(struct atmel_spi *as)
474 {
475 	if (as->dma.chan_rx)
476 		dmaengine_terminate_all(as->dma.chan_rx);
477 	if (as->dma.chan_tx)
478 		dmaengine_terminate_all(as->dma.chan_tx);
479 }
480 
481 static void atmel_spi_release_dma(struct atmel_spi *as)
482 {
483 	if (as->dma.chan_rx)
484 		dma_release_channel(as->dma.chan_rx);
485 	if (as->dma.chan_tx)
486 		dma_release_channel(as->dma.chan_tx);
487 }
488 
489 /* This function is called by the DMA driver from tasklet context */
490 static void dma_callback(void *data)
491 {
492 	struct spi_master	*master = data;
493 	struct atmel_spi	*as = spi_master_get_devdata(master);
494 
495 	complete(&as->xfer_completion);
496 }
497 
498 /*
499  * Next transfer using PIO.
500  */
501 static void atmel_spi_next_xfer_pio(struct spi_master *master,
502 				struct spi_transfer *xfer)
503 {
504 	struct atmel_spi	*as = spi_master_get_devdata(master);
505 	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
506 
507 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
508 
509 	/* Make sure data is not remaining in RDR */
510 	spi_readl(as, RDR);
511 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
512 		spi_readl(as, RDR);
513 		cpu_relax();
514 	}
515 
516 	if (xfer->tx_buf) {
517 		if (xfer->bits_per_word > 8)
518 			spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
519 		else
520 			spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
521 	} else {
522 		spi_writel(as, TDR, 0);
523 	}
524 
525 	dev_dbg(master->dev.parent,
526 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
527 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
528 		xfer->bits_per_word);
529 
530 	/* Enable relevant interrupts */
531 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
532 }
533 
534 /*
535  * Submit next transfer for DMA.
536  */
537 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
538 				struct spi_transfer *xfer,
539 				u32 *plen)
540 {
541 	struct atmel_spi	*as = spi_master_get_devdata(master);
542 	struct dma_chan		*rxchan = as->dma.chan_rx;
543 	struct dma_chan		*txchan = as->dma.chan_tx;
544 	struct dma_async_tx_descriptor *rxdesc;
545 	struct dma_async_tx_descriptor *txdesc;
546 	struct dma_slave_config	slave_config;
547 	dma_cookie_t		cookie;
548 	u32	len = *plen;
549 
550 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
551 
552 	/* Check that the channels are available */
553 	if (!rxchan || !txchan)
554 		return -ENODEV;
555 
556 	/* release lock for DMA operations */
557 	atmel_spi_unlock(as);
558 
559 	/* prepare the RX dma transfer */
560 	sg_init_table(&as->dma.sgrx, 1);
561 	if (xfer->rx_buf) {
562 		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
563 	} else {
564 		as->dma.sgrx.dma_address = as->buffer_dma;
565 		if (len > BUFFER_SIZE)
566 			len = BUFFER_SIZE;
567 	}
568 
569 	/* prepare the TX dma transfer */
570 	sg_init_table(&as->dma.sgtx, 1);
571 	if (xfer->tx_buf) {
572 		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
573 	} else {
574 		as->dma.sgtx.dma_address = as->buffer_dma;
575 		if (len > BUFFER_SIZE)
576 			len = BUFFER_SIZE;
577 		memset(as->buffer, 0, len);
578 	}
579 
580 	sg_dma_len(&as->dma.sgtx) = len;
581 	sg_dma_len(&as->dma.sgrx) = len;
582 
583 	*plen = len;
584 
585 	if (atmel_spi_dma_slave_config(as, &slave_config, 8))
586 		goto err_exit;
587 
588 	/* Send both scatterlists */
589 	rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
590 					 DMA_FROM_DEVICE,
591 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
592 	if (!rxdesc)
593 		goto err_dma;
594 
595 	txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
596 					 DMA_TO_DEVICE,
597 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
598 	if (!txdesc)
599 		goto err_dma;
600 
601 	dev_dbg(master->dev.parent,
602 		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
603 		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
604 		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
605 
606 	/* Enable relevant interrupts */
607 	spi_writel(as, IER, SPI_BIT(OVRES));
608 
609 	/* Put the callback on the RX transfer only, that should finish last */
610 	rxdesc->callback = dma_callback;
611 	rxdesc->callback_param = master;
612 
613 	/* Submit and fire RX and TX with TX last so we're ready to read! */
614 	cookie = rxdesc->tx_submit(rxdesc);
615 	if (dma_submit_error(cookie))
616 		goto err_dma;
617 	cookie = txdesc->tx_submit(txdesc);
618 	if (dma_submit_error(cookie))
619 		goto err_dma;
620 	rxchan->device->device_issue_pending(rxchan);
621 	txchan->device->device_issue_pending(txchan);
622 
623 	/* take back lock */
624 	atmel_spi_lock(as);
625 	return 0;
626 
627 err_dma:
628 	spi_writel(as, IDR, SPI_BIT(OVRES));
629 	atmel_spi_stop_dma(as);
630 err_exit:
631 	atmel_spi_lock(as);
632 	return -ENOMEM;
633 }
634 
635 static void atmel_spi_next_xfer_data(struct spi_master *master,
636 				struct spi_transfer *xfer,
637 				dma_addr_t *tx_dma,
638 				dma_addr_t *rx_dma,
639 				u32 *plen)
640 {
641 	struct atmel_spi	*as = spi_master_get_devdata(master);
642 	u32			len = *plen;
643 
644 	/* use scratch buffer only when rx or tx data is unspecified */
645 	if (xfer->rx_buf)
646 		*rx_dma = xfer->rx_dma + xfer->len - *plen;
647 	else {
648 		*rx_dma = as->buffer_dma;
649 		if (len > BUFFER_SIZE)
650 			len = BUFFER_SIZE;
651 	}
652 
653 	if (xfer->tx_buf)
654 		*tx_dma = xfer->tx_dma + xfer->len - *plen;
655 	else {
656 		*tx_dma = as->buffer_dma;
657 		if (len > BUFFER_SIZE)
658 			len = BUFFER_SIZE;
659 		memset(as->buffer, 0, len);
660 		dma_sync_single_for_device(&as->pdev->dev,
661 				as->buffer_dma, len, DMA_TO_DEVICE);
662 	}
663 
664 	*plen = len;
665 }
666 
667 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
668 				    struct spi_device *spi,
669 				    struct spi_transfer *xfer)
670 {
671 	u32			scbr, csr;
672 	unsigned long		bus_hz;
673 
674 	/* v1 chips start out at half the peripheral bus speed. */
675 	bus_hz = clk_get_rate(as->clk);
676 	if (!atmel_spi_is_v2(as))
677 		bus_hz /= 2;
678 
679 	/*
680 	 * Calculate the lowest divider that satisfies the
681 	 * constraint, assuming div32/fdiv/mbz == 0.
682 	 */
683 	if (xfer->speed_hz)
684 		scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
685 	else
686 		/*
687 		 * This can happend if max_speed is null.
688 		 * In this case, we set the lowest possible speed
689 		 */
690 		scbr = 0xff;
691 
692 	/*
693 	 * If the resulting divider doesn't fit into the
694 	 * register bitfield, we can't satisfy the constraint.
695 	 */
696 	if (scbr >= (1 << SPI_SCBR_SIZE)) {
697 		dev_err(&spi->dev,
698 			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
699 			xfer->speed_hz, scbr, bus_hz/255);
700 		return -EINVAL;
701 	}
702 	if (scbr == 0) {
703 		dev_err(&spi->dev,
704 			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
705 			xfer->speed_hz, scbr, bus_hz);
706 		return -EINVAL;
707 	}
708 	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
709 	csr = SPI_BFINS(SCBR, scbr, csr);
710 	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
711 
712 	return 0;
713 }
714 
715 /*
716  * Submit next transfer for PDC.
717  * lock is held, spi irq is blocked
718  */
719 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
720 					struct spi_message *msg,
721 					struct spi_transfer *xfer)
722 {
723 	struct atmel_spi	*as = spi_master_get_devdata(master);
724 	u32			len;
725 	dma_addr_t		tx_dma, rx_dma;
726 
727 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
728 
729 	len = as->current_remaining_bytes;
730 	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
731 	as->current_remaining_bytes -= len;
732 
733 	spi_writel(as, RPR, rx_dma);
734 	spi_writel(as, TPR, tx_dma);
735 
736 	if (msg->spi->bits_per_word > 8)
737 		len >>= 1;
738 	spi_writel(as, RCR, len);
739 	spi_writel(as, TCR, len);
740 
741 	dev_dbg(&msg->spi->dev,
742 		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
743 		xfer, xfer->len, xfer->tx_buf,
744 		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
745 		(unsigned long long)xfer->rx_dma);
746 
747 	if (as->current_remaining_bytes) {
748 		len = as->current_remaining_bytes;
749 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
750 		as->current_remaining_bytes -= len;
751 
752 		spi_writel(as, RNPR, rx_dma);
753 		spi_writel(as, TNPR, tx_dma);
754 
755 		if (msg->spi->bits_per_word > 8)
756 			len >>= 1;
757 		spi_writel(as, RNCR, len);
758 		spi_writel(as, TNCR, len);
759 
760 		dev_dbg(&msg->spi->dev,
761 			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
762 			xfer, xfer->len, xfer->tx_buf,
763 			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
764 			(unsigned long long)xfer->rx_dma);
765 	}
766 
767 	/* REVISIT: We're waiting for ENDRX before we start the next
768 	 * transfer because we need to handle some difficult timing
769 	 * issues otherwise. If we wait for ENDTX in one transfer and
770 	 * then starts waiting for ENDRX in the next, it's difficult
771 	 * to tell the difference between the ENDRX interrupt we're
772 	 * actually waiting for and the ENDRX interrupt of the
773 	 * previous transfer.
774 	 *
775 	 * It should be doable, though. Just not now...
776 	 */
777 	spi_writel(as, IER, SPI_BIT(ENDRX) | SPI_BIT(OVRES));
778 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
779 }
780 
781 /*
782  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
783  *  - The buffer is either valid for CPU access, else NULL
784  *  - If the buffer is valid, so is its DMA address
785  *
786  * This driver manages the dma address unless message->is_dma_mapped.
787  */
788 static int
789 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
790 {
791 	struct device	*dev = &as->pdev->dev;
792 
793 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
794 	if (xfer->tx_buf) {
795 		/* tx_buf is a const void* where we need a void * for the dma
796 		 * mapping */
797 		void *nonconst_tx = (void *)xfer->tx_buf;
798 
799 		xfer->tx_dma = dma_map_single(dev,
800 				nonconst_tx, xfer->len,
801 				DMA_TO_DEVICE);
802 		if (dma_mapping_error(dev, xfer->tx_dma))
803 			return -ENOMEM;
804 	}
805 	if (xfer->rx_buf) {
806 		xfer->rx_dma = dma_map_single(dev,
807 				xfer->rx_buf, xfer->len,
808 				DMA_FROM_DEVICE);
809 		if (dma_mapping_error(dev, xfer->rx_dma)) {
810 			if (xfer->tx_buf)
811 				dma_unmap_single(dev,
812 						xfer->tx_dma, xfer->len,
813 						DMA_TO_DEVICE);
814 			return -ENOMEM;
815 		}
816 	}
817 	return 0;
818 }
819 
820 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
821 				     struct spi_transfer *xfer)
822 {
823 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
824 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
825 				 xfer->len, DMA_TO_DEVICE);
826 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
827 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
828 				 xfer->len, DMA_FROM_DEVICE);
829 }
830 
831 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
832 {
833 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
834 }
835 
836 /* Called from IRQ
837  *
838  * Must update "current_remaining_bytes" to keep track of data
839  * to transfer.
840  */
841 static void
842 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
843 {
844 	u8		*rxp;
845 	u16		*rxp16;
846 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
847 
848 	if (xfer->rx_buf) {
849 		if (xfer->bits_per_word > 8) {
850 			rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
851 			*rxp16 = spi_readl(as, RDR);
852 		} else {
853 			rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
854 			*rxp = spi_readl(as, RDR);
855 		}
856 	} else {
857 		spi_readl(as, RDR);
858 	}
859 	if (xfer->bits_per_word > 8) {
860 		if (as->current_remaining_bytes > 2)
861 			as->current_remaining_bytes -= 2;
862 		else
863 			as->current_remaining_bytes = 0;
864 	} else {
865 		as->current_remaining_bytes--;
866 	}
867 }
868 
869 /* Interrupt
870  *
871  * No need for locking in this Interrupt handler: done_status is the
872  * only information modified.
873  */
874 static irqreturn_t
875 atmel_spi_pio_interrupt(int irq, void *dev_id)
876 {
877 	struct spi_master	*master = dev_id;
878 	struct atmel_spi	*as = spi_master_get_devdata(master);
879 	u32			status, pending, imr;
880 	struct spi_transfer	*xfer;
881 	int			ret = IRQ_NONE;
882 
883 	imr = spi_readl(as, IMR);
884 	status = spi_readl(as, SR);
885 	pending = status & imr;
886 
887 	if (pending & SPI_BIT(OVRES)) {
888 		ret = IRQ_HANDLED;
889 		spi_writel(as, IDR, SPI_BIT(OVRES));
890 		dev_warn(master->dev.parent, "overrun\n");
891 
892 		/*
893 		 * When we get an overrun, we disregard the current
894 		 * transfer. Data will not be copied back from any
895 		 * bounce buffer and msg->actual_len will not be
896 		 * updated with the last xfer.
897 		 *
898 		 * We will also not process any remaning transfers in
899 		 * the message.
900 		 */
901 		as->done_status = -EIO;
902 		smp_wmb();
903 
904 		/* Clear any overrun happening while cleaning up */
905 		spi_readl(as, SR);
906 
907 		complete(&as->xfer_completion);
908 
909 	} else if (pending & SPI_BIT(RDRF)) {
910 		atmel_spi_lock(as);
911 
912 		if (as->current_remaining_bytes) {
913 			ret = IRQ_HANDLED;
914 			xfer = as->current_transfer;
915 			atmel_spi_pump_pio_data(as, xfer);
916 			if (!as->current_remaining_bytes)
917 				spi_writel(as, IDR, pending);
918 
919 			complete(&as->xfer_completion);
920 		}
921 
922 		atmel_spi_unlock(as);
923 	} else {
924 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
925 		ret = IRQ_HANDLED;
926 		spi_writel(as, IDR, pending);
927 	}
928 
929 	return ret;
930 }
931 
932 static irqreturn_t
933 atmel_spi_pdc_interrupt(int irq, void *dev_id)
934 {
935 	struct spi_master	*master = dev_id;
936 	struct atmel_spi	*as = spi_master_get_devdata(master);
937 	u32			status, pending, imr;
938 	int			ret = IRQ_NONE;
939 
940 	imr = spi_readl(as, IMR);
941 	status = spi_readl(as, SR);
942 	pending = status & imr;
943 
944 	if (pending & SPI_BIT(OVRES)) {
945 
946 		ret = IRQ_HANDLED;
947 
948 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
949 				     | SPI_BIT(OVRES)));
950 
951 		/* Clear any overrun happening while cleaning up */
952 		spi_readl(as, SR);
953 
954 		as->done_status = -EIO;
955 
956 		complete(&as->xfer_completion);
957 
958 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
959 		ret = IRQ_HANDLED;
960 
961 		spi_writel(as, IDR, pending);
962 
963 		complete(&as->xfer_completion);
964 	}
965 
966 	return ret;
967 }
968 
969 static int atmel_spi_setup(struct spi_device *spi)
970 {
971 	struct atmel_spi	*as;
972 	struct atmel_spi_device	*asd;
973 	u32			csr;
974 	unsigned int		bits = spi->bits_per_word;
975 	unsigned int		npcs_pin;
976 	int			ret;
977 
978 	as = spi_master_get_devdata(spi->master);
979 
980 	/* see notes above re chipselect */
981 	if (!atmel_spi_is_v2(as)
982 			&& spi->chip_select == 0
983 			&& (spi->mode & SPI_CS_HIGH)) {
984 		dev_dbg(&spi->dev, "setup: can't be active-high\n");
985 		return -EINVAL;
986 	}
987 
988 	csr = SPI_BF(BITS, bits - 8);
989 	if (spi->mode & SPI_CPOL)
990 		csr |= SPI_BIT(CPOL);
991 	if (!(spi->mode & SPI_CPHA))
992 		csr |= SPI_BIT(NCPHA);
993 
994 	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
995 	 *
996 	 * DLYBCT would add delays between words, slowing down transfers.
997 	 * It could potentially be useful to cope with DMA bottlenecks, but
998 	 * in those cases it's probably best to just use a lower bitrate.
999 	 */
1000 	csr |= SPI_BF(DLYBS, 0);
1001 	csr |= SPI_BF(DLYBCT, 0);
1002 
1003 	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1004 	npcs_pin = (unsigned long)spi->controller_data;
1005 
1006 	if (gpio_is_valid(spi->cs_gpio))
1007 		npcs_pin = spi->cs_gpio;
1008 
1009 	asd = spi->controller_state;
1010 	if (!asd) {
1011 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1012 		if (!asd)
1013 			return -ENOMEM;
1014 
1015 		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1016 		if (ret) {
1017 			kfree(asd);
1018 			return ret;
1019 		}
1020 
1021 		asd->npcs_pin = npcs_pin;
1022 		spi->controller_state = asd;
1023 		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1024 	}
1025 
1026 	asd->csr = csr;
1027 
1028 	dev_dbg(&spi->dev,
1029 		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1030 		bits, spi->mode, spi->chip_select, csr);
1031 
1032 	if (!atmel_spi_is_v2(as))
1033 		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1034 
1035 	return 0;
1036 }
1037 
1038 static int atmel_spi_one_transfer(struct spi_master *master,
1039 					struct spi_message *msg,
1040 					struct spi_transfer *xfer)
1041 {
1042 	struct atmel_spi	*as;
1043 	struct spi_device	*spi = msg->spi;
1044 	u8			bits;
1045 	u32			len;
1046 	struct atmel_spi_device	*asd;
1047 	int			timeout;
1048 	int			ret;
1049 
1050 	as = spi_master_get_devdata(master);
1051 
1052 	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1053 		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1054 		return -EINVAL;
1055 	}
1056 
1057 	if (xfer->bits_per_word) {
1058 		asd = spi->controller_state;
1059 		bits = (asd->csr >> 4) & 0xf;
1060 		if (bits != xfer->bits_per_word - 8) {
1061 			dev_dbg(&spi->dev,
1062 			"you can't yet change bits_per_word in transfers\n");
1063 			return -ENOPROTOOPT;
1064 		}
1065 	}
1066 
1067 	/*
1068 	 * DMA map early, for performance (empties dcache ASAP) and
1069 	 * better fault reporting.
1070 	 */
1071 	if ((!msg->is_dma_mapped)
1072 		&& (atmel_spi_use_dma(as, xfer)	|| as->use_pdc)) {
1073 		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1074 			return -ENOMEM;
1075 	}
1076 
1077 	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1078 
1079 	as->done_status = 0;
1080 	as->current_transfer = xfer;
1081 	as->current_remaining_bytes = xfer->len;
1082 	while (as->current_remaining_bytes) {
1083 		reinit_completion(&as->xfer_completion);
1084 
1085 		if (as->use_pdc) {
1086 			atmel_spi_pdc_next_xfer(master, msg, xfer);
1087 		} else if (atmel_spi_use_dma(as, xfer)) {
1088 			len = as->current_remaining_bytes;
1089 			ret = atmel_spi_next_xfer_dma_submit(master,
1090 								xfer, &len);
1091 			if (ret) {
1092 				dev_err(&spi->dev,
1093 					"unable to use DMA, fallback to PIO\n");
1094 				atmel_spi_next_xfer_pio(master, xfer);
1095 			} else {
1096 				as->current_remaining_bytes -= len;
1097 				if (as->current_remaining_bytes < 0)
1098 					as->current_remaining_bytes = 0;
1099 			}
1100 		} else {
1101 			atmel_spi_next_xfer_pio(master, xfer);
1102 		}
1103 
1104 		/* interrupts are disabled, so free the lock for schedule */
1105 		atmel_spi_unlock(as);
1106 		ret = wait_for_completion_timeout(&as->xfer_completion,
1107 							SPI_DMA_TIMEOUT);
1108 		atmel_spi_lock(as);
1109 		if (WARN_ON(ret == 0)) {
1110 			dev_err(&spi->dev,
1111 				"spi trasfer timeout, err %d\n", ret);
1112 			as->done_status = -EIO;
1113 		} else {
1114 			ret = 0;
1115 		}
1116 
1117 		if (as->done_status)
1118 			break;
1119 	}
1120 
1121 	if (as->done_status) {
1122 		if (as->use_pdc) {
1123 			dev_warn(master->dev.parent,
1124 				"overrun (%u/%u remaining)\n",
1125 				spi_readl(as, TCR), spi_readl(as, RCR));
1126 
1127 			/*
1128 			 * Clean up DMA registers and make sure the data
1129 			 * registers are empty.
1130 			 */
1131 			spi_writel(as, RNCR, 0);
1132 			spi_writel(as, TNCR, 0);
1133 			spi_writel(as, RCR, 0);
1134 			spi_writel(as, TCR, 0);
1135 			for (timeout = 1000; timeout; timeout--)
1136 				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1137 					break;
1138 			if (!timeout)
1139 				dev_warn(master->dev.parent,
1140 					 "timeout waiting for TXEMPTY");
1141 			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1142 				spi_readl(as, RDR);
1143 
1144 			/* Clear any overrun happening while cleaning up */
1145 			spi_readl(as, SR);
1146 
1147 		} else if (atmel_spi_use_dma(as, xfer)) {
1148 			atmel_spi_stop_dma(as);
1149 		}
1150 
1151 		if (!msg->is_dma_mapped
1152 			&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1153 			atmel_spi_dma_unmap_xfer(master, xfer);
1154 
1155 		return 0;
1156 
1157 	} else {
1158 		/* only update length if no error */
1159 		msg->actual_length += xfer->len;
1160 	}
1161 
1162 	if (!msg->is_dma_mapped
1163 		&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1164 		atmel_spi_dma_unmap_xfer(master, xfer);
1165 
1166 	if (xfer->delay_usecs)
1167 		udelay(xfer->delay_usecs);
1168 
1169 	if (xfer->cs_change) {
1170 		if (list_is_last(&xfer->transfer_list,
1171 				 &msg->transfers)) {
1172 			as->keep_cs = true;
1173 		} else {
1174 			as->cs_active = !as->cs_active;
1175 			if (as->cs_active)
1176 				cs_activate(as, msg->spi);
1177 			else
1178 				cs_deactivate(as, msg->spi);
1179 		}
1180 	}
1181 
1182 	return 0;
1183 }
1184 
1185 static int atmel_spi_transfer_one_message(struct spi_master *master,
1186 						struct spi_message *msg)
1187 {
1188 	struct atmel_spi *as;
1189 	struct spi_transfer *xfer;
1190 	struct spi_device *spi = msg->spi;
1191 	int ret = 0;
1192 
1193 	as = spi_master_get_devdata(master);
1194 
1195 	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1196 					msg, dev_name(&spi->dev));
1197 
1198 	atmel_spi_lock(as);
1199 	cs_activate(as, spi);
1200 
1201 	as->cs_active = true;
1202 	as->keep_cs = false;
1203 
1204 	msg->status = 0;
1205 	msg->actual_length = 0;
1206 
1207 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1208 		ret = atmel_spi_one_transfer(master, msg, xfer);
1209 		if (ret)
1210 			goto msg_done;
1211 	}
1212 
1213 	if (as->use_pdc)
1214 		atmel_spi_disable_pdc_transfer(as);
1215 
1216 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1217 		dev_dbg(&spi->dev,
1218 			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1219 			xfer, xfer->len,
1220 			xfer->tx_buf, &xfer->tx_dma,
1221 			xfer->rx_buf, &xfer->rx_dma);
1222 	}
1223 
1224 msg_done:
1225 	if (!as->keep_cs)
1226 		cs_deactivate(as, msg->spi);
1227 
1228 	atmel_spi_unlock(as);
1229 
1230 	msg->status = as->done_status;
1231 	spi_finalize_current_message(spi->master);
1232 
1233 	return ret;
1234 }
1235 
1236 static void atmel_spi_cleanup(struct spi_device *spi)
1237 {
1238 	struct atmel_spi_device	*asd = spi->controller_state;
1239 	unsigned		gpio = (unsigned long) spi->controller_data;
1240 
1241 	if (!asd)
1242 		return;
1243 
1244 	spi->controller_state = NULL;
1245 	gpio_free(gpio);
1246 	kfree(asd);
1247 }
1248 
1249 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1250 {
1251 	return spi_readl(as, VERSION) & 0x00000fff;
1252 }
1253 
1254 static void atmel_get_caps(struct atmel_spi *as)
1255 {
1256 	unsigned int version;
1257 
1258 	version = atmel_get_version(as);
1259 	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1260 
1261 	as->caps.is_spi2 = version > 0x121;
1262 	as->caps.has_wdrbt = version >= 0x210;
1263 	as->caps.has_dma_support = version >= 0x212;
1264 }
1265 
1266 /*-------------------------------------------------------------------------*/
1267 
1268 static int atmel_spi_probe(struct platform_device *pdev)
1269 {
1270 	struct resource		*regs;
1271 	int			irq;
1272 	struct clk		*clk;
1273 	int			ret;
1274 	struct spi_master	*master;
1275 	struct atmel_spi	*as;
1276 
1277 	/* Select default pin state */
1278 	pinctrl_pm_select_default_state(&pdev->dev);
1279 
1280 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1281 	if (!regs)
1282 		return -ENXIO;
1283 
1284 	irq = platform_get_irq(pdev, 0);
1285 	if (irq < 0)
1286 		return irq;
1287 
1288 	clk = devm_clk_get(&pdev->dev, "spi_clk");
1289 	if (IS_ERR(clk))
1290 		return PTR_ERR(clk);
1291 
1292 	/* setup spi core then atmel-specific driver state */
1293 	ret = -ENOMEM;
1294 	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1295 	if (!master)
1296 		goto out_free;
1297 
1298 	/* the spi->mode bits understood by this driver: */
1299 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1300 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1301 	master->dev.of_node = pdev->dev.of_node;
1302 	master->bus_num = pdev->id;
1303 	master->num_chipselect = master->dev.of_node ? 0 : 4;
1304 	master->setup = atmel_spi_setup;
1305 	master->transfer_one_message = atmel_spi_transfer_one_message;
1306 	master->cleanup = atmel_spi_cleanup;
1307 	master->auto_runtime_pm = true;
1308 	platform_set_drvdata(pdev, master);
1309 
1310 	as = spi_master_get_devdata(master);
1311 
1312 	/*
1313 	 * Scratch buffer is used for throwaway rx and tx data.
1314 	 * It's coherent to minimize dcache pollution.
1315 	 */
1316 	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1317 					&as->buffer_dma, GFP_KERNEL);
1318 	if (!as->buffer)
1319 		goto out_free;
1320 
1321 	spin_lock_init(&as->lock);
1322 
1323 	as->pdev = pdev;
1324 	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1325 	if (IS_ERR(as->regs)) {
1326 		ret = PTR_ERR(as->regs);
1327 		goto out_free_buffer;
1328 	}
1329 	as->phybase = regs->start;
1330 	as->irq = irq;
1331 	as->clk = clk;
1332 
1333 	init_completion(&as->xfer_completion);
1334 
1335 	atmel_get_caps(as);
1336 
1337 	as->use_dma = false;
1338 	as->use_pdc = false;
1339 	if (as->caps.has_dma_support) {
1340 		ret = atmel_spi_configure_dma(as);
1341 		if (ret == 0)
1342 			as->use_dma = true;
1343 		else if (ret == -EPROBE_DEFER)
1344 			return ret;
1345 	} else {
1346 		as->use_pdc = true;
1347 	}
1348 
1349 	if (as->caps.has_dma_support && !as->use_dma)
1350 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1351 
1352 	if (as->use_pdc) {
1353 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1354 					0, dev_name(&pdev->dev), master);
1355 	} else {
1356 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1357 					0, dev_name(&pdev->dev), master);
1358 	}
1359 	if (ret)
1360 		goto out_unmap_regs;
1361 
1362 	/* Initialize the hardware */
1363 	ret = clk_prepare_enable(clk);
1364 	if (ret)
1365 		goto out_free_irq;
1366 	spi_writel(as, CR, SPI_BIT(SWRST));
1367 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1368 	if (as->caps.has_wdrbt) {
1369 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1370 				| SPI_BIT(MSTR));
1371 	} else {
1372 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1373 	}
1374 
1375 	if (as->use_pdc)
1376 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1377 	spi_writel(as, CR, SPI_BIT(SPIEN));
1378 
1379 	/* go! */
1380 	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1381 			(unsigned long)regs->start, irq);
1382 
1383 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1384 	pm_runtime_use_autosuspend(&pdev->dev);
1385 	pm_runtime_set_active(&pdev->dev);
1386 	pm_runtime_enable(&pdev->dev);
1387 
1388 	ret = devm_spi_register_master(&pdev->dev, master);
1389 	if (ret)
1390 		goto out_free_dma;
1391 
1392 	return 0;
1393 
1394 out_free_dma:
1395 	pm_runtime_disable(&pdev->dev);
1396 	pm_runtime_set_suspended(&pdev->dev);
1397 
1398 	if (as->use_dma)
1399 		atmel_spi_release_dma(as);
1400 
1401 	spi_writel(as, CR, SPI_BIT(SWRST));
1402 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1403 	clk_disable_unprepare(clk);
1404 out_free_irq:
1405 out_unmap_regs:
1406 out_free_buffer:
1407 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1408 			as->buffer_dma);
1409 out_free:
1410 	spi_master_put(master);
1411 	return ret;
1412 }
1413 
1414 static int atmel_spi_remove(struct platform_device *pdev)
1415 {
1416 	struct spi_master	*master = platform_get_drvdata(pdev);
1417 	struct atmel_spi	*as = spi_master_get_devdata(master);
1418 
1419 	pm_runtime_get_sync(&pdev->dev);
1420 
1421 	/* reset the hardware and block queue progress */
1422 	spin_lock_irq(&as->lock);
1423 	if (as->use_dma) {
1424 		atmel_spi_stop_dma(as);
1425 		atmel_spi_release_dma(as);
1426 	}
1427 
1428 	spi_writel(as, CR, SPI_BIT(SWRST));
1429 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1430 	spi_readl(as, SR);
1431 	spin_unlock_irq(&as->lock);
1432 
1433 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1434 			as->buffer_dma);
1435 
1436 	clk_disable_unprepare(as->clk);
1437 
1438 	pm_runtime_put_noidle(&pdev->dev);
1439 	pm_runtime_disable(&pdev->dev);
1440 
1441 	return 0;
1442 }
1443 
1444 #ifdef CONFIG_PM
1445 static int atmel_spi_runtime_suspend(struct device *dev)
1446 {
1447 	struct spi_master *master = dev_get_drvdata(dev);
1448 	struct atmel_spi *as = spi_master_get_devdata(master);
1449 
1450 	clk_disable_unprepare(as->clk);
1451 	pinctrl_pm_select_sleep_state(dev);
1452 
1453 	return 0;
1454 }
1455 
1456 static int atmel_spi_runtime_resume(struct device *dev)
1457 {
1458 	struct spi_master *master = dev_get_drvdata(dev);
1459 	struct atmel_spi *as = spi_master_get_devdata(master);
1460 
1461 	pinctrl_pm_select_default_state(dev);
1462 
1463 	return clk_prepare_enable(as->clk);
1464 }
1465 
1466 static int atmel_spi_suspend(struct device *dev)
1467 {
1468 	struct spi_master *master = dev_get_drvdata(dev);
1469 	int ret;
1470 
1471 	/* Stop the queue running */
1472 	ret = spi_master_suspend(master);
1473 	if (ret) {
1474 		dev_warn(dev, "cannot suspend master\n");
1475 		return ret;
1476 	}
1477 
1478 	if (!pm_runtime_suspended(dev))
1479 		atmel_spi_runtime_suspend(dev);
1480 
1481 	return 0;
1482 }
1483 
1484 static int atmel_spi_resume(struct device *dev)
1485 {
1486 	struct spi_master *master = dev_get_drvdata(dev);
1487 	int ret;
1488 
1489 	if (!pm_runtime_suspended(dev)) {
1490 		ret = atmel_spi_runtime_resume(dev);
1491 		if (ret)
1492 			return ret;
1493 	}
1494 
1495 	/* Start the queue running */
1496 	ret = spi_master_resume(master);
1497 	if (ret)
1498 		dev_err(dev, "problem starting queue (%d)\n", ret);
1499 
1500 	return ret;
1501 }
1502 
1503 static const struct dev_pm_ops atmel_spi_pm_ops = {
1504 	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1505 	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1506 			   atmel_spi_runtime_resume, NULL)
1507 };
1508 #define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1509 #else
1510 #define ATMEL_SPI_PM_OPS	NULL
1511 #endif
1512 
1513 #if defined(CONFIG_OF)
1514 static const struct of_device_id atmel_spi_dt_ids[] = {
1515 	{ .compatible = "atmel,at91rm9200-spi" },
1516 	{ /* sentinel */ }
1517 };
1518 
1519 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1520 #endif
1521 
1522 static struct platform_driver atmel_spi_driver = {
1523 	.driver		= {
1524 		.name	= "atmel_spi",
1525 		.pm	= ATMEL_SPI_PM_OPS,
1526 		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1527 	},
1528 	.probe		= atmel_spi_probe,
1529 	.remove		= atmel_spi_remove,
1530 };
1531 module_platform_driver(atmel_spi_driver);
1532 
1533 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1534 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1535 MODULE_LICENSE("GPL");
1536 MODULE_ALIAS("platform:atmel_spi");
1537