xref: /openbmc/linux/drivers/spi/spi-atmel.c (revision dfd4f649)
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/dma-atmel.h>
23 #include <linux/of.h>
24 
25 #include <linux/io.h>
26 #include <linux/gpio/consumer.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pm_runtime.h>
29 
30 /* SPI register offsets */
31 #define SPI_CR					0x0000
32 #define SPI_MR					0x0004
33 #define SPI_RDR					0x0008
34 #define SPI_TDR					0x000c
35 #define SPI_SR					0x0010
36 #define SPI_IER					0x0014
37 #define SPI_IDR					0x0018
38 #define SPI_IMR					0x001c
39 #define SPI_CSR0				0x0030
40 #define SPI_CSR1				0x0034
41 #define SPI_CSR2				0x0038
42 #define SPI_CSR3				0x003c
43 #define SPI_FMR					0x0040
44 #define SPI_FLR					0x0044
45 #define SPI_VERSION				0x00fc
46 #define SPI_RPR					0x0100
47 #define SPI_RCR					0x0104
48 #define SPI_TPR					0x0108
49 #define SPI_TCR					0x010c
50 #define SPI_RNPR				0x0110
51 #define SPI_RNCR				0x0114
52 #define SPI_TNPR				0x0118
53 #define SPI_TNCR				0x011c
54 #define SPI_PTCR				0x0120
55 #define SPI_PTSR				0x0124
56 
57 /* Bitfields in CR */
58 #define SPI_SPIEN_OFFSET			0
59 #define SPI_SPIEN_SIZE				1
60 #define SPI_SPIDIS_OFFSET			1
61 #define SPI_SPIDIS_SIZE				1
62 #define SPI_SWRST_OFFSET			7
63 #define SPI_SWRST_SIZE				1
64 #define SPI_LASTXFER_OFFSET			24
65 #define SPI_LASTXFER_SIZE			1
66 #define SPI_TXFCLR_OFFSET			16
67 #define SPI_TXFCLR_SIZE				1
68 #define SPI_RXFCLR_OFFSET			17
69 #define SPI_RXFCLR_SIZE				1
70 #define SPI_FIFOEN_OFFSET			30
71 #define SPI_FIFOEN_SIZE				1
72 #define SPI_FIFODIS_OFFSET			31
73 #define SPI_FIFODIS_SIZE			1
74 
75 /* Bitfields in MR */
76 #define SPI_MSTR_OFFSET				0
77 #define SPI_MSTR_SIZE				1
78 #define SPI_PS_OFFSET				1
79 #define SPI_PS_SIZE				1
80 #define SPI_PCSDEC_OFFSET			2
81 #define SPI_PCSDEC_SIZE				1
82 #define SPI_FDIV_OFFSET				3
83 #define SPI_FDIV_SIZE				1
84 #define SPI_MODFDIS_OFFSET			4
85 #define SPI_MODFDIS_SIZE			1
86 #define SPI_WDRBT_OFFSET			5
87 #define SPI_WDRBT_SIZE				1
88 #define SPI_LLB_OFFSET				7
89 #define SPI_LLB_SIZE				1
90 #define SPI_PCS_OFFSET				16
91 #define SPI_PCS_SIZE				4
92 #define SPI_DLYBCS_OFFSET			24
93 #define SPI_DLYBCS_SIZE				8
94 
95 /* Bitfields in RDR */
96 #define SPI_RD_OFFSET				0
97 #define SPI_RD_SIZE				16
98 
99 /* Bitfields in TDR */
100 #define SPI_TD_OFFSET				0
101 #define SPI_TD_SIZE				16
102 
103 /* Bitfields in SR */
104 #define SPI_RDRF_OFFSET				0
105 #define SPI_RDRF_SIZE				1
106 #define SPI_TDRE_OFFSET				1
107 #define SPI_TDRE_SIZE				1
108 #define SPI_MODF_OFFSET				2
109 #define SPI_MODF_SIZE				1
110 #define SPI_OVRES_OFFSET			3
111 #define SPI_OVRES_SIZE				1
112 #define SPI_ENDRX_OFFSET			4
113 #define SPI_ENDRX_SIZE				1
114 #define SPI_ENDTX_OFFSET			5
115 #define SPI_ENDTX_SIZE				1
116 #define SPI_RXBUFF_OFFSET			6
117 #define SPI_RXBUFF_SIZE				1
118 #define SPI_TXBUFE_OFFSET			7
119 #define SPI_TXBUFE_SIZE				1
120 #define SPI_NSSR_OFFSET				8
121 #define SPI_NSSR_SIZE				1
122 #define SPI_TXEMPTY_OFFSET			9
123 #define SPI_TXEMPTY_SIZE			1
124 #define SPI_SPIENS_OFFSET			16
125 #define SPI_SPIENS_SIZE				1
126 #define SPI_TXFEF_OFFSET			24
127 #define SPI_TXFEF_SIZE				1
128 #define SPI_TXFFF_OFFSET			25
129 #define SPI_TXFFF_SIZE				1
130 #define SPI_TXFTHF_OFFSET			26
131 #define SPI_TXFTHF_SIZE				1
132 #define SPI_RXFEF_OFFSET			27
133 #define SPI_RXFEF_SIZE				1
134 #define SPI_RXFFF_OFFSET			28
135 #define SPI_RXFFF_SIZE				1
136 #define SPI_RXFTHF_OFFSET			29
137 #define SPI_RXFTHF_SIZE				1
138 #define SPI_TXFPTEF_OFFSET			30
139 #define SPI_TXFPTEF_SIZE			1
140 #define SPI_RXFPTEF_OFFSET			31
141 #define SPI_RXFPTEF_SIZE			1
142 
143 /* Bitfields in CSR0 */
144 #define SPI_CPOL_OFFSET				0
145 #define SPI_CPOL_SIZE				1
146 #define SPI_NCPHA_OFFSET			1
147 #define SPI_NCPHA_SIZE				1
148 #define SPI_CSAAT_OFFSET			3
149 #define SPI_CSAAT_SIZE				1
150 #define SPI_BITS_OFFSET				4
151 #define SPI_BITS_SIZE				4
152 #define SPI_SCBR_OFFSET				8
153 #define SPI_SCBR_SIZE				8
154 #define SPI_DLYBS_OFFSET			16
155 #define SPI_DLYBS_SIZE				8
156 #define SPI_DLYBCT_OFFSET			24
157 #define SPI_DLYBCT_SIZE				8
158 
159 /* Bitfields in RCR */
160 #define SPI_RXCTR_OFFSET			0
161 #define SPI_RXCTR_SIZE				16
162 
163 /* Bitfields in TCR */
164 #define SPI_TXCTR_OFFSET			0
165 #define SPI_TXCTR_SIZE				16
166 
167 /* Bitfields in RNCR */
168 #define SPI_RXNCR_OFFSET			0
169 #define SPI_RXNCR_SIZE				16
170 
171 /* Bitfields in TNCR */
172 #define SPI_TXNCR_OFFSET			0
173 #define SPI_TXNCR_SIZE				16
174 
175 /* Bitfields in PTCR */
176 #define SPI_RXTEN_OFFSET			0
177 #define SPI_RXTEN_SIZE				1
178 #define SPI_RXTDIS_OFFSET			1
179 #define SPI_RXTDIS_SIZE				1
180 #define SPI_TXTEN_OFFSET			8
181 #define SPI_TXTEN_SIZE				1
182 #define SPI_TXTDIS_OFFSET			9
183 #define SPI_TXTDIS_SIZE				1
184 
185 /* Bitfields in FMR */
186 #define SPI_TXRDYM_OFFSET			0
187 #define SPI_TXRDYM_SIZE				2
188 #define SPI_RXRDYM_OFFSET			4
189 #define SPI_RXRDYM_SIZE				2
190 #define SPI_TXFTHRES_OFFSET			16
191 #define SPI_TXFTHRES_SIZE			6
192 #define SPI_RXFTHRES_OFFSET			24
193 #define SPI_RXFTHRES_SIZE			6
194 
195 /* Bitfields in FLR */
196 #define SPI_TXFL_OFFSET				0
197 #define SPI_TXFL_SIZE				6
198 #define SPI_RXFL_OFFSET				16
199 #define SPI_RXFL_SIZE				6
200 
201 /* Constants for BITS */
202 #define SPI_BITS_8_BPT				0
203 #define SPI_BITS_9_BPT				1
204 #define SPI_BITS_10_BPT				2
205 #define SPI_BITS_11_BPT				3
206 #define SPI_BITS_12_BPT				4
207 #define SPI_BITS_13_BPT				5
208 #define SPI_BITS_14_BPT				6
209 #define SPI_BITS_15_BPT				7
210 #define SPI_BITS_16_BPT				8
211 #define SPI_ONE_DATA				0
212 #define SPI_TWO_DATA				1
213 #define SPI_FOUR_DATA				2
214 
215 /* Bit manipulation macros */
216 #define SPI_BIT(name) \
217 	(1 << SPI_##name##_OFFSET)
218 #define SPI_BF(name, value) \
219 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
220 #define SPI_BFEXT(name, value) \
221 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
222 #define SPI_BFINS(name, value, old) \
223 	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
224 	  | SPI_BF(name, value))
225 
226 /* Register access macros */
227 #ifdef CONFIG_AVR32
228 #define spi_readl(port, reg) \
229 	__raw_readl((port)->regs + SPI_##reg)
230 #define spi_writel(port, reg, value) \
231 	__raw_writel((value), (port)->regs + SPI_##reg)
232 
233 #define spi_readw(port, reg) \
234 	__raw_readw((port)->regs + SPI_##reg)
235 #define spi_writew(port, reg, value) \
236 	__raw_writew((value), (port)->regs + SPI_##reg)
237 
238 #define spi_readb(port, reg) \
239 	__raw_readb((port)->regs + SPI_##reg)
240 #define spi_writeb(port, reg, value) \
241 	__raw_writeb((value), (port)->regs + SPI_##reg)
242 #else
243 #define spi_readl(port, reg) \
244 	readl_relaxed((port)->regs + SPI_##reg)
245 #define spi_writel(port, reg, value) \
246 	writel_relaxed((value), (port)->regs + SPI_##reg)
247 
248 #define spi_readw(port, reg) \
249 	readw_relaxed((port)->regs + SPI_##reg)
250 #define spi_writew(port, reg, value) \
251 	writew_relaxed((value), (port)->regs + SPI_##reg)
252 
253 #define spi_readb(port, reg) \
254 	readb_relaxed((port)->regs + SPI_##reg)
255 #define spi_writeb(port, reg, value) \
256 	writeb_relaxed((value), (port)->regs + SPI_##reg)
257 #endif
258 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
259  * cache operations; better heuristics consider wordsize and bitrate.
260  */
261 #define DMA_MIN_BYTES	16
262 
263 #define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
264 
265 #define AUTOSUSPEND_TIMEOUT	2000
266 
267 struct atmel_spi_caps {
268 	bool	is_spi2;
269 	bool	has_wdrbt;
270 	bool	has_dma_support;
271 	bool	has_pdc_support;
272 };
273 
274 /*
275  * The core SPI transfer engine just talks to a register bank to set up
276  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
277  * framework provides the base clock, subdivided for each spi_device.
278  */
279 struct atmel_spi {
280 	spinlock_t		lock;
281 	unsigned long		flags;
282 
283 	phys_addr_t		phybase;
284 	void __iomem		*regs;
285 	int			irq;
286 	struct clk		*clk;
287 	struct platform_device	*pdev;
288 	unsigned long		spi_clk;
289 
290 	struct spi_transfer	*current_transfer;
291 	int			current_remaining_bytes;
292 	int			done_status;
293 	dma_addr_t		dma_addr_rx_bbuf;
294 	dma_addr_t		dma_addr_tx_bbuf;
295 	void			*addr_rx_bbuf;
296 	void			*addr_tx_bbuf;
297 
298 	struct completion	xfer_completion;
299 
300 	struct atmel_spi_caps	caps;
301 
302 	bool			use_dma;
303 	bool			use_pdc;
304 	bool			use_cs_gpios;
305 
306 	bool			keep_cs;
307 	bool			cs_active;
308 
309 	u32			fifo_size;
310 };
311 
312 /* Controller-specific per-slave state */
313 struct atmel_spi_device {
314 	struct gpio_desc	*npcs_pin;
315 	u32			csr;
316 };
317 
318 #define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
319 #define INVALID_DMA_ADDRESS	0xffffffff
320 
321 /*
322  * Version 2 of the SPI controller has
323  *  - CR.LASTXFER
324  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
325  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
326  *  - SPI_CSRx.CSAAT
327  *  - SPI_CSRx.SBCR allows faster clocking
328  */
329 static bool atmel_spi_is_v2(struct atmel_spi *as)
330 {
331 	return as->caps.is_spi2;
332 }
333 
334 /*
335  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
336  * they assume that spi slave device state will not change on deselect, so
337  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
338  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
339  * controllers have CSAAT and friends.
340  *
341  * Since the CSAAT functionality is a bit weird on newer controllers as
342  * well, we use GPIO to control nCSx pins on all controllers, updating
343  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
344  * support active-high chipselects despite the controller's belief that
345  * only active-low devices/systems exists.
346  *
347  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
348  * right when driven with GPIO.  ("Mode Fault does not allow more than one
349  * Master on Chip Select 0.")  No workaround exists for that ... so for
350  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
351  * and (c) will trigger that first erratum in some cases.
352  */
353 
354 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
355 {
356 	struct atmel_spi_device *asd = spi->controller_state;
357 	u32 mr;
358 
359 	if (atmel_spi_is_v2(as)) {
360 		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
361 		/* For the low SPI version, there is a issue that PDC transfer
362 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
363 		 */
364 		spi_writel(as, CSR0, asd->csr);
365 		if (as->caps.has_wdrbt) {
366 			spi_writel(as, MR,
367 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
368 					| SPI_BIT(WDRBT)
369 					| SPI_BIT(MODFDIS)
370 					| SPI_BIT(MSTR));
371 		} else {
372 			spi_writel(as, MR,
373 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
374 					| SPI_BIT(MODFDIS)
375 					| SPI_BIT(MSTR));
376 		}
377 
378 		mr = spi_readl(as, MR);
379 		if (as->use_cs_gpios)
380 			gpiod_set_value(asd->npcs_pin, 1);
381 	} else {
382 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
383 		int i;
384 		u32 csr;
385 
386 		/* Make sure clock polarity is correct */
387 		for (i = 0; i < spi->master->num_chipselect; i++) {
388 			csr = spi_readl(as, CSR0 + 4 * i);
389 			if ((csr ^ cpol) & SPI_BIT(CPOL))
390 				spi_writel(as, CSR0 + 4 * i,
391 						csr ^ SPI_BIT(CPOL));
392 		}
393 
394 		mr = spi_readl(as, MR);
395 		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
396 		if (as->use_cs_gpios && spi->chip_select != 0)
397 			gpiod_set_value(asd->npcs_pin, 1);
398 		spi_writel(as, MR, mr);
399 	}
400 
401 	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
402 }
403 
404 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
405 {
406 	struct atmel_spi_device *asd = spi->controller_state;
407 	u32 mr;
408 
409 	/* only deactivate *this* device; sometimes transfers to
410 	 * another device may be active when this routine is called.
411 	 */
412 	mr = spi_readl(as, MR);
413 	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
414 		mr = SPI_BFINS(PCS, 0xf, mr);
415 		spi_writel(as, MR, mr);
416 	}
417 
418 	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
419 
420 	if (!as->use_cs_gpios)
421 		spi_writel(as, CR, SPI_BIT(LASTXFER));
422 	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
423 		gpiod_set_value(asd->npcs_pin, 0);
424 }
425 
426 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
427 {
428 	spin_lock_irqsave(&as->lock, as->flags);
429 }
430 
431 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
432 {
433 	spin_unlock_irqrestore(&as->lock, as->flags);
434 }
435 
436 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
437 {
438 	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
439 }
440 
441 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
442 				struct spi_transfer *xfer)
443 {
444 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
445 }
446 
447 static bool atmel_spi_can_dma(struct spi_master *master,
448 			      struct spi_device *spi,
449 			      struct spi_transfer *xfer)
450 {
451 	struct atmel_spi *as = spi_master_get_devdata(master);
452 
453 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
454 		return atmel_spi_use_dma(as, xfer) &&
455 			!atmel_spi_is_vmalloc_xfer(xfer);
456 	else
457 		return atmel_spi_use_dma(as, xfer);
458 
459 }
460 
461 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
462 				struct dma_slave_config *slave_config,
463 				u8 bits_per_word)
464 {
465 	struct spi_master *master = platform_get_drvdata(as->pdev);
466 	int err = 0;
467 
468 	if (bits_per_word > 8) {
469 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
470 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
471 	} else {
472 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
473 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
474 	}
475 
476 	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
477 	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
478 	slave_config->src_maxburst = 1;
479 	slave_config->dst_maxburst = 1;
480 	slave_config->device_fc = false;
481 
482 	/*
483 	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
484 	 * the Mode Register).
485 	 * So according to the datasheet, when FIFOs are available (and
486 	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
487 	 * In this mode, up to 2 data, not 4, can be written into the Transmit
488 	 * Data Register in a single access.
489 	 * However, the first data has to be written into the lowest 16 bits and
490 	 * the second data into the highest 16 bits of the Transmit
491 	 * Data Register. For 8bit data (the most frequent case), it would
492 	 * require to rework tx_buf so each data would actualy fit 16 bits.
493 	 * So we'd rather write only one data at the time. Hence the transmit
494 	 * path works the same whether FIFOs are available (and enabled) or not.
495 	 */
496 	slave_config->direction = DMA_MEM_TO_DEV;
497 	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
498 		dev_err(&as->pdev->dev,
499 			"failed to configure tx dma channel\n");
500 		err = -EINVAL;
501 	}
502 
503 	/*
504 	 * This driver configures the spi controller for master mode (MSTR bit
505 	 * set to '1' in the Mode Register).
506 	 * So according to the datasheet, when FIFOs are available (and
507 	 * enabled), the Receive FIFO operates in Single Data Mode.
508 	 * So the receive path works the same whether FIFOs are available (and
509 	 * enabled) or not.
510 	 */
511 	slave_config->direction = DMA_DEV_TO_MEM;
512 	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
513 		dev_err(&as->pdev->dev,
514 			"failed to configure rx dma channel\n");
515 		err = -EINVAL;
516 	}
517 
518 	return err;
519 }
520 
521 static int atmel_spi_configure_dma(struct spi_master *master,
522 				   struct atmel_spi *as)
523 {
524 	struct dma_slave_config	slave_config;
525 	struct device *dev = &as->pdev->dev;
526 	int err;
527 
528 	dma_cap_mask_t mask;
529 	dma_cap_zero(mask);
530 	dma_cap_set(DMA_SLAVE, mask);
531 
532 	master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
533 	if (IS_ERR(master->dma_tx)) {
534 		err = PTR_ERR(master->dma_tx);
535 		if (err == -EPROBE_DEFER) {
536 			dev_warn(dev, "no DMA channel available at the moment\n");
537 			goto error_clear;
538 		}
539 		dev_err(dev,
540 			"DMA TX channel not available, SPI unable to use DMA\n");
541 		err = -EBUSY;
542 		goto error_clear;
543 	}
544 
545 	/*
546 	 * No reason to check EPROBE_DEFER here since we have already requested
547 	 * tx channel. If it fails here, it's for another reason.
548 	 */
549 	master->dma_rx = dma_request_slave_channel(dev, "rx");
550 
551 	if (!master->dma_rx) {
552 		dev_err(dev,
553 			"DMA RX channel not available, SPI unable to use DMA\n");
554 		err = -EBUSY;
555 		goto error;
556 	}
557 
558 	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
559 	if (err)
560 		goto error;
561 
562 	dev_info(&as->pdev->dev,
563 			"Using %s (tx) and %s (rx) for DMA transfers\n",
564 			dma_chan_name(master->dma_tx),
565 			dma_chan_name(master->dma_rx));
566 
567 	return 0;
568 error:
569 	if (master->dma_rx)
570 		dma_release_channel(master->dma_rx);
571 	if (!IS_ERR(master->dma_tx))
572 		dma_release_channel(master->dma_tx);
573 error_clear:
574 	master->dma_tx = master->dma_rx = NULL;
575 	return err;
576 }
577 
578 static void atmel_spi_stop_dma(struct spi_master *master)
579 {
580 	if (master->dma_rx)
581 		dmaengine_terminate_all(master->dma_rx);
582 	if (master->dma_tx)
583 		dmaengine_terminate_all(master->dma_tx);
584 }
585 
586 static void atmel_spi_release_dma(struct spi_master *master)
587 {
588 	if (master->dma_rx) {
589 		dma_release_channel(master->dma_rx);
590 		master->dma_rx = NULL;
591 	}
592 	if (master->dma_tx) {
593 		dma_release_channel(master->dma_tx);
594 		master->dma_tx = NULL;
595 	}
596 }
597 
598 /* This function is called by the DMA driver from tasklet context */
599 static void dma_callback(void *data)
600 {
601 	struct spi_master	*master = data;
602 	struct atmel_spi	*as = spi_master_get_devdata(master);
603 
604 	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
605 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
606 		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
607 		       as->current_transfer->len);
608 	}
609 	complete(&as->xfer_completion);
610 }
611 
612 /*
613  * Next transfer using PIO without FIFO.
614  */
615 static void atmel_spi_next_xfer_single(struct spi_master *master,
616 				       struct spi_transfer *xfer)
617 {
618 	struct atmel_spi	*as = spi_master_get_devdata(master);
619 	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
620 
621 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
622 
623 	/* Make sure data is not remaining in RDR */
624 	spi_readl(as, RDR);
625 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
626 		spi_readl(as, RDR);
627 		cpu_relax();
628 	}
629 
630 	if (xfer->bits_per_word > 8)
631 		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
632 	else
633 		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
634 
635 	dev_dbg(master->dev.parent,
636 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
637 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
638 		xfer->bits_per_word);
639 
640 	/* Enable relevant interrupts */
641 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
642 }
643 
644 /*
645  * Next transfer using PIO with FIFO.
646  */
647 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
648 				     struct spi_transfer *xfer)
649 {
650 	struct atmel_spi *as = spi_master_get_devdata(master);
651 	u32 current_remaining_data, num_data;
652 	u32 offset = xfer->len - as->current_remaining_bytes;
653 	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
654 	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
655 	u16 td0, td1;
656 	u32 fifomr;
657 
658 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
659 
660 	/* Compute the number of data to transfer in the current iteration */
661 	current_remaining_data = ((xfer->bits_per_word > 8) ?
662 				  ((u32)as->current_remaining_bytes >> 1) :
663 				  (u32)as->current_remaining_bytes);
664 	num_data = min(current_remaining_data, as->fifo_size);
665 
666 	/* Flush RX and TX FIFOs */
667 	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
668 	while (spi_readl(as, FLR))
669 		cpu_relax();
670 
671 	/* Set RX FIFO Threshold to the number of data to transfer */
672 	fifomr = spi_readl(as, FMR);
673 	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
674 
675 	/* Clear FIFO flags in the Status Register, especially RXFTHF */
676 	(void)spi_readl(as, SR);
677 
678 	/* Fill TX FIFO */
679 	while (num_data >= 2) {
680 		if (xfer->bits_per_word > 8) {
681 			td0 = *words++;
682 			td1 = *words++;
683 		} else {
684 			td0 = *bytes++;
685 			td1 = *bytes++;
686 		}
687 
688 		spi_writel(as, TDR, (td1 << 16) | td0);
689 		num_data -= 2;
690 	}
691 
692 	if (num_data) {
693 		if (xfer->bits_per_word > 8)
694 			td0 = *words++;
695 		else
696 			td0 = *bytes++;
697 
698 		spi_writew(as, TDR, td0);
699 		num_data--;
700 	}
701 
702 	dev_dbg(master->dev.parent,
703 		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
704 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
705 		xfer->bits_per_word);
706 
707 	/*
708 	 * Enable RX FIFO Threshold Flag interrupt to be notified about
709 	 * transfer completion.
710 	 */
711 	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
712 }
713 
714 /*
715  * Next transfer using PIO.
716  */
717 static void atmel_spi_next_xfer_pio(struct spi_master *master,
718 				    struct spi_transfer *xfer)
719 {
720 	struct atmel_spi *as = spi_master_get_devdata(master);
721 
722 	if (as->fifo_size)
723 		atmel_spi_next_xfer_fifo(master, xfer);
724 	else
725 		atmel_spi_next_xfer_single(master, xfer);
726 }
727 
728 /*
729  * Submit next transfer for DMA.
730  */
731 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
732 				struct spi_transfer *xfer,
733 				u32 *plen)
734 {
735 	struct atmel_spi	*as = spi_master_get_devdata(master);
736 	struct dma_chan		*rxchan = master->dma_rx;
737 	struct dma_chan		*txchan = master->dma_tx;
738 	struct dma_async_tx_descriptor *rxdesc;
739 	struct dma_async_tx_descriptor *txdesc;
740 	struct dma_slave_config	slave_config;
741 	dma_cookie_t		cookie;
742 
743 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
744 
745 	/* Check that the channels are available */
746 	if (!rxchan || !txchan)
747 		return -ENODEV;
748 
749 	/* release lock for DMA operations */
750 	atmel_spi_unlock(as);
751 
752 	*plen = xfer->len;
753 
754 	if (atmel_spi_dma_slave_config(as, &slave_config,
755 				       xfer->bits_per_word))
756 		goto err_exit;
757 
758 	/* Send both scatterlists */
759 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
760 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
761 		rxdesc = dmaengine_prep_slave_single(rxchan,
762 						     as->dma_addr_rx_bbuf,
763 						     xfer->len,
764 						     DMA_DEV_TO_MEM,
765 						     DMA_PREP_INTERRUPT |
766 						     DMA_CTRL_ACK);
767 	} else {
768 		rxdesc = dmaengine_prep_slave_sg(rxchan,
769 						 xfer->rx_sg.sgl,
770 						 xfer->rx_sg.nents,
771 						 DMA_DEV_TO_MEM,
772 						 DMA_PREP_INTERRUPT |
773 						 DMA_CTRL_ACK);
774 	}
775 	if (!rxdesc)
776 		goto err_dma;
777 
778 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
779 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
780 		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
781 		txdesc = dmaengine_prep_slave_single(txchan,
782 						     as->dma_addr_tx_bbuf,
783 						     xfer->len, DMA_MEM_TO_DEV,
784 						     DMA_PREP_INTERRUPT |
785 						     DMA_CTRL_ACK);
786 	} else {
787 		txdesc = dmaengine_prep_slave_sg(txchan,
788 						 xfer->tx_sg.sgl,
789 						 xfer->tx_sg.nents,
790 						 DMA_MEM_TO_DEV,
791 						 DMA_PREP_INTERRUPT |
792 						 DMA_CTRL_ACK);
793 	}
794 	if (!txdesc)
795 		goto err_dma;
796 
797 	dev_dbg(master->dev.parent,
798 		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
799 		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
800 		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
801 
802 	/* Enable relevant interrupts */
803 	spi_writel(as, IER, SPI_BIT(OVRES));
804 
805 	/* Put the callback on the RX transfer only, that should finish last */
806 	rxdesc->callback = dma_callback;
807 	rxdesc->callback_param = master;
808 
809 	/* Submit and fire RX and TX with TX last so we're ready to read! */
810 	cookie = rxdesc->tx_submit(rxdesc);
811 	if (dma_submit_error(cookie))
812 		goto err_dma;
813 	cookie = txdesc->tx_submit(txdesc);
814 	if (dma_submit_error(cookie))
815 		goto err_dma;
816 	rxchan->device->device_issue_pending(rxchan);
817 	txchan->device->device_issue_pending(txchan);
818 
819 	/* take back lock */
820 	atmel_spi_lock(as);
821 	return 0;
822 
823 err_dma:
824 	spi_writel(as, IDR, SPI_BIT(OVRES));
825 	atmel_spi_stop_dma(master);
826 err_exit:
827 	atmel_spi_lock(as);
828 	return -ENOMEM;
829 }
830 
831 static void atmel_spi_next_xfer_data(struct spi_master *master,
832 				struct spi_transfer *xfer,
833 				dma_addr_t *tx_dma,
834 				dma_addr_t *rx_dma,
835 				u32 *plen)
836 {
837 	*rx_dma = xfer->rx_dma + xfer->len - *plen;
838 	*tx_dma = xfer->tx_dma + xfer->len - *plen;
839 	if (*plen > master->max_dma_len)
840 		*plen = master->max_dma_len;
841 }
842 
843 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
844 				    struct spi_device *spi,
845 				    struct spi_transfer *xfer)
846 {
847 	u32			scbr, csr;
848 	unsigned long		bus_hz;
849 
850 	/* v1 chips start out at half the peripheral bus speed. */
851 	bus_hz = as->spi_clk;
852 	if (!atmel_spi_is_v2(as))
853 		bus_hz /= 2;
854 
855 	/*
856 	 * Calculate the lowest divider that satisfies the
857 	 * constraint, assuming div32/fdiv/mbz == 0.
858 	 */
859 	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
860 
861 	/*
862 	 * If the resulting divider doesn't fit into the
863 	 * register bitfield, we can't satisfy the constraint.
864 	 */
865 	if (scbr >= (1 << SPI_SCBR_SIZE)) {
866 		dev_err(&spi->dev,
867 			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
868 			xfer->speed_hz, scbr, bus_hz/255);
869 		return -EINVAL;
870 	}
871 	if (scbr == 0) {
872 		dev_err(&spi->dev,
873 			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
874 			xfer->speed_hz, scbr, bus_hz);
875 		return -EINVAL;
876 	}
877 	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
878 	csr = SPI_BFINS(SCBR, scbr, csr);
879 	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
880 
881 	return 0;
882 }
883 
884 /*
885  * Submit next transfer for PDC.
886  * lock is held, spi irq is blocked
887  */
888 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
889 					struct spi_message *msg,
890 					struct spi_transfer *xfer)
891 {
892 	struct atmel_spi	*as = spi_master_get_devdata(master);
893 	u32			len;
894 	dma_addr_t		tx_dma, rx_dma;
895 
896 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
897 
898 	len = as->current_remaining_bytes;
899 	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
900 	as->current_remaining_bytes -= len;
901 
902 	spi_writel(as, RPR, rx_dma);
903 	spi_writel(as, TPR, tx_dma);
904 
905 	if (msg->spi->bits_per_word > 8)
906 		len >>= 1;
907 	spi_writel(as, RCR, len);
908 	spi_writel(as, TCR, len);
909 
910 	dev_dbg(&msg->spi->dev,
911 		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
912 		xfer, xfer->len, xfer->tx_buf,
913 		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
914 		(unsigned long long)xfer->rx_dma);
915 
916 	if (as->current_remaining_bytes) {
917 		len = as->current_remaining_bytes;
918 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
919 		as->current_remaining_bytes -= len;
920 
921 		spi_writel(as, RNPR, rx_dma);
922 		spi_writel(as, TNPR, tx_dma);
923 
924 		if (msg->spi->bits_per_word > 8)
925 			len >>= 1;
926 		spi_writel(as, RNCR, len);
927 		spi_writel(as, TNCR, len);
928 
929 		dev_dbg(&msg->spi->dev,
930 			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
931 			xfer, xfer->len, xfer->tx_buf,
932 			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
933 			(unsigned long long)xfer->rx_dma);
934 	}
935 
936 	/* REVISIT: We're waiting for RXBUFF before we start the next
937 	 * transfer because we need to handle some difficult timing
938 	 * issues otherwise. If we wait for TXBUFE in one transfer and
939 	 * then starts waiting for RXBUFF in the next, it's difficult
940 	 * to tell the difference between the RXBUFF interrupt we're
941 	 * actually waiting for and the RXBUFF interrupt of the
942 	 * previous transfer.
943 	 *
944 	 * It should be doable, though. Just not now...
945 	 */
946 	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
947 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
948 }
949 
950 /*
951  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
952  *  - The buffer is either valid for CPU access, else NULL
953  *  - If the buffer is valid, so is its DMA address
954  *
955  * This driver manages the dma address unless message->is_dma_mapped.
956  */
957 static int
958 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
959 {
960 	struct device	*dev = &as->pdev->dev;
961 
962 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
963 	if (xfer->tx_buf) {
964 		/* tx_buf is a const void* where we need a void * for the dma
965 		 * mapping */
966 		void *nonconst_tx = (void *)xfer->tx_buf;
967 
968 		xfer->tx_dma = dma_map_single(dev,
969 				nonconst_tx, xfer->len,
970 				DMA_TO_DEVICE);
971 		if (dma_mapping_error(dev, xfer->tx_dma))
972 			return -ENOMEM;
973 	}
974 	if (xfer->rx_buf) {
975 		xfer->rx_dma = dma_map_single(dev,
976 				xfer->rx_buf, xfer->len,
977 				DMA_FROM_DEVICE);
978 		if (dma_mapping_error(dev, xfer->rx_dma)) {
979 			if (xfer->tx_buf)
980 				dma_unmap_single(dev,
981 						xfer->tx_dma, xfer->len,
982 						DMA_TO_DEVICE);
983 			return -ENOMEM;
984 		}
985 	}
986 	return 0;
987 }
988 
989 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
990 				     struct spi_transfer *xfer)
991 {
992 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
993 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
994 				 xfer->len, DMA_TO_DEVICE);
995 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
996 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
997 				 xfer->len, DMA_FROM_DEVICE);
998 }
999 
1000 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1001 {
1002 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1003 }
1004 
1005 static void
1006 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1007 {
1008 	u8		*rxp;
1009 	u16		*rxp16;
1010 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
1011 
1012 	if (xfer->bits_per_word > 8) {
1013 		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1014 		*rxp16 = spi_readl(as, RDR);
1015 	} else {
1016 		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1017 		*rxp = spi_readl(as, RDR);
1018 	}
1019 	if (xfer->bits_per_word > 8) {
1020 		if (as->current_remaining_bytes > 2)
1021 			as->current_remaining_bytes -= 2;
1022 		else
1023 			as->current_remaining_bytes = 0;
1024 	} else {
1025 		as->current_remaining_bytes--;
1026 	}
1027 }
1028 
1029 static void
1030 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1031 {
1032 	u32 fifolr = spi_readl(as, FLR);
1033 	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1034 	u32 offset = xfer->len - as->current_remaining_bytes;
1035 	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1036 	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1037 	u16 rd; /* RD field is the lowest 16 bits of RDR */
1038 
1039 	/* Update the number of remaining bytes to transfer */
1040 	num_bytes = ((xfer->bits_per_word > 8) ?
1041 		     (num_data << 1) :
1042 		     num_data);
1043 
1044 	if (as->current_remaining_bytes > num_bytes)
1045 		as->current_remaining_bytes -= num_bytes;
1046 	else
1047 		as->current_remaining_bytes = 0;
1048 
1049 	/* Handle odd number of bytes when data are more than 8bit width */
1050 	if (xfer->bits_per_word > 8)
1051 		as->current_remaining_bytes &= ~0x1;
1052 
1053 	/* Read data */
1054 	while (num_data) {
1055 		rd = spi_readl(as, RDR);
1056 		if (xfer->bits_per_word > 8)
1057 			*words++ = rd;
1058 		else
1059 			*bytes++ = rd;
1060 		num_data--;
1061 	}
1062 }
1063 
1064 /* Called from IRQ
1065  *
1066  * Must update "current_remaining_bytes" to keep track of data
1067  * to transfer.
1068  */
1069 static void
1070 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1071 {
1072 	if (as->fifo_size)
1073 		atmel_spi_pump_fifo_data(as, xfer);
1074 	else
1075 		atmel_spi_pump_single_data(as, xfer);
1076 }
1077 
1078 /* Interrupt
1079  *
1080  * No need for locking in this Interrupt handler: done_status is the
1081  * only information modified.
1082  */
1083 static irqreturn_t
1084 atmel_spi_pio_interrupt(int irq, void *dev_id)
1085 {
1086 	struct spi_master	*master = dev_id;
1087 	struct atmel_spi	*as = spi_master_get_devdata(master);
1088 	u32			status, pending, imr;
1089 	struct spi_transfer	*xfer;
1090 	int			ret = IRQ_NONE;
1091 
1092 	imr = spi_readl(as, IMR);
1093 	status = spi_readl(as, SR);
1094 	pending = status & imr;
1095 
1096 	if (pending & SPI_BIT(OVRES)) {
1097 		ret = IRQ_HANDLED;
1098 		spi_writel(as, IDR, SPI_BIT(OVRES));
1099 		dev_warn(master->dev.parent, "overrun\n");
1100 
1101 		/*
1102 		 * When we get an overrun, we disregard the current
1103 		 * transfer. Data will not be copied back from any
1104 		 * bounce buffer and msg->actual_len will not be
1105 		 * updated with the last xfer.
1106 		 *
1107 		 * We will also not process any remaning transfers in
1108 		 * the message.
1109 		 */
1110 		as->done_status = -EIO;
1111 		smp_wmb();
1112 
1113 		/* Clear any overrun happening while cleaning up */
1114 		spi_readl(as, SR);
1115 
1116 		complete(&as->xfer_completion);
1117 
1118 	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1119 		atmel_spi_lock(as);
1120 
1121 		if (as->current_remaining_bytes) {
1122 			ret = IRQ_HANDLED;
1123 			xfer = as->current_transfer;
1124 			atmel_spi_pump_pio_data(as, xfer);
1125 			if (!as->current_remaining_bytes)
1126 				spi_writel(as, IDR, pending);
1127 
1128 			complete(&as->xfer_completion);
1129 		}
1130 
1131 		atmel_spi_unlock(as);
1132 	} else {
1133 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1134 		ret = IRQ_HANDLED;
1135 		spi_writel(as, IDR, pending);
1136 	}
1137 
1138 	return ret;
1139 }
1140 
1141 static irqreturn_t
1142 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1143 {
1144 	struct spi_master	*master = dev_id;
1145 	struct atmel_spi	*as = spi_master_get_devdata(master);
1146 	u32			status, pending, imr;
1147 	int			ret = IRQ_NONE;
1148 
1149 	imr = spi_readl(as, IMR);
1150 	status = spi_readl(as, SR);
1151 	pending = status & imr;
1152 
1153 	if (pending & SPI_BIT(OVRES)) {
1154 
1155 		ret = IRQ_HANDLED;
1156 
1157 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1158 				     | SPI_BIT(OVRES)));
1159 
1160 		/* Clear any overrun happening while cleaning up */
1161 		spi_readl(as, SR);
1162 
1163 		as->done_status = -EIO;
1164 
1165 		complete(&as->xfer_completion);
1166 
1167 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1168 		ret = IRQ_HANDLED;
1169 
1170 		spi_writel(as, IDR, pending);
1171 
1172 		complete(&as->xfer_completion);
1173 	}
1174 
1175 	return ret;
1176 }
1177 
1178 static int atmel_spi_setup(struct spi_device *spi)
1179 {
1180 	struct atmel_spi	*as;
1181 	struct atmel_spi_device	*asd;
1182 	u32			csr;
1183 	unsigned int		bits = spi->bits_per_word;
1184 
1185 	as = spi_master_get_devdata(spi->master);
1186 
1187 	/* see notes above re chipselect */
1188 	if (!atmel_spi_is_v2(as)
1189 			&& spi->chip_select == 0
1190 			&& (spi->mode & SPI_CS_HIGH)) {
1191 		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1192 		return -EINVAL;
1193 	}
1194 
1195 	csr = SPI_BF(BITS, bits - 8);
1196 	if (spi->mode & SPI_CPOL)
1197 		csr |= SPI_BIT(CPOL);
1198 	if (!(spi->mode & SPI_CPHA))
1199 		csr |= SPI_BIT(NCPHA);
1200 	if (!as->use_cs_gpios)
1201 		csr |= SPI_BIT(CSAAT);
1202 
1203 	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1204 	 */
1205 	csr |= SPI_BF(DLYBS, 0);
1206 
1207 	/* DLYBCT adds delays between words.  This is useful for slow devices
1208 	 * that need a bit of time to setup the next transfer.
1209 	 */
1210 	csr |= SPI_BF(DLYBCT,
1211 			(as->spi_clk / 1000000 * spi->word_delay_usecs) >> 5);
1212 
1213 	asd = spi->controller_state;
1214 	if (!asd) {
1215 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1216 		if (!asd)
1217 			return -ENOMEM;
1218 
1219 		/*
1220 		 * If use_cs_gpios is true this means that we have "cs-gpios"
1221 		 * defined in the device tree node so we should have
1222 		 * gotten the GPIO lines from the device tree inside the
1223 		 * SPI core. Warn if this is not the case but continue since
1224 		 * CS GPIOs are after all optional.
1225 		 */
1226 		if (as->use_cs_gpios) {
1227 			if (!spi->cs_gpiod) {
1228 				dev_err(&spi->dev,
1229 					"host claims to use CS GPIOs but no CS found in DT by the SPI core\n");
1230 			}
1231 			asd->npcs_pin = spi->cs_gpiod;
1232 		}
1233 
1234 		spi->controller_state = asd;
1235 	}
1236 
1237 	asd->csr = csr;
1238 
1239 	dev_dbg(&spi->dev,
1240 		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1241 		bits, spi->mode, spi->chip_select, csr);
1242 
1243 	if (!atmel_spi_is_v2(as))
1244 		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1245 
1246 	return 0;
1247 }
1248 
1249 static int atmel_spi_one_transfer(struct spi_master *master,
1250 					struct spi_message *msg,
1251 					struct spi_transfer *xfer)
1252 {
1253 	struct atmel_spi	*as;
1254 	struct spi_device	*spi = msg->spi;
1255 	u8			bits;
1256 	u32			len;
1257 	struct atmel_spi_device	*asd;
1258 	int			timeout;
1259 	int			ret;
1260 	unsigned long		dma_timeout;
1261 
1262 	as = spi_master_get_devdata(master);
1263 
1264 	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1265 		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1266 		return -EINVAL;
1267 	}
1268 
1269 	asd = spi->controller_state;
1270 	bits = (asd->csr >> 4) & 0xf;
1271 	if (bits != xfer->bits_per_word - 8) {
1272 		dev_dbg(&spi->dev,
1273 			"you can't yet change bits_per_word in transfers\n");
1274 		return -ENOPROTOOPT;
1275 	}
1276 
1277 	/*
1278 	 * DMA map early, for performance (empties dcache ASAP) and
1279 	 * better fault reporting.
1280 	 */
1281 	if ((!msg->is_dma_mapped)
1282 		&& as->use_pdc) {
1283 		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1284 			return -ENOMEM;
1285 	}
1286 
1287 	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1288 
1289 	as->done_status = 0;
1290 	as->current_transfer = xfer;
1291 	as->current_remaining_bytes = xfer->len;
1292 	while (as->current_remaining_bytes) {
1293 		reinit_completion(&as->xfer_completion);
1294 
1295 		if (as->use_pdc) {
1296 			atmel_spi_pdc_next_xfer(master, msg, xfer);
1297 		} else if (atmel_spi_use_dma(as, xfer)) {
1298 			len = as->current_remaining_bytes;
1299 			ret = atmel_spi_next_xfer_dma_submit(master,
1300 								xfer, &len);
1301 			if (ret) {
1302 				dev_err(&spi->dev,
1303 					"unable to use DMA, fallback to PIO\n");
1304 				atmel_spi_next_xfer_pio(master, xfer);
1305 			} else {
1306 				as->current_remaining_bytes -= len;
1307 				if (as->current_remaining_bytes < 0)
1308 					as->current_remaining_bytes = 0;
1309 			}
1310 		} else {
1311 			atmel_spi_next_xfer_pio(master, xfer);
1312 		}
1313 
1314 		/* interrupts are disabled, so free the lock for schedule */
1315 		atmel_spi_unlock(as);
1316 		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1317 							  SPI_DMA_TIMEOUT);
1318 		atmel_spi_lock(as);
1319 		if (WARN_ON(dma_timeout == 0)) {
1320 			dev_err(&spi->dev, "spi transfer timeout\n");
1321 			as->done_status = -EIO;
1322 		}
1323 
1324 		if (as->done_status)
1325 			break;
1326 	}
1327 
1328 	if (as->done_status) {
1329 		if (as->use_pdc) {
1330 			dev_warn(master->dev.parent,
1331 				"overrun (%u/%u remaining)\n",
1332 				spi_readl(as, TCR), spi_readl(as, RCR));
1333 
1334 			/*
1335 			 * Clean up DMA registers and make sure the data
1336 			 * registers are empty.
1337 			 */
1338 			spi_writel(as, RNCR, 0);
1339 			spi_writel(as, TNCR, 0);
1340 			spi_writel(as, RCR, 0);
1341 			spi_writel(as, TCR, 0);
1342 			for (timeout = 1000; timeout; timeout--)
1343 				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1344 					break;
1345 			if (!timeout)
1346 				dev_warn(master->dev.parent,
1347 					 "timeout waiting for TXEMPTY");
1348 			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1349 				spi_readl(as, RDR);
1350 
1351 			/* Clear any overrun happening while cleaning up */
1352 			spi_readl(as, SR);
1353 
1354 		} else if (atmel_spi_use_dma(as, xfer)) {
1355 			atmel_spi_stop_dma(master);
1356 		}
1357 
1358 		if (!msg->is_dma_mapped
1359 			&& as->use_pdc)
1360 			atmel_spi_dma_unmap_xfer(master, xfer);
1361 
1362 		return 0;
1363 
1364 	} else {
1365 		/* only update length if no error */
1366 		msg->actual_length += xfer->len;
1367 	}
1368 
1369 	if (!msg->is_dma_mapped
1370 		&& as->use_pdc)
1371 		atmel_spi_dma_unmap_xfer(master, xfer);
1372 
1373 	if (xfer->delay_usecs)
1374 		udelay(xfer->delay_usecs);
1375 
1376 	if (xfer->cs_change) {
1377 		if (list_is_last(&xfer->transfer_list,
1378 				 &msg->transfers)) {
1379 			as->keep_cs = true;
1380 		} else {
1381 			as->cs_active = !as->cs_active;
1382 			if (as->cs_active)
1383 				cs_activate(as, msg->spi);
1384 			else
1385 				cs_deactivate(as, msg->spi);
1386 		}
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 static int atmel_spi_transfer_one_message(struct spi_master *master,
1393 						struct spi_message *msg)
1394 {
1395 	struct atmel_spi *as;
1396 	struct spi_transfer *xfer;
1397 	struct spi_device *spi = msg->spi;
1398 	int ret = 0;
1399 
1400 	as = spi_master_get_devdata(master);
1401 
1402 	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1403 					msg, dev_name(&spi->dev));
1404 
1405 	atmel_spi_lock(as);
1406 	cs_activate(as, spi);
1407 
1408 	as->cs_active = true;
1409 	as->keep_cs = false;
1410 
1411 	msg->status = 0;
1412 	msg->actual_length = 0;
1413 
1414 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1415 		ret = atmel_spi_one_transfer(master, msg, xfer);
1416 		if (ret)
1417 			goto msg_done;
1418 	}
1419 
1420 	if (as->use_pdc)
1421 		atmel_spi_disable_pdc_transfer(as);
1422 
1423 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1424 		dev_dbg(&spi->dev,
1425 			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1426 			xfer, xfer->len,
1427 			xfer->tx_buf, &xfer->tx_dma,
1428 			xfer->rx_buf, &xfer->rx_dma);
1429 	}
1430 
1431 msg_done:
1432 	if (!as->keep_cs)
1433 		cs_deactivate(as, msg->spi);
1434 
1435 	atmel_spi_unlock(as);
1436 
1437 	msg->status = as->done_status;
1438 	spi_finalize_current_message(spi->master);
1439 
1440 	return ret;
1441 }
1442 
1443 static void atmel_spi_cleanup(struct spi_device *spi)
1444 {
1445 	struct atmel_spi_device	*asd = spi->controller_state;
1446 
1447 	if (!asd)
1448 		return;
1449 
1450 	spi->controller_state = NULL;
1451 	kfree(asd);
1452 }
1453 
1454 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1455 {
1456 	return spi_readl(as, VERSION) & 0x00000fff;
1457 }
1458 
1459 static void atmel_get_caps(struct atmel_spi *as)
1460 {
1461 	unsigned int version;
1462 
1463 	version = atmel_get_version(as);
1464 
1465 	as->caps.is_spi2 = version > 0x121;
1466 	as->caps.has_wdrbt = version >= 0x210;
1467 	as->caps.has_dma_support = version >= 0x212;
1468 	as->caps.has_pdc_support = version < 0x212;
1469 }
1470 
1471 static void atmel_spi_init(struct atmel_spi *as)
1472 {
1473 	spi_writel(as, CR, SPI_BIT(SWRST));
1474 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1475 
1476 	/* It is recommended to enable FIFOs first thing after reset */
1477 	if (as->fifo_size)
1478 		spi_writel(as, CR, SPI_BIT(FIFOEN));
1479 
1480 	if (as->caps.has_wdrbt) {
1481 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1482 				| SPI_BIT(MSTR));
1483 	} else {
1484 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1485 	}
1486 
1487 	if (as->use_pdc)
1488 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1489 	spi_writel(as, CR, SPI_BIT(SPIEN));
1490 }
1491 
1492 static int atmel_spi_probe(struct platform_device *pdev)
1493 {
1494 	struct resource		*regs;
1495 	int			irq;
1496 	struct clk		*clk;
1497 	int			ret;
1498 	struct spi_master	*master;
1499 	struct atmel_spi	*as;
1500 
1501 	/* Select default pin state */
1502 	pinctrl_pm_select_default_state(&pdev->dev);
1503 
1504 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1505 	if (!regs)
1506 		return -ENXIO;
1507 
1508 	irq = platform_get_irq(pdev, 0);
1509 	if (irq < 0)
1510 		return irq;
1511 
1512 	clk = devm_clk_get(&pdev->dev, "spi_clk");
1513 	if (IS_ERR(clk))
1514 		return PTR_ERR(clk);
1515 
1516 	/* setup spi core then atmel-specific driver state */
1517 	ret = -ENOMEM;
1518 	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1519 	if (!master)
1520 		goto out_free;
1521 
1522 	/* the spi->mode bits understood by this driver: */
1523 	master->use_gpio_descriptors = true;
1524 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1525 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1526 	master->dev.of_node = pdev->dev.of_node;
1527 	master->bus_num = pdev->id;
1528 	master->num_chipselect = master->dev.of_node ? 0 : 4;
1529 	master->setup = atmel_spi_setup;
1530 	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1531 	master->transfer_one_message = atmel_spi_transfer_one_message;
1532 	master->cleanup = atmel_spi_cleanup;
1533 	master->auto_runtime_pm = true;
1534 	master->max_dma_len = SPI_MAX_DMA_XFER;
1535 	master->can_dma = atmel_spi_can_dma;
1536 	platform_set_drvdata(pdev, master);
1537 
1538 	as = spi_master_get_devdata(master);
1539 
1540 	spin_lock_init(&as->lock);
1541 
1542 	as->pdev = pdev;
1543 	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1544 	if (IS_ERR(as->regs)) {
1545 		ret = PTR_ERR(as->regs);
1546 		goto out_unmap_regs;
1547 	}
1548 	as->phybase = regs->start;
1549 	as->irq = irq;
1550 	as->clk = clk;
1551 
1552 	init_completion(&as->xfer_completion);
1553 
1554 	atmel_get_caps(as);
1555 
1556 	/*
1557 	 * If there are chip selects in the device tree, those will be
1558 	 * discovered by the SPI core when registering the SPI master
1559 	 * and assigned to each SPI device.
1560 	 */
1561 	as->use_cs_gpios = true;
1562 	if (atmel_spi_is_v2(as) &&
1563 	    pdev->dev.of_node &&
1564 	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1565 		as->use_cs_gpios = false;
1566 		master->num_chipselect = 4;
1567 	}
1568 
1569 	as->use_dma = false;
1570 	as->use_pdc = false;
1571 	if (as->caps.has_dma_support) {
1572 		ret = atmel_spi_configure_dma(master, as);
1573 		if (ret == 0) {
1574 			as->use_dma = true;
1575 		} else if (ret == -EPROBE_DEFER) {
1576 			return ret;
1577 		}
1578 	} else if (as->caps.has_pdc_support) {
1579 		as->use_pdc = true;
1580 	}
1581 
1582 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1583 		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1584 						      SPI_MAX_DMA_XFER,
1585 						      &as->dma_addr_rx_bbuf,
1586 						      GFP_KERNEL | GFP_DMA);
1587 		if (!as->addr_rx_bbuf) {
1588 			as->use_dma = false;
1589 		} else {
1590 			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1591 					SPI_MAX_DMA_XFER,
1592 					&as->dma_addr_tx_bbuf,
1593 					GFP_KERNEL | GFP_DMA);
1594 			if (!as->addr_tx_bbuf) {
1595 				as->use_dma = false;
1596 				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1597 						  as->addr_rx_bbuf,
1598 						  as->dma_addr_rx_bbuf);
1599 			}
1600 		}
1601 		if (!as->use_dma)
1602 			dev_info(master->dev.parent,
1603 				 "  can not allocate dma coherent memory\n");
1604 	}
1605 
1606 	if (as->caps.has_dma_support && !as->use_dma)
1607 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1608 
1609 	if (as->use_pdc) {
1610 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1611 					0, dev_name(&pdev->dev), master);
1612 	} else {
1613 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1614 					0, dev_name(&pdev->dev), master);
1615 	}
1616 	if (ret)
1617 		goto out_unmap_regs;
1618 
1619 	/* Initialize the hardware */
1620 	ret = clk_prepare_enable(clk);
1621 	if (ret)
1622 		goto out_free_irq;
1623 
1624 	as->spi_clk = clk_get_rate(clk);
1625 
1626 	as->fifo_size = 0;
1627 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1628 				  &as->fifo_size)) {
1629 		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1630 	}
1631 
1632 	atmel_spi_init(as);
1633 
1634 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1635 	pm_runtime_use_autosuspend(&pdev->dev);
1636 	pm_runtime_set_active(&pdev->dev);
1637 	pm_runtime_enable(&pdev->dev);
1638 
1639 	ret = devm_spi_register_master(&pdev->dev, master);
1640 	if (ret)
1641 		goto out_free_dma;
1642 
1643 	/* go! */
1644 	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1645 			atmel_get_version(as), (unsigned long)regs->start,
1646 			irq);
1647 
1648 	return 0;
1649 
1650 out_free_dma:
1651 	pm_runtime_disable(&pdev->dev);
1652 	pm_runtime_set_suspended(&pdev->dev);
1653 
1654 	if (as->use_dma)
1655 		atmel_spi_release_dma(master);
1656 
1657 	spi_writel(as, CR, SPI_BIT(SWRST));
1658 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1659 	clk_disable_unprepare(clk);
1660 out_free_irq:
1661 out_unmap_regs:
1662 out_free:
1663 	spi_master_put(master);
1664 	return ret;
1665 }
1666 
1667 static int atmel_spi_remove(struct platform_device *pdev)
1668 {
1669 	struct spi_master	*master = platform_get_drvdata(pdev);
1670 	struct atmel_spi	*as = spi_master_get_devdata(master);
1671 
1672 	pm_runtime_get_sync(&pdev->dev);
1673 
1674 	/* reset the hardware and block queue progress */
1675 	if (as->use_dma) {
1676 		atmel_spi_stop_dma(master);
1677 		atmel_spi_release_dma(master);
1678 		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1679 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1680 					  as->addr_tx_bbuf,
1681 					  as->dma_addr_tx_bbuf);
1682 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1683 					  as->addr_rx_bbuf,
1684 					  as->dma_addr_rx_bbuf);
1685 		}
1686 	}
1687 
1688 	spin_lock_irq(&as->lock);
1689 	spi_writel(as, CR, SPI_BIT(SWRST));
1690 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1691 	spi_readl(as, SR);
1692 	spin_unlock_irq(&as->lock);
1693 
1694 	clk_disable_unprepare(as->clk);
1695 
1696 	pm_runtime_put_noidle(&pdev->dev);
1697 	pm_runtime_disable(&pdev->dev);
1698 
1699 	return 0;
1700 }
1701 
1702 #ifdef CONFIG_PM
1703 static int atmel_spi_runtime_suspend(struct device *dev)
1704 {
1705 	struct spi_master *master = dev_get_drvdata(dev);
1706 	struct atmel_spi *as = spi_master_get_devdata(master);
1707 
1708 	clk_disable_unprepare(as->clk);
1709 	pinctrl_pm_select_sleep_state(dev);
1710 
1711 	return 0;
1712 }
1713 
1714 static int atmel_spi_runtime_resume(struct device *dev)
1715 {
1716 	struct spi_master *master = dev_get_drvdata(dev);
1717 	struct atmel_spi *as = spi_master_get_devdata(master);
1718 
1719 	pinctrl_pm_select_default_state(dev);
1720 
1721 	return clk_prepare_enable(as->clk);
1722 }
1723 
1724 #ifdef CONFIG_PM_SLEEP
1725 static int atmel_spi_suspend(struct device *dev)
1726 {
1727 	struct spi_master *master = dev_get_drvdata(dev);
1728 	int ret;
1729 
1730 	/* Stop the queue running */
1731 	ret = spi_master_suspend(master);
1732 	if (ret)
1733 		return ret;
1734 
1735 	if (!pm_runtime_suspended(dev))
1736 		atmel_spi_runtime_suspend(dev);
1737 
1738 	return 0;
1739 }
1740 
1741 static int atmel_spi_resume(struct device *dev)
1742 {
1743 	struct spi_master *master = dev_get_drvdata(dev);
1744 	struct atmel_spi *as = spi_master_get_devdata(master);
1745 	int ret;
1746 
1747 	ret = clk_prepare_enable(as->clk);
1748 	if (ret)
1749 		return ret;
1750 
1751 	atmel_spi_init(as);
1752 
1753 	clk_disable_unprepare(as->clk);
1754 
1755 	if (!pm_runtime_suspended(dev)) {
1756 		ret = atmel_spi_runtime_resume(dev);
1757 		if (ret)
1758 			return ret;
1759 	}
1760 
1761 	/* Start the queue running */
1762 	return spi_master_resume(master);
1763 }
1764 #endif
1765 
1766 static const struct dev_pm_ops atmel_spi_pm_ops = {
1767 	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1768 	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1769 			   atmel_spi_runtime_resume, NULL)
1770 };
1771 #define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1772 #else
1773 #define ATMEL_SPI_PM_OPS	NULL
1774 #endif
1775 
1776 #if defined(CONFIG_OF)
1777 static const struct of_device_id atmel_spi_dt_ids[] = {
1778 	{ .compatible = "atmel,at91rm9200-spi" },
1779 	{ /* sentinel */ }
1780 };
1781 
1782 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1783 #endif
1784 
1785 static struct platform_driver atmel_spi_driver = {
1786 	.driver		= {
1787 		.name	= "atmel_spi",
1788 		.pm	= ATMEL_SPI_PM_OPS,
1789 		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1790 	},
1791 	.probe		= atmel_spi_probe,
1792 	.remove		= atmel_spi_remove,
1793 };
1794 module_platform_driver(atmel_spi_driver);
1795 
1796 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1797 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1798 MODULE_LICENSE("GPL");
1799 MODULE_ALIAS("platform:atmel_spi");
1800