xref: /openbmc/linux/drivers/spi/spi-atmel.c (revision efdbd7345f8836f7495f3ac6ee237d86cb3bb6b0)
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/dma-atmel.h>
23 #include <linux/of.h>
24 
25 #include <linux/io.h>
26 #include <linux/gpio.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pm_runtime.h>
29 
30 /* SPI register offsets */
31 #define SPI_CR					0x0000
32 #define SPI_MR					0x0004
33 #define SPI_RDR					0x0008
34 #define SPI_TDR					0x000c
35 #define SPI_SR					0x0010
36 #define SPI_IER					0x0014
37 #define SPI_IDR					0x0018
38 #define SPI_IMR					0x001c
39 #define SPI_CSR0				0x0030
40 #define SPI_CSR1				0x0034
41 #define SPI_CSR2				0x0038
42 #define SPI_CSR3				0x003c
43 #define SPI_FMR					0x0040
44 #define SPI_FLR					0x0044
45 #define SPI_VERSION				0x00fc
46 #define SPI_RPR					0x0100
47 #define SPI_RCR					0x0104
48 #define SPI_TPR					0x0108
49 #define SPI_TCR					0x010c
50 #define SPI_RNPR				0x0110
51 #define SPI_RNCR				0x0114
52 #define SPI_TNPR				0x0118
53 #define SPI_TNCR				0x011c
54 #define SPI_PTCR				0x0120
55 #define SPI_PTSR				0x0124
56 
57 /* Bitfields in CR */
58 #define SPI_SPIEN_OFFSET			0
59 #define SPI_SPIEN_SIZE				1
60 #define SPI_SPIDIS_OFFSET			1
61 #define SPI_SPIDIS_SIZE				1
62 #define SPI_SWRST_OFFSET			7
63 #define SPI_SWRST_SIZE				1
64 #define SPI_LASTXFER_OFFSET			24
65 #define SPI_LASTXFER_SIZE			1
66 #define SPI_TXFCLR_OFFSET			16
67 #define SPI_TXFCLR_SIZE				1
68 #define SPI_RXFCLR_OFFSET			17
69 #define SPI_RXFCLR_SIZE				1
70 #define SPI_FIFOEN_OFFSET			30
71 #define SPI_FIFOEN_SIZE				1
72 #define SPI_FIFODIS_OFFSET			31
73 #define SPI_FIFODIS_SIZE			1
74 
75 /* Bitfields in MR */
76 #define SPI_MSTR_OFFSET				0
77 #define SPI_MSTR_SIZE				1
78 #define SPI_PS_OFFSET				1
79 #define SPI_PS_SIZE				1
80 #define SPI_PCSDEC_OFFSET			2
81 #define SPI_PCSDEC_SIZE				1
82 #define SPI_FDIV_OFFSET				3
83 #define SPI_FDIV_SIZE				1
84 #define SPI_MODFDIS_OFFSET			4
85 #define SPI_MODFDIS_SIZE			1
86 #define SPI_WDRBT_OFFSET			5
87 #define SPI_WDRBT_SIZE				1
88 #define SPI_LLB_OFFSET				7
89 #define SPI_LLB_SIZE				1
90 #define SPI_PCS_OFFSET				16
91 #define SPI_PCS_SIZE				4
92 #define SPI_DLYBCS_OFFSET			24
93 #define SPI_DLYBCS_SIZE				8
94 
95 /* Bitfields in RDR */
96 #define SPI_RD_OFFSET				0
97 #define SPI_RD_SIZE				16
98 
99 /* Bitfields in TDR */
100 #define SPI_TD_OFFSET				0
101 #define SPI_TD_SIZE				16
102 
103 /* Bitfields in SR */
104 #define SPI_RDRF_OFFSET				0
105 #define SPI_RDRF_SIZE				1
106 #define SPI_TDRE_OFFSET				1
107 #define SPI_TDRE_SIZE				1
108 #define SPI_MODF_OFFSET				2
109 #define SPI_MODF_SIZE				1
110 #define SPI_OVRES_OFFSET			3
111 #define SPI_OVRES_SIZE				1
112 #define SPI_ENDRX_OFFSET			4
113 #define SPI_ENDRX_SIZE				1
114 #define SPI_ENDTX_OFFSET			5
115 #define SPI_ENDTX_SIZE				1
116 #define SPI_RXBUFF_OFFSET			6
117 #define SPI_RXBUFF_SIZE				1
118 #define SPI_TXBUFE_OFFSET			7
119 #define SPI_TXBUFE_SIZE				1
120 #define SPI_NSSR_OFFSET				8
121 #define SPI_NSSR_SIZE				1
122 #define SPI_TXEMPTY_OFFSET			9
123 #define SPI_TXEMPTY_SIZE			1
124 #define SPI_SPIENS_OFFSET			16
125 #define SPI_SPIENS_SIZE				1
126 #define SPI_TXFEF_OFFSET			24
127 #define SPI_TXFEF_SIZE				1
128 #define SPI_TXFFF_OFFSET			25
129 #define SPI_TXFFF_SIZE				1
130 #define SPI_TXFTHF_OFFSET			26
131 #define SPI_TXFTHF_SIZE				1
132 #define SPI_RXFEF_OFFSET			27
133 #define SPI_RXFEF_SIZE				1
134 #define SPI_RXFFF_OFFSET			28
135 #define SPI_RXFFF_SIZE				1
136 #define SPI_RXFTHF_OFFSET			29
137 #define SPI_RXFTHF_SIZE				1
138 #define SPI_TXFPTEF_OFFSET			30
139 #define SPI_TXFPTEF_SIZE			1
140 #define SPI_RXFPTEF_OFFSET			31
141 #define SPI_RXFPTEF_SIZE			1
142 
143 /* Bitfields in CSR0 */
144 #define SPI_CPOL_OFFSET				0
145 #define SPI_CPOL_SIZE				1
146 #define SPI_NCPHA_OFFSET			1
147 #define SPI_NCPHA_SIZE				1
148 #define SPI_CSAAT_OFFSET			3
149 #define SPI_CSAAT_SIZE				1
150 #define SPI_BITS_OFFSET				4
151 #define SPI_BITS_SIZE				4
152 #define SPI_SCBR_OFFSET				8
153 #define SPI_SCBR_SIZE				8
154 #define SPI_DLYBS_OFFSET			16
155 #define SPI_DLYBS_SIZE				8
156 #define SPI_DLYBCT_OFFSET			24
157 #define SPI_DLYBCT_SIZE				8
158 
159 /* Bitfields in RCR */
160 #define SPI_RXCTR_OFFSET			0
161 #define SPI_RXCTR_SIZE				16
162 
163 /* Bitfields in TCR */
164 #define SPI_TXCTR_OFFSET			0
165 #define SPI_TXCTR_SIZE				16
166 
167 /* Bitfields in RNCR */
168 #define SPI_RXNCR_OFFSET			0
169 #define SPI_RXNCR_SIZE				16
170 
171 /* Bitfields in TNCR */
172 #define SPI_TXNCR_OFFSET			0
173 #define SPI_TXNCR_SIZE				16
174 
175 /* Bitfields in PTCR */
176 #define SPI_RXTEN_OFFSET			0
177 #define SPI_RXTEN_SIZE				1
178 #define SPI_RXTDIS_OFFSET			1
179 #define SPI_RXTDIS_SIZE				1
180 #define SPI_TXTEN_OFFSET			8
181 #define SPI_TXTEN_SIZE				1
182 #define SPI_TXTDIS_OFFSET			9
183 #define SPI_TXTDIS_SIZE				1
184 
185 /* Bitfields in FMR */
186 #define SPI_TXRDYM_OFFSET			0
187 #define SPI_TXRDYM_SIZE				2
188 #define SPI_RXRDYM_OFFSET			4
189 #define SPI_RXRDYM_SIZE				2
190 #define SPI_TXFTHRES_OFFSET			16
191 #define SPI_TXFTHRES_SIZE			6
192 #define SPI_RXFTHRES_OFFSET			24
193 #define SPI_RXFTHRES_SIZE			6
194 
195 /* Bitfields in FLR */
196 #define SPI_TXFL_OFFSET				0
197 #define SPI_TXFL_SIZE				6
198 #define SPI_RXFL_OFFSET				16
199 #define SPI_RXFL_SIZE				6
200 
201 /* Constants for BITS */
202 #define SPI_BITS_8_BPT				0
203 #define SPI_BITS_9_BPT				1
204 #define SPI_BITS_10_BPT				2
205 #define SPI_BITS_11_BPT				3
206 #define SPI_BITS_12_BPT				4
207 #define SPI_BITS_13_BPT				5
208 #define SPI_BITS_14_BPT				6
209 #define SPI_BITS_15_BPT				7
210 #define SPI_BITS_16_BPT				8
211 #define SPI_ONE_DATA				0
212 #define SPI_TWO_DATA				1
213 #define SPI_FOUR_DATA				2
214 
215 /* Bit manipulation macros */
216 #define SPI_BIT(name) \
217 	(1 << SPI_##name##_OFFSET)
218 #define SPI_BF(name, value) \
219 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
220 #define SPI_BFEXT(name, value) \
221 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
222 #define SPI_BFINS(name, value, old) \
223 	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
224 	  | SPI_BF(name, value))
225 
226 /* Register access macros */
227 #ifdef CONFIG_AVR32
228 #define spi_readl(port, reg) \
229 	__raw_readl((port)->regs + SPI_##reg)
230 #define spi_writel(port, reg, value) \
231 	__raw_writel((value), (port)->regs + SPI_##reg)
232 
233 #define spi_readw(port, reg) \
234 	__raw_readw((port)->regs + SPI_##reg)
235 #define spi_writew(port, reg, value) \
236 	__raw_writew((value), (port)->regs + SPI_##reg)
237 
238 #define spi_readb(port, reg) \
239 	__raw_readb((port)->regs + SPI_##reg)
240 #define spi_writeb(port, reg, value) \
241 	__raw_writeb((value), (port)->regs + SPI_##reg)
242 #else
243 #define spi_readl(port, reg) \
244 	readl_relaxed((port)->regs + SPI_##reg)
245 #define spi_writel(port, reg, value) \
246 	writel_relaxed((value), (port)->regs + SPI_##reg)
247 
248 #define spi_readw(port, reg) \
249 	readw_relaxed((port)->regs + SPI_##reg)
250 #define spi_writew(port, reg, value) \
251 	writew_relaxed((value), (port)->regs + SPI_##reg)
252 
253 #define spi_readb(port, reg) \
254 	readb_relaxed((port)->regs + SPI_##reg)
255 #define spi_writeb(port, reg, value) \
256 	writeb_relaxed((value), (port)->regs + SPI_##reg)
257 #endif
258 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
259  * cache operations; better heuristics consider wordsize and bitrate.
260  */
261 #define DMA_MIN_BYTES	16
262 
263 #define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
264 
265 #define AUTOSUSPEND_TIMEOUT	2000
266 
267 struct atmel_spi_dma {
268 	struct dma_chan			*chan_rx;
269 	struct dma_chan			*chan_tx;
270 	struct scatterlist		sgrx;
271 	struct scatterlist		sgtx;
272 	struct dma_async_tx_descriptor	*data_desc_rx;
273 	struct dma_async_tx_descriptor	*data_desc_tx;
274 
275 	struct at_dma_slave	dma_slave;
276 };
277 
278 struct atmel_spi_caps {
279 	bool	is_spi2;
280 	bool	has_wdrbt;
281 	bool	has_dma_support;
282 };
283 
284 /*
285  * The core SPI transfer engine just talks to a register bank to set up
286  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
287  * framework provides the base clock, subdivided for each spi_device.
288  */
289 struct atmel_spi {
290 	spinlock_t		lock;
291 	unsigned long		flags;
292 
293 	phys_addr_t		phybase;
294 	void __iomem		*regs;
295 	int			irq;
296 	struct clk		*clk;
297 	struct platform_device	*pdev;
298 
299 	struct spi_transfer	*current_transfer;
300 	int			current_remaining_bytes;
301 	int			done_status;
302 
303 	struct completion	xfer_completion;
304 
305 	/* scratch buffer */
306 	void			*buffer;
307 	dma_addr_t		buffer_dma;
308 
309 	struct atmel_spi_caps	caps;
310 
311 	bool			use_dma;
312 	bool			use_pdc;
313 	bool			use_cs_gpios;
314 	/* dmaengine data */
315 	struct atmel_spi_dma	dma;
316 
317 	bool			keep_cs;
318 	bool			cs_active;
319 
320 	u32			fifo_size;
321 };
322 
323 /* Controller-specific per-slave state */
324 struct atmel_spi_device {
325 	unsigned int		npcs_pin;
326 	u32			csr;
327 };
328 
329 #define BUFFER_SIZE		PAGE_SIZE
330 #define INVALID_DMA_ADDRESS	0xffffffff
331 
332 /*
333  * Version 2 of the SPI controller has
334  *  - CR.LASTXFER
335  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
336  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
337  *  - SPI_CSRx.CSAAT
338  *  - SPI_CSRx.SBCR allows faster clocking
339  */
340 static bool atmel_spi_is_v2(struct atmel_spi *as)
341 {
342 	return as->caps.is_spi2;
343 }
344 
345 /*
346  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
347  * they assume that spi slave device state will not change on deselect, so
348  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
349  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
350  * controllers have CSAAT and friends.
351  *
352  * Since the CSAAT functionality is a bit weird on newer controllers as
353  * well, we use GPIO to control nCSx pins on all controllers, updating
354  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
355  * support active-high chipselects despite the controller's belief that
356  * only active-low devices/systems exists.
357  *
358  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
359  * right when driven with GPIO.  ("Mode Fault does not allow more than one
360  * Master on Chip Select 0.")  No workaround exists for that ... so for
361  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
362  * and (c) will trigger that first erratum in some cases.
363  */
364 
365 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
366 {
367 	struct atmel_spi_device *asd = spi->controller_state;
368 	unsigned active = spi->mode & SPI_CS_HIGH;
369 	u32 mr;
370 
371 	if (atmel_spi_is_v2(as)) {
372 		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
373 		/* For the low SPI version, there is a issue that PDC transfer
374 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
375 		 */
376 		spi_writel(as, CSR0, asd->csr);
377 		if (as->caps.has_wdrbt) {
378 			spi_writel(as, MR,
379 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
380 					| SPI_BIT(WDRBT)
381 					| SPI_BIT(MODFDIS)
382 					| SPI_BIT(MSTR));
383 		} else {
384 			spi_writel(as, MR,
385 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
386 					| SPI_BIT(MODFDIS)
387 					| SPI_BIT(MSTR));
388 		}
389 
390 		mr = spi_readl(as, MR);
391 		if (as->use_cs_gpios)
392 			gpio_set_value(asd->npcs_pin, active);
393 	} else {
394 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
395 		int i;
396 		u32 csr;
397 
398 		/* Make sure clock polarity is correct */
399 		for (i = 0; i < spi->master->num_chipselect; i++) {
400 			csr = spi_readl(as, CSR0 + 4 * i);
401 			if ((csr ^ cpol) & SPI_BIT(CPOL))
402 				spi_writel(as, CSR0 + 4 * i,
403 						csr ^ SPI_BIT(CPOL));
404 		}
405 
406 		mr = spi_readl(as, MR);
407 		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
408 		if (as->use_cs_gpios && spi->chip_select != 0)
409 			gpio_set_value(asd->npcs_pin, active);
410 		spi_writel(as, MR, mr);
411 	}
412 
413 	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
414 			asd->npcs_pin, active ? " (high)" : "",
415 			mr);
416 }
417 
418 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
419 {
420 	struct atmel_spi_device *asd = spi->controller_state;
421 	unsigned active = spi->mode & SPI_CS_HIGH;
422 	u32 mr;
423 
424 	/* only deactivate *this* device; sometimes transfers to
425 	 * another device may be active when this routine is called.
426 	 */
427 	mr = spi_readl(as, MR);
428 	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
429 		mr = SPI_BFINS(PCS, 0xf, mr);
430 		spi_writel(as, MR, mr);
431 	}
432 
433 	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
434 			asd->npcs_pin, active ? " (low)" : "",
435 			mr);
436 
437 	if (!as->use_cs_gpios)
438 		spi_writel(as, CR, SPI_BIT(LASTXFER));
439 	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
440 		gpio_set_value(asd->npcs_pin, !active);
441 }
442 
443 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
444 {
445 	spin_lock_irqsave(&as->lock, as->flags);
446 }
447 
448 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
449 {
450 	spin_unlock_irqrestore(&as->lock, as->flags);
451 }
452 
453 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
454 				struct spi_transfer *xfer)
455 {
456 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
457 }
458 
459 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
460 				struct dma_slave_config *slave_config,
461 				u8 bits_per_word)
462 {
463 	int err = 0;
464 
465 	if (bits_per_word > 8) {
466 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
467 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
468 	} else {
469 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
470 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
471 	}
472 
473 	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
474 	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
475 	slave_config->src_maxburst = 1;
476 	slave_config->dst_maxburst = 1;
477 	slave_config->device_fc = false;
478 
479 	/*
480 	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
481 	 * the Mode Register).
482 	 * So according to the datasheet, when FIFOs are available (and
483 	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
484 	 * In this mode, up to 2 data, not 4, can be written into the Transmit
485 	 * Data Register in a single access.
486 	 * However, the first data has to be written into the lowest 16 bits and
487 	 * the second data into the highest 16 bits of the Transmit
488 	 * Data Register. For 8bit data (the most frequent case), it would
489 	 * require to rework tx_buf so each data would actualy fit 16 bits.
490 	 * So we'd rather write only one data at the time. Hence the transmit
491 	 * path works the same whether FIFOs are available (and enabled) or not.
492 	 */
493 	slave_config->direction = DMA_MEM_TO_DEV;
494 	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
495 		dev_err(&as->pdev->dev,
496 			"failed to configure tx dma channel\n");
497 		err = -EINVAL;
498 	}
499 
500 	/*
501 	 * This driver configures the spi controller for master mode (MSTR bit
502 	 * set to '1' in the Mode Register).
503 	 * So according to the datasheet, when FIFOs are available (and
504 	 * enabled), the Receive FIFO operates in Single Data Mode.
505 	 * So the receive path works the same whether FIFOs are available (and
506 	 * enabled) or not.
507 	 */
508 	slave_config->direction = DMA_DEV_TO_MEM;
509 	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
510 		dev_err(&as->pdev->dev,
511 			"failed to configure rx dma channel\n");
512 		err = -EINVAL;
513 	}
514 
515 	return err;
516 }
517 
518 static int atmel_spi_configure_dma(struct atmel_spi *as)
519 {
520 	struct dma_slave_config	slave_config;
521 	struct device *dev = &as->pdev->dev;
522 	int err;
523 
524 	dma_cap_mask_t mask;
525 	dma_cap_zero(mask);
526 	dma_cap_set(DMA_SLAVE, mask);
527 
528 	as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
529 	if (IS_ERR(as->dma.chan_tx)) {
530 		err = PTR_ERR(as->dma.chan_tx);
531 		if (err == -EPROBE_DEFER) {
532 			dev_warn(dev, "no DMA channel available at the moment\n");
533 			return err;
534 		}
535 		dev_err(dev,
536 			"DMA TX channel not available, SPI unable to use DMA\n");
537 		err = -EBUSY;
538 		goto error;
539 	}
540 
541 	/*
542 	 * No reason to check EPROBE_DEFER here since we have already requested
543 	 * tx channel. If it fails here, it's for another reason.
544 	 */
545 	as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
546 
547 	if (!as->dma.chan_rx) {
548 		dev_err(dev,
549 			"DMA RX channel not available, SPI unable to use DMA\n");
550 		err = -EBUSY;
551 		goto error;
552 	}
553 
554 	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
555 	if (err)
556 		goto error;
557 
558 	dev_info(&as->pdev->dev,
559 			"Using %s (tx) and %s (rx) for DMA transfers\n",
560 			dma_chan_name(as->dma.chan_tx),
561 			dma_chan_name(as->dma.chan_rx));
562 	return 0;
563 error:
564 	if (as->dma.chan_rx)
565 		dma_release_channel(as->dma.chan_rx);
566 	if (!IS_ERR(as->dma.chan_tx))
567 		dma_release_channel(as->dma.chan_tx);
568 	return err;
569 }
570 
571 static void atmel_spi_stop_dma(struct atmel_spi *as)
572 {
573 	if (as->dma.chan_rx)
574 		dmaengine_terminate_all(as->dma.chan_rx);
575 	if (as->dma.chan_tx)
576 		dmaengine_terminate_all(as->dma.chan_tx);
577 }
578 
579 static void atmel_spi_release_dma(struct atmel_spi *as)
580 {
581 	if (as->dma.chan_rx)
582 		dma_release_channel(as->dma.chan_rx);
583 	if (as->dma.chan_tx)
584 		dma_release_channel(as->dma.chan_tx);
585 }
586 
587 /* This function is called by the DMA driver from tasklet context */
588 static void dma_callback(void *data)
589 {
590 	struct spi_master	*master = data;
591 	struct atmel_spi	*as = spi_master_get_devdata(master);
592 
593 	complete(&as->xfer_completion);
594 }
595 
596 /*
597  * Next transfer using PIO without FIFO.
598  */
599 static void atmel_spi_next_xfer_single(struct spi_master *master,
600 				       struct spi_transfer *xfer)
601 {
602 	struct atmel_spi	*as = spi_master_get_devdata(master);
603 	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
604 
605 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
606 
607 	/* Make sure data is not remaining in RDR */
608 	spi_readl(as, RDR);
609 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
610 		spi_readl(as, RDR);
611 		cpu_relax();
612 	}
613 
614 	if (xfer->tx_buf) {
615 		if (xfer->bits_per_word > 8)
616 			spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
617 		else
618 			spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
619 	} else {
620 		spi_writel(as, TDR, 0);
621 	}
622 
623 	dev_dbg(master->dev.parent,
624 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
625 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
626 		xfer->bits_per_word);
627 
628 	/* Enable relevant interrupts */
629 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
630 }
631 
632 /*
633  * Next transfer using PIO with FIFO.
634  */
635 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
636 				     struct spi_transfer *xfer)
637 {
638 	struct atmel_spi *as = spi_master_get_devdata(master);
639 	u32 current_remaining_data, num_data;
640 	u32 offset = xfer->len - as->current_remaining_bytes;
641 	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
642 	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
643 	u16 td0, td1;
644 	u32 fifomr;
645 
646 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
647 
648 	/* Compute the number of data to transfer in the current iteration */
649 	current_remaining_data = ((xfer->bits_per_word > 8) ?
650 				  ((u32)as->current_remaining_bytes >> 1) :
651 				  (u32)as->current_remaining_bytes);
652 	num_data = min(current_remaining_data, as->fifo_size);
653 
654 	/* Flush RX and TX FIFOs */
655 	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
656 	while (spi_readl(as, FLR))
657 		cpu_relax();
658 
659 	/* Set RX FIFO Threshold to the number of data to transfer */
660 	fifomr = spi_readl(as, FMR);
661 	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
662 
663 	/* Clear FIFO flags in the Status Register, especially RXFTHF */
664 	(void)spi_readl(as, SR);
665 
666 	/* Fill TX FIFO */
667 	while (num_data >= 2) {
668 		if (xfer->tx_buf) {
669 			if (xfer->bits_per_word > 8) {
670 				td0 = *words++;
671 				td1 = *words++;
672 			} else {
673 				td0 = *bytes++;
674 				td1 = *bytes++;
675 			}
676 		} else {
677 			td0 = 0;
678 			td1 = 0;
679 		}
680 
681 		spi_writel(as, TDR, (td1 << 16) | td0);
682 		num_data -= 2;
683 	}
684 
685 	if (num_data) {
686 		if (xfer->tx_buf) {
687 			if (xfer->bits_per_word > 8)
688 				td0 = *words++;
689 			else
690 				td0 = *bytes++;
691 		} else {
692 			td0 = 0;
693 		}
694 
695 		spi_writew(as, TDR, td0);
696 		num_data--;
697 	}
698 
699 	dev_dbg(master->dev.parent,
700 		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
701 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
702 		xfer->bits_per_word);
703 
704 	/*
705 	 * Enable RX FIFO Threshold Flag interrupt to be notified about
706 	 * transfer completion.
707 	 */
708 	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
709 }
710 
711 /*
712  * Next transfer using PIO.
713  */
714 static void atmel_spi_next_xfer_pio(struct spi_master *master,
715 				    struct spi_transfer *xfer)
716 {
717 	struct atmel_spi *as = spi_master_get_devdata(master);
718 
719 	if (as->fifo_size)
720 		atmel_spi_next_xfer_fifo(master, xfer);
721 	else
722 		atmel_spi_next_xfer_single(master, xfer);
723 }
724 
725 /*
726  * Submit next transfer for DMA.
727  */
728 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
729 				struct spi_transfer *xfer,
730 				u32 *plen)
731 {
732 	struct atmel_spi	*as = spi_master_get_devdata(master);
733 	struct dma_chan		*rxchan = as->dma.chan_rx;
734 	struct dma_chan		*txchan = as->dma.chan_tx;
735 	struct dma_async_tx_descriptor *rxdesc;
736 	struct dma_async_tx_descriptor *txdesc;
737 	struct dma_slave_config	slave_config;
738 	dma_cookie_t		cookie;
739 	u32	len = *plen;
740 
741 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
742 
743 	/* Check that the channels are available */
744 	if (!rxchan || !txchan)
745 		return -ENODEV;
746 
747 	/* release lock for DMA operations */
748 	atmel_spi_unlock(as);
749 
750 	/* prepare the RX dma transfer */
751 	sg_init_table(&as->dma.sgrx, 1);
752 	if (xfer->rx_buf) {
753 		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
754 	} else {
755 		as->dma.sgrx.dma_address = as->buffer_dma;
756 		if (len > BUFFER_SIZE)
757 			len = BUFFER_SIZE;
758 	}
759 
760 	/* prepare the TX dma transfer */
761 	sg_init_table(&as->dma.sgtx, 1);
762 	if (xfer->tx_buf) {
763 		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
764 	} else {
765 		as->dma.sgtx.dma_address = as->buffer_dma;
766 		if (len > BUFFER_SIZE)
767 			len = BUFFER_SIZE;
768 		memset(as->buffer, 0, len);
769 	}
770 
771 	sg_dma_len(&as->dma.sgtx) = len;
772 	sg_dma_len(&as->dma.sgrx) = len;
773 
774 	*plen = len;
775 
776 	if (atmel_spi_dma_slave_config(as, &slave_config, 8))
777 		goto err_exit;
778 
779 	/* Send both scatterlists */
780 	rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
781 					 DMA_FROM_DEVICE,
782 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
783 	if (!rxdesc)
784 		goto err_dma;
785 
786 	txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
787 					 DMA_TO_DEVICE,
788 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
789 	if (!txdesc)
790 		goto err_dma;
791 
792 	dev_dbg(master->dev.parent,
793 		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
794 		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
795 		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
796 
797 	/* Enable relevant interrupts */
798 	spi_writel(as, IER, SPI_BIT(OVRES));
799 
800 	/* Put the callback on the RX transfer only, that should finish last */
801 	rxdesc->callback = dma_callback;
802 	rxdesc->callback_param = master;
803 
804 	/* Submit and fire RX and TX with TX last so we're ready to read! */
805 	cookie = rxdesc->tx_submit(rxdesc);
806 	if (dma_submit_error(cookie))
807 		goto err_dma;
808 	cookie = txdesc->tx_submit(txdesc);
809 	if (dma_submit_error(cookie))
810 		goto err_dma;
811 	rxchan->device->device_issue_pending(rxchan);
812 	txchan->device->device_issue_pending(txchan);
813 
814 	/* take back lock */
815 	atmel_spi_lock(as);
816 	return 0;
817 
818 err_dma:
819 	spi_writel(as, IDR, SPI_BIT(OVRES));
820 	atmel_spi_stop_dma(as);
821 err_exit:
822 	atmel_spi_lock(as);
823 	return -ENOMEM;
824 }
825 
826 static void atmel_spi_next_xfer_data(struct spi_master *master,
827 				struct spi_transfer *xfer,
828 				dma_addr_t *tx_dma,
829 				dma_addr_t *rx_dma,
830 				u32 *plen)
831 {
832 	struct atmel_spi	*as = spi_master_get_devdata(master);
833 	u32			len = *plen;
834 
835 	/* use scratch buffer only when rx or tx data is unspecified */
836 	if (xfer->rx_buf)
837 		*rx_dma = xfer->rx_dma + xfer->len - *plen;
838 	else {
839 		*rx_dma = as->buffer_dma;
840 		if (len > BUFFER_SIZE)
841 			len = BUFFER_SIZE;
842 	}
843 
844 	if (xfer->tx_buf)
845 		*tx_dma = xfer->tx_dma + xfer->len - *plen;
846 	else {
847 		*tx_dma = as->buffer_dma;
848 		if (len > BUFFER_SIZE)
849 			len = BUFFER_SIZE;
850 		memset(as->buffer, 0, len);
851 		dma_sync_single_for_device(&as->pdev->dev,
852 				as->buffer_dma, len, DMA_TO_DEVICE);
853 	}
854 
855 	*plen = len;
856 }
857 
858 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
859 				    struct spi_device *spi,
860 				    struct spi_transfer *xfer)
861 {
862 	u32			scbr, csr;
863 	unsigned long		bus_hz;
864 
865 	/* v1 chips start out at half the peripheral bus speed. */
866 	bus_hz = clk_get_rate(as->clk);
867 	if (!atmel_spi_is_v2(as))
868 		bus_hz /= 2;
869 
870 	/*
871 	 * Calculate the lowest divider that satisfies the
872 	 * constraint, assuming div32/fdiv/mbz == 0.
873 	 */
874 	if (xfer->speed_hz)
875 		scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
876 	else
877 		/*
878 		 * This can happend if max_speed is null.
879 		 * In this case, we set the lowest possible speed
880 		 */
881 		scbr = 0xff;
882 
883 	/*
884 	 * If the resulting divider doesn't fit into the
885 	 * register bitfield, we can't satisfy the constraint.
886 	 */
887 	if (scbr >= (1 << SPI_SCBR_SIZE)) {
888 		dev_err(&spi->dev,
889 			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
890 			xfer->speed_hz, scbr, bus_hz/255);
891 		return -EINVAL;
892 	}
893 	if (scbr == 0) {
894 		dev_err(&spi->dev,
895 			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
896 			xfer->speed_hz, scbr, bus_hz);
897 		return -EINVAL;
898 	}
899 	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
900 	csr = SPI_BFINS(SCBR, scbr, csr);
901 	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
902 
903 	return 0;
904 }
905 
906 /*
907  * Submit next transfer for PDC.
908  * lock is held, spi irq is blocked
909  */
910 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
911 					struct spi_message *msg,
912 					struct spi_transfer *xfer)
913 {
914 	struct atmel_spi	*as = spi_master_get_devdata(master);
915 	u32			len;
916 	dma_addr_t		tx_dma, rx_dma;
917 
918 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
919 
920 	len = as->current_remaining_bytes;
921 	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
922 	as->current_remaining_bytes -= len;
923 
924 	spi_writel(as, RPR, rx_dma);
925 	spi_writel(as, TPR, tx_dma);
926 
927 	if (msg->spi->bits_per_word > 8)
928 		len >>= 1;
929 	spi_writel(as, RCR, len);
930 	spi_writel(as, TCR, len);
931 
932 	dev_dbg(&msg->spi->dev,
933 		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
934 		xfer, xfer->len, xfer->tx_buf,
935 		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
936 		(unsigned long long)xfer->rx_dma);
937 
938 	if (as->current_remaining_bytes) {
939 		len = as->current_remaining_bytes;
940 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
941 		as->current_remaining_bytes -= len;
942 
943 		spi_writel(as, RNPR, rx_dma);
944 		spi_writel(as, TNPR, tx_dma);
945 
946 		if (msg->spi->bits_per_word > 8)
947 			len >>= 1;
948 		spi_writel(as, RNCR, len);
949 		spi_writel(as, TNCR, len);
950 
951 		dev_dbg(&msg->spi->dev,
952 			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
953 			xfer, xfer->len, xfer->tx_buf,
954 			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
955 			(unsigned long long)xfer->rx_dma);
956 	}
957 
958 	/* REVISIT: We're waiting for RXBUFF before we start the next
959 	 * transfer because we need to handle some difficult timing
960 	 * issues otherwise. If we wait for TXBUFE in one transfer and
961 	 * then starts waiting for RXBUFF in the next, it's difficult
962 	 * to tell the difference between the RXBUFF interrupt we're
963 	 * actually waiting for and the RXBUFF interrupt of the
964 	 * previous transfer.
965 	 *
966 	 * It should be doable, though. Just not now...
967 	 */
968 	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
969 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
970 }
971 
972 /*
973  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
974  *  - The buffer is either valid for CPU access, else NULL
975  *  - If the buffer is valid, so is its DMA address
976  *
977  * This driver manages the dma address unless message->is_dma_mapped.
978  */
979 static int
980 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
981 {
982 	struct device	*dev = &as->pdev->dev;
983 
984 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
985 	if (xfer->tx_buf) {
986 		/* tx_buf is a const void* where we need a void * for the dma
987 		 * mapping */
988 		void *nonconst_tx = (void *)xfer->tx_buf;
989 
990 		xfer->tx_dma = dma_map_single(dev,
991 				nonconst_tx, xfer->len,
992 				DMA_TO_DEVICE);
993 		if (dma_mapping_error(dev, xfer->tx_dma))
994 			return -ENOMEM;
995 	}
996 	if (xfer->rx_buf) {
997 		xfer->rx_dma = dma_map_single(dev,
998 				xfer->rx_buf, xfer->len,
999 				DMA_FROM_DEVICE);
1000 		if (dma_mapping_error(dev, xfer->rx_dma)) {
1001 			if (xfer->tx_buf)
1002 				dma_unmap_single(dev,
1003 						xfer->tx_dma, xfer->len,
1004 						DMA_TO_DEVICE);
1005 			return -ENOMEM;
1006 		}
1007 	}
1008 	return 0;
1009 }
1010 
1011 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
1012 				     struct spi_transfer *xfer)
1013 {
1014 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1015 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
1016 				 xfer->len, DMA_TO_DEVICE);
1017 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1018 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
1019 				 xfer->len, DMA_FROM_DEVICE);
1020 }
1021 
1022 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1023 {
1024 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1025 }
1026 
1027 static void
1028 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1029 {
1030 	u8		*rxp;
1031 	u16		*rxp16;
1032 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
1033 
1034 	if (xfer->rx_buf) {
1035 		if (xfer->bits_per_word > 8) {
1036 			rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1037 			*rxp16 = spi_readl(as, RDR);
1038 		} else {
1039 			rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1040 			*rxp = spi_readl(as, RDR);
1041 		}
1042 	} else {
1043 		spi_readl(as, RDR);
1044 	}
1045 	if (xfer->bits_per_word > 8) {
1046 		if (as->current_remaining_bytes > 2)
1047 			as->current_remaining_bytes -= 2;
1048 		else
1049 			as->current_remaining_bytes = 0;
1050 	} else {
1051 		as->current_remaining_bytes--;
1052 	}
1053 }
1054 
1055 static void
1056 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1057 {
1058 	u32 fifolr = spi_readl(as, FLR);
1059 	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1060 	u32 offset = xfer->len - as->current_remaining_bytes;
1061 	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1062 	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1063 	u16 rd; /* RD field is the lowest 16 bits of RDR */
1064 
1065 	/* Update the number of remaining bytes to transfer */
1066 	num_bytes = ((xfer->bits_per_word > 8) ?
1067 		     (num_data << 1) :
1068 		     num_data);
1069 
1070 	if (as->current_remaining_bytes > num_bytes)
1071 		as->current_remaining_bytes -= num_bytes;
1072 	else
1073 		as->current_remaining_bytes = 0;
1074 
1075 	/* Handle odd number of bytes when data are more than 8bit width */
1076 	if (xfer->bits_per_word > 8)
1077 		as->current_remaining_bytes &= ~0x1;
1078 
1079 	/* Read data */
1080 	while (num_data) {
1081 		rd = spi_readl(as, RDR);
1082 		if (xfer->rx_buf) {
1083 			if (xfer->bits_per_word > 8)
1084 				*words++ = rd;
1085 			else
1086 				*bytes++ = rd;
1087 		}
1088 		num_data--;
1089 	}
1090 }
1091 
1092 /* Called from IRQ
1093  *
1094  * Must update "current_remaining_bytes" to keep track of data
1095  * to transfer.
1096  */
1097 static void
1098 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1099 {
1100 	if (as->fifo_size)
1101 		atmel_spi_pump_fifo_data(as, xfer);
1102 	else
1103 		atmel_spi_pump_single_data(as, xfer);
1104 }
1105 
1106 /* Interrupt
1107  *
1108  * No need for locking in this Interrupt handler: done_status is the
1109  * only information modified.
1110  */
1111 static irqreturn_t
1112 atmel_spi_pio_interrupt(int irq, void *dev_id)
1113 {
1114 	struct spi_master	*master = dev_id;
1115 	struct atmel_spi	*as = spi_master_get_devdata(master);
1116 	u32			status, pending, imr;
1117 	struct spi_transfer	*xfer;
1118 	int			ret = IRQ_NONE;
1119 
1120 	imr = spi_readl(as, IMR);
1121 	status = spi_readl(as, SR);
1122 	pending = status & imr;
1123 
1124 	if (pending & SPI_BIT(OVRES)) {
1125 		ret = IRQ_HANDLED;
1126 		spi_writel(as, IDR, SPI_BIT(OVRES));
1127 		dev_warn(master->dev.parent, "overrun\n");
1128 
1129 		/*
1130 		 * When we get an overrun, we disregard the current
1131 		 * transfer. Data will not be copied back from any
1132 		 * bounce buffer and msg->actual_len will not be
1133 		 * updated with the last xfer.
1134 		 *
1135 		 * We will also not process any remaning transfers in
1136 		 * the message.
1137 		 */
1138 		as->done_status = -EIO;
1139 		smp_wmb();
1140 
1141 		/* Clear any overrun happening while cleaning up */
1142 		spi_readl(as, SR);
1143 
1144 		complete(&as->xfer_completion);
1145 
1146 	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1147 		atmel_spi_lock(as);
1148 
1149 		if (as->current_remaining_bytes) {
1150 			ret = IRQ_HANDLED;
1151 			xfer = as->current_transfer;
1152 			atmel_spi_pump_pio_data(as, xfer);
1153 			if (!as->current_remaining_bytes)
1154 				spi_writel(as, IDR, pending);
1155 
1156 			complete(&as->xfer_completion);
1157 		}
1158 
1159 		atmel_spi_unlock(as);
1160 	} else {
1161 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1162 		ret = IRQ_HANDLED;
1163 		spi_writel(as, IDR, pending);
1164 	}
1165 
1166 	return ret;
1167 }
1168 
1169 static irqreturn_t
1170 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1171 {
1172 	struct spi_master	*master = dev_id;
1173 	struct atmel_spi	*as = spi_master_get_devdata(master);
1174 	u32			status, pending, imr;
1175 	int			ret = IRQ_NONE;
1176 
1177 	imr = spi_readl(as, IMR);
1178 	status = spi_readl(as, SR);
1179 	pending = status & imr;
1180 
1181 	if (pending & SPI_BIT(OVRES)) {
1182 
1183 		ret = IRQ_HANDLED;
1184 
1185 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1186 				     | SPI_BIT(OVRES)));
1187 
1188 		/* Clear any overrun happening while cleaning up */
1189 		spi_readl(as, SR);
1190 
1191 		as->done_status = -EIO;
1192 
1193 		complete(&as->xfer_completion);
1194 
1195 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1196 		ret = IRQ_HANDLED;
1197 
1198 		spi_writel(as, IDR, pending);
1199 
1200 		complete(&as->xfer_completion);
1201 	}
1202 
1203 	return ret;
1204 }
1205 
1206 static int atmel_spi_setup(struct spi_device *spi)
1207 {
1208 	struct atmel_spi	*as;
1209 	struct atmel_spi_device	*asd;
1210 	u32			csr;
1211 	unsigned int		bits = spi->bits_per_word;
1212 	unsigned int		npcs_pin;
1213 	int			ret;
1214 
1215 	as = spi_master_get_devdata(spi->master);
1216 
1217 	/* see notes above re chipselect */
1218 	if (!atmel_spi_is_v2(as)
1219 			&& spi->chip_select == 0
1220 			&& (spi->mode & SPI_CS_HIGH)) {
1221 		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1222 		return -EINVAL;
1223 	}
1224 
1225 	csr = SPI_BF(BITS, bits - 8);
1226 	if (spi->mode & SPI_CPOL)
1227 		csr |= SPI_BIT(CPOL);
1228 	if (!(spi->mode & SPI_CPHA))
1229 		csr |= SPI_BIT(NCPHA);
1230 	if (!as->use_cs_gpios)
1231 		csr |= SPI_BIT(CSAAT);
1232 
1233 	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1234 	 *
1235 	 * DLYBCT would add delays between words, slowing down transfers.
1236 	 * It could potentially be useful to cope with DMA bottlenecks, but
1237 	 * in those cases it's probably best to just use a lower bitrate.
1238 	 */
1239 	csr |= SPI_BF(DLYBS, 0);
1240 	csr |= SPI_BF(DLYBCT, 0);
1241 
1242 	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1243 	npcs_pin = (unsigned long)spi->controller_data;
1244 
1245 	if (!as->use_cs_gpios)
1246 		npcs_pin = spi->chip_select;
1247 	else if (gpio_is_valid(spi->cs_gpio))
1248 		npcs_pin = spi->cs_gpio;
1249 
1250 	asd = spi->controller_state;
1251 	if (!asd) {
1252 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1253 		if (!asd)
1254 			return -ENOMEM;
1255 
1256 		if (as->use_cs_gpios) {
1257 			ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1258 			if (ret) {
1259 				kfree(asd);
1260 				return ret;
1261 			}
1262 
1263 			gpio_direction_output(npcs_pin,
1264 					      !(spi->mode & SPI_CS_HIGH));
1265 		}
1266 
1267 		asd->npcs_pin = npcs_pin;
1268 		spi->controller_state = asd;
1269 	}
1270 
1271 	asd->csr = csr;
1272 
1273 	dev_dbg(&spi->dev,
1274 		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1275 		bits, spi->mode, spi->chip_select, csr);
1276 
1277 	if (!atmel_spi_is_v2(as))
1278 		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1279 
1280 	return 0;
1281 }
1282 
1283 static int atmel_spi_one_transfer(struct spi_master *master,
1284 					struct spi_message *msg,
1285 					struct spi_transfer *xfer)
1286 {
1287 	struct atmel_spi	*as;
1288 	struct spi_device	*spi = msg->spi;
1289 	u8			bits;
1290 	u32			len;
1291 	struct atmel_spi_device	*asd;
1292 	int			timeout;
1293 	int			ret;
1294 	unsigned long		dma_timeout;
1295 
1296 	as = spi_master_get_devdata(master);
1297 
1298 	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1299 		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1300 		return -EINVAL;
1301 	}
1302 
1303 	if (xfer->bits_per_word) {
1304 		asd = spi->controller_state;
1305 		bits = (asd->csr >> 4) & 0xf;
1306 		if (bits != xfer->bits_per_word - 8) {
1307 			dev_dbg(&spi->dev,
1308 			"you can't yet change bits_per_word in transfers\n");
1309 			return -ENOPROTOOPT;
1310 		}
1311 	}
1312 
1313 	/*
1314 	 * DMA map early, for performance (empties dcache ASAP) and
1315 	 * better fault reporting.
1316 	 */
1317 	if ((!msg->is_dma_mapped)
1318 		&& (atmel_spi_use_dma(as, xfer)	|| as->use_pdc)) {
1319 		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1320 			return -ENOMEM;
1321 	}
1322 
1323 	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1324 
1325 	as->done_status = 0;
1326 	as->current_transfer = xfer;
1327 	as->current_remaining_bytes = xfer->len;
1328 	while (as->current_remaining_bytes) {
1329 		reinit_completion(&as->xfer_completion);
1330 
1331 		if (as->use_pdc) {
1332 			atmel_spi_pdc_next_xfer(master, msg, xfer);
1333 		} else if (atmel_spi_use_dma(as, xfer)) {
1334 			len = as->current_remaining_bytes;
1335 			ret = atmel_spi_next_xfer_dma_submit(master,
1336 								xfer, &len);
1337 			if (ret) {
1338 				dev_err(&spi->dev,
1339 					"unable to use DMA, fallback to PIO\n");
1340 				atmel_spi_next_xfer_pio(master, xfer);
1341 			} else {
1342 				as->current_remaining_bytes -= len;
1343 				if (as->current_remaining_bytes < 0)
1344 					as->current_remaining_bytes = 0;
1345 			}
1346 		} else {
1347 			atmel_spi_next_xfer_pio(master, xfer);
1348 		}
1349 
1350 		/* interrupts are disabled, so free the lock for schedule */
1351 		atmel_spi_unlock(as);
1352 		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1353 							  SPI_DMA_TIMEOUT);
1354 		atmel_spi_lock(as);
1355 		if (WARN_ON(dma_timeout == 0)) {
1356 			dev_err(&spi->dev, "spi transfer timeout\n");
1357 			as->done_status = -EIO;
1358 		}
1359 
1360 		if (as->done_status)
1361 			break;
1362 	}
1363 
1364 	if (as->done_status) {
1365 		if (as->use_pdc) {
1366 			dev_warn(master->dev.parent,
1367 				"overrun (%u/%u remaining)\n",
1368 				spi_readl(as, TCR), spi_readl(as, RCR));
1369 
1370 			/*
1371 			 * Clean up DMA registers and make sure the data
1372 			 * registers are empty.
1373 			 */
1374 			spi_writel(as, RNCR, 0);
1375 			spi_writel(as, TNCR, 0);
1376 			spi_writel(as, RCR, 0);
1377 			spi_writel(as, TCR, 0);
1378 			for (timeout = 1000; timeout; timeout--)
1379 				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1380 					break;
1381 			if (!timeout)
1382 				dev_warn(master->dev.parent,
1383 					 "timeout waiting for TXEMPTY");
1384 			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1385 				spi_readl(as, RDR);
1386 
1387 			/* Clear any overrun happening while cleaning up */
1388 			spi_readl(as, SR);
1389 
1390 		} else if (atmel_spi_use_dma(as, xfer)) {
1391 			atmel_spi_stop_dma(as);
1392 		}
1393 
1394 		if (!msg->is_dma_mapped
1395 			&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1396 			atmel_spi_dma_unmap_xfer(master, xfer);
1397 
1398 		return 0;
1399 
1400 	} else {
1401 		/* only update length if no error */
1402 		msg->actual_length += xfer->len;
1403 	}
1404 
1405 	if (!msg->is_dma_mapped
1406 		&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1407 		atmel_spi_dma_unmap_xfer(master, xfer);
1408 
1409 	if (xfer->delay_usecs)
1410 		udelay(xfer->delay_usecs);
1411 
1412 	if (xfer->cs_change) {
1413 		if (list_is_last(&xfer->transfer_list,
1414 				 &msg->transfers)) {
1415 			as->keep_cs = true;
1416 		} else {
1417 			as->cs_active = !as->cs_active;
1418 			if (as->cs_active)
1419 				cs_activate(as, msg->spi);
1420 			else
1421 				cs_deactivate(as, msg->spi);
1422 		}
1423 	}
1424 
1425 	return 0;
1426 }
1427 
1428 static int atmel_spi_transfer_one_message(struct spi_master *master,
1429 						struct spi_message *msg)
1430 {
1431 	struct atmel_spi *as;
1432 	struct spi_transfer *xfer;
1433 	struct spi_device *spi = msg->spi;
1434 	int ret = 0;
1435 
1436 	as = spi_master_get_devdata(master);
1437 
1438 	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1439 					msg, dev_name(&spi->dev));
1440 
1441 	atmel_spi_lock(as);
1442 	cs_activate(as, spi);
1443 
1444 	as->cs_active = true;
1445 	as->keep_cs = false;
1446 
1447 	msg->status = 0;
1448 	msg->actual_length = 0;
1449 
1450 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1451 		ret = atmel_spi_one_transfer(master, msg, xfer);
1452 		if (ret)
1453 			goto msg_done;
1454 	}
1455 
1456 	if (as->use_pdc)
1457 		atmel_spi_disable_pdc_transfer(as);
1458 
1459 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1460 		dev_dbg(&spi->dev,
1461 			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1462 			xfer, xfer->len,
1463 			xfer->tx_buf, &xfer->tx_dma,
1464 			xfer->rx_buf, &xfer->rx_dma);
1465 	}
1466 
1467 msg_done:
1468 	if (!as->keep_cs)
1469 		cs_deactivate(as, msg->spi);
1470 
1471 	atmel_spi_unlock(as);
1472 
1473 	msg->status = as->done_status;
1474 	spi_finalize_current_message(spi->master);
1475 
1476 	return ret;
1477 }
1478 
1479 static void atmel_spi_cleanup(struct spi_device *spi)
1480 {
1481 	struct atmel_spi_device	*asd = spi->controller_state;
1482 	unsigned		gpio = (unsigned long) spi->controller_data;
1483 
1484 	if (!asd)
1485 		return;
1486 
1487 	spi->controller_state = NULL;
1488 	gpio_free(gpio);
1489 	kfree(asd);
1490 }
1491 
1492 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1493 {
1494 	return spi_readl(as, VERSION) & 0x00000fff;
1495 }
1496 
1497 static void atmel_get_caps(struct atmel_spi *as)
1498 {
1499 	unsigned int version;
1500 
1501 	version = atmel_get_version(as);
1502 	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1503 
1504 	as->caps.is_spi2 = version > 0x121;
1505 	as->caps.has_wdrbt = version >= 0x210;
1506 	as->caps.has_dma_support = version >= 0x212;
1507 }
1508 
1509 /*-------------------------------------------------------------------------*/
1510 
1511 static int atmel_spi_probe(struct platform_device *pdev)
1512 {
1513 	struct resource		*regs;
1514 	int			irq;
1515 	struct clk		*clk;
1516 	int			ret;
1517 	struct spi_master	*master;
1518 	struct atmel_spi	*as;
1519 
1520 	/* Select default pin state */
1521 	pinctrl_pm_select_default_state(&pdev->dev);
1522 
1523 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1524 	if (!regs)
1525 		return -ENXIO;
1526 
1527 	irq = platform_get_irq(pdev, 0);
1528 	if (irq < 0)
1529 		return irq;
1530 
1531 	clk = devm_clk_get(&pdev->dev, "spi_clk");
1532 	if (IS_ERR(clk))
1533 		return PTR_ERR(clk);
1534 
1535 	/* setup spi core then atmel-specific driver state */
1536 	ret = -ENOMEM;
1537 	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1538 	if (!master)
1539 		goto out_free;
1540 
1541 	/* the spi->mode bits understood by this driver: */
1542 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1543 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1544 	master->dev.of_node = pdev->dev.of_node;
1545 	master->bus_num = pdev->id;
1546 	master->num_chipselect = master->dev.of_node ? 0 : 4;
1547 	master->setup = atmel_spi_setup;
1548 	master->transfer_one_message = atmel_spi_transfer_one_message;
1549 	master->cleanup = atmel_spi_cleanup;
1550 	master->auto_runtime_pm = true;
1551 	platform_set_drvdata(pdev, master);
1552 
1553 	as = spi_master_get_devdata(master);
1554 
1555 	/*
1556 	 * Scratch buffer is used for throwaway rx and tx data.
1557 	 * It's coherent to minimize dcache pollution.
1558 	 */
1559 	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1560 					&as->buffer_dma, GFP_KERNEL);
1561 	if (!as->buffer)
1562 		goto out_free;
1563 
1564 	spin_lock_init(&as->lock);
1565 
1566 	as->pdev = pdev;
1567 	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1568 	if (IS_ERR(as->regs)) {
1569 		ret = PTR_ERR(as->regs);
1570 		goto out_free_buffer;
1571 	}
1572 	as->phybase = regs->start;
1573 	as->irq = irq;
1574 	as->clk = clk;
1575 
1576 	init_completion(&as->xfer_completion);
1577 
1578 	atmel_get_caps(as);
1579 
1580 	as->use_cs_gpios = true;
1581 	if (atmel_spi_is_v2(as) &&
1582 	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1583 		as->use_cs_gpios = false;
1584 		master->num_chipselect = 4;
1585 	}
1586 
1587 	as->use_dma = false;
1588 	as->use_pdc = false;
1589 	if (as->caps.has_dma_support) {
1590 		ret = atmel_spi_configure_dma(as);
1591 		if (ret == 0)
1592 			as->use_dma = true;
1593 		else if (ret == -EPROBE_DEFER)
1594 			return ret;
1595 	} else {
1596 		as->use_pdc = true;
1597 	}
1598 
1599 	if (as->caps.has_dma_support && !as->use_dma)
1600 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1601 
1602 	if (as->use_pdc) {
1603 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1604 					0, dev_name(&pdev->dev), master);
1605 	} else {
1606 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1607 					0, dev_name(&pdev->dev), master);
1608 	}
1609 	if (ret)
1610 		goto out_unmap_regs;
1611 
1612 	/* Initialize the hardware */
1613 	ret = clk_prepare_enable(clk);
1614 	if (ret)
1615 		goto out_free_irq;
1616 	spi_writel(as, CR, SPI_BIT(SWRST));
1617 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1618 	if (as->caps.has_wdrbt) {
1619 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1620 				| SPI_BIT(MSTR));
1621 	} else {
1622 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1623 	}
1624 
1625 	if (as->use_pdc)
1626 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1627 	spi_writel(as, CR, SPI_BIT(SPIEN));
1628 
1629 	as->fifo_size = 0;
1630 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1631 				  &as->fifo_size)) {
1632 		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1633 		spi_writel(as, CR, SPI_BIT(FIFOEN));
1634 	}
1635 
1636 	/* go! */
1637 	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1638 			(unsigned long)regs->start, irq);
1639 
1640 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1641 	pm_runtime_use_autosuspend(&pdev->dev);
1642 	pm_runtime_set_active(&pdev->dev);
1643 	pm_runtime_enable(&pdev->dev);
1644 
1645 	ret = devm_spi_register_master(&pdev->dev, master);
1646 	if (ret)
1647 		goto out_free_dma;
1648 
1649 	return 0;
1650 
1651 out_free_dma:
1652 	pm_runtime_disable(&pdev->dev);
1653 	pm_runtime_set_suspended(&pdev->dev);
1654 
1655 	if (as->use_dma)
1656 		atmel_spi_release_dma(as);
1657 
1658 	spi_writel(as, CR, SPI_BIT(SWRST));
1659 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1660 	clk_disable_unprepare(clk);
1661 out_free_irq:
1662 out_unmap_regs:
1663 out_free_buffer:
1664 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1665 			as->buffer_dma);
1666 out_free:
1667 	spi_master_put(master);
1668 	return ret;
1669 }
1670 
1671 static int atmel_spi_remove(struct platform_device *pdev)
1672 {
1673 	struct spi_master	*master = platform_get_drvdata(pdev);
1674 	struct atmel_spi	*as = spi_master_get_devdata(master);
1675 
1676 	pm_runtime_get_sync(&pdev->dev);
1677 
1678 	/* reset the hardware and block queue progress */
1679 	spin_lock_irq(&as->lock);
1680 	if (as->use_dma) {
1681 		atmel_spi_stop_dma(as);
1682 		atmel_spi_release_dma(as);
1683 	}
1684 
1685 	spi_writel(as, CR, SPI_BIT(SWRST));
1686 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1687 	spi_readl(as, SR);
1688 	spin_unlock_irq(&as->lock);
1689 
1690 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1691 			as->buffer_dma);
1692 
1693 	clk_disable_unprepare(as->clk);
1694 
1695 	pm_runtime_put_noidle(&pdev->dev);
1696 	pm_runtime_disable(&pdev->dev);
1697 
1698 	return 0;
1699 }
1700 
1701 #ifdef CONFIG_PM
1702 static int atmel_spi_runtime_suspend(struct device *dev)
1703 {
1704 	struct spi_master *master = dev_get_drvdata(dev);
1705 	struct atmel_spi *as = spi_master_get_devdata(master);
1706 
1707 	clk_disable_unprepare(as->clk);
1708 	pinctrl_pm_select_sleep_state(dev);
1709 
1710 	return 0;
1711 }
1712 
1713 static int atmel_spi_runtime_resume(struct device *dev)
1714 {
1715 	struct spi_master *master = dev_get_drvdata(dev);
1716 	struct atmel_spi *as = spi_master_get_devdata(master);
1717 
1718 	pinctrl_pm_select_default_state(dev);
1719 
1720 	return clk_prepare_enable(as->clk);
1721 }
1722 
1723 #ifdef CONFIG_PM_SLEEP
1724 static int atmel_spi_suspend(struct device *dev)
1725 {
1726 	struct spi_master *master = dev_get_drvdata(dev);
1727 	int ret;
1728 
1729 	/* Stop the queue running */
1730 	ret = spi_master_suspend(master);
1731 	if (ret) {
1732 		dev_warn(dev, "cannot suspend master\n");
1733 		return ret;
1734 	}
1735 
1736 	if (!pm_runtime_suspended(dev))
1737 		atmel_spi_runtime_suspend(dev);
1738 
1739 	return 0;
1740 }
1741 
1742 static int atmel_spi_resume(struct device *dev)
1743 {
1744 	struct spi_master *master = dev_get_drvdata(dev);
1745 	int ret;
1746 
1747 	if (!pm_runtime_suspended(dev)) {
1748 		ret = atmel_spi_runtime_resume(dev);
1749 		if (ret)
1750 			return ret;
1751 	}
1752 
1753 	/* Start the queue running */
1754 	ret = spi_master_resume(master);
1755 	if (ret)
1756 		dev_err(dev, "problem starting queue (%d)\n", ret);
1757 
1758 	return ret;
1759 }
1760 #endif
1761 
1762 static const struct dev_pm_ops atmel_spi_pm_ops = {
1763 	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1764 	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1765 			   atmel_spi_runtime_resume, NULL)
1766 };
1767 #define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1768 #else
1769 #define ATMEL_SPI_PM_OPS	NULL
1770 #endif
1771 
1772 #if defined(CONFIG_OF)
1773 static const struct of_device_id atmel_spi_dt_ids[] = {
1774 	{ .compatible = "atmel,at91rm9200-spi" },
1775 	{ /* sentinel */ }
1776 };
1777 
1778 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1779 #endif
1780 
1781 static struct platform_driver atmel_spi_driver = {
1782 	.driver		= {
1783 		.name	= "atmel_spi",
1784 		.pm	= ATMEL_SPI_PM_OPS,
1785 		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1786 	},
1787 	.probe		= atmel_spi_probe,
1788 	.remove		= atmel_spi_remove,
1789 };
1790 module_platform_driver(atmel_spi_driver);
1791 
1792 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1793 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1794 MODULE_LICENSE("GPL");
1795 MODULE_ALIAS("platform:atmel_spi");
1796