1 /* 2 * Driver for Atmel AT32 and AT91 SPI Controllers 3 * 4 * Copyright (C) 2006 Atmel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/clk.h> 13 #include <linux/module.h> 14 #include <linux/platform_device.h> 15 #include <linux/delay.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/dmaengine.h> 18 #include <linux/err.h> 19 #include <linux/interrupt.h> 20 #include <linux/spi/spi.h> 21 #include <linux/slab.h> 22 #include <linux/platform_data/atmel.h> 23 #include <linux/platform_data/dma-atmel.h> 24 #include <linux/of.h> 25 26 #include <linux/io.h> 27 #include <linux/gpio.h> 28 #include <linux/pinctrl/consumer.h> 29 30 /* SPI register offsets */ 31 #define SPI_CR 0x0000 32 #define SPI_MR 0x0004 33 #define SPI_RDR 0x0008 34 #define SPI_TDR 0x000c 35 #define SPI_SR 0x0010 36 #define SPI_IER 0x0014 37 #define SPI_IDR 0x0018 38 #define SPI_IMR 0x001c 39 #define SPI_CSR0 0x0030 40 #define SPI_CSR1 0x0034 41 #define SPI_CSR2 0x0038 42 #define SPI_CSR3 0x003c 43 #define SPI_VERSION 0x00fc 44 #define SPI_RPR 0x0100 45 #define SPI_RCR 0x0104 46 #define SPI_TPR 0x0108 47 #define SPI_TCR 0x010c 48 #define SPI_RNPR 0x0110 49 #define SPI_RNCR 0x0114 50 #define SPI_TNPR 0x0118 51 #define SPI_TNCR 0x011c 52 #define SPI_PTCR 0x0120 53 #define SPI_PTSR 0x0124 54 55 /* Bitfields in CR */ 56 #define SPI_SPIEN_OFFSET 0 57 #define SPI_SPIEN_SIZE 1 58 #define SPI_SPIDIS_OFFSET 1 59 #define SPI_SPIDIS_SIZE 1 60 #define SPI_SWRST_OFFSET 7 61 #define SPI_SWRST_SIZE 1 62 #define SPI_LASTXFER_OFFSET 24 63 #define SPI_LASTXFER_SIZE 1 64 65 /* Bitfields in MR */ 66 #define SPI_MSTR_OFFSET 0 67 #define SPI_MSTR_SIZE 1 68 #define SPI_PS_OFFSET 1 69 #define SPI_PS_SIZE 1 70 #define SPI_PCSDEC_OFFSET 2 71 #define SPI_PCSDEC_SIZE 1 72 #define SPI_FDIV_OFFSET 3 73 #define SPI_FDIV_SIZE 1 74 #define SPI_MODFDIS_OFFSET 4 75 #define SPI_MODFDIS_SIZE 1 76 #define SPI_WDRBT_OFFSET 5 77 #define SPI_WDRBT_SIZE 1 78 #define SPI_LLB_OFFSET 7 79 #define SPI_LLB_SIZE 1 80 #define SPI_PCS_OFFSET 16 81 #define SPI_PCS_SIZE 4 82 #define SPI_DLYBCS_OFFSET 24 83 #define SPI_DLYBCS_SIZE 8 84 85 /* Bitfields in RDR */ 86 #define SPI_RD_OFFSET 0 87 #define SPI_RD_SIZE 16 88 89 /* Bitfields in TDR */ 90 #define SPI_TD_OFFSET 0 91 #define SPI_TD_SIZE 16 92 93 /* Bitfields in SR */ 94 #define SPI_RDRF_OFFSET 0 95 #define SPI_RDRF_SIZE 1 96 #define SPI_TDRE_OFFSET 1 97 #define SPI_TDRE_SIZE 1 98 #define SPI_MODF_OFFSET 2 99 #define SPI_MODF_SIZE 1 100 #define SPI_OVRES_OFFSET 3 101 #define SPI_OVRES_SIZE 1 102 #define SPI_ENDRX_OFFSET 4 103 #define SPI_ENDRX_SIZE 1 104 #define SPI_ENDTX_OFFSET 5 105 #define SPI_ENDTX_SIZE 1 106 #define SPI_RXBUFF_OFFSET 6 107 #define SPI_RXBUFF_SIZE 1 108 #define SPI_TXBUFE_OFFSET 7 109 #define SPI_TXBUFE_SIZE 1 110 #define SPI_NSSR_OFFSET 8 111 #define SPI_NSSR_SIZE 1 112 #define SPI_TXEMPTY_OFFSET 9 113 #define SPI_TXEMPTY_SIZE 1 114 #define SPI_SPIENS_OFFSET 16 115 #define SPI_SPIENS_SIZE 1 116 117 /* Bitfields in CSR0 */ 118 #define SPI_CPOL_OFFSET 0 119 #define SPI_CPOL_SIZE 1 120 #define SPI_NCPHA_OFFSET 1 121 #define SPI_NCPHA_SIZE 1 122 #define SPI_CSAAT_OFFSET 3 123 #define SPI_CSAAT_SIZE 1 124 #define SPI_BITS_OFFSET 4 125 #define SPI_BITS_SIZE 4 126 #define SPI_SCBR_OFFSET 8 127 #define SPI_SCBR_SIZE 8 128 #define SPI_DLYBS_OFFSET 16 129 #define SPI_DLYBS_SIZE 8 130 #define SPI_DLYBCT_OFFSET 24 131 #define SPI_DLYBCT_SIZE 8 132 133 /* Bitfields in RCR */ 134 #define SPI_RXCTR_OFFSET 0 135 #define SPI_RXCTR_SIZE 16 136 137 /* Bitfields in TCR */ 138 #define SPI_TXCTR_OFFSET 0 139 #define SPI_TXCTR_SIZE 16 140 141 /* Bitfields in RNCR */ 142 #define SPI_RXNCR_OFFSET 0 143 #define SPI_RXNCR_SIZE 16 144 145 /* Bitfields in TNCR */ 146 #define SPI_TXNCR_OFFSET 0 147 #define SPI_TXNCR_SIZE 16 148 149 /* Bitfields in PTCR */ 150 #define SPI_RXTEN_OFFSET 0 151 #define SPI_RXTEN_SIZE 1 152 #define SPI_RXTDIS_OFFSET 1 153 #define SPI_RXTDIS_SIZE 1 154 #define SPI_TXTEN_OFFSET 8 155 #define SPI_TXTEN_SIZE 1 156 #define SPI_TXTDIS_OFFSET 9 157 #define SPI_TXTDIS_SIZE 1 158 159 /* Constants for BITS */ 160 #define SPI_BITS_8_BPT 0 161 #define SPI_BITS_9_BPT 1 162 #define SPI_BITS_10_BPT 2 163 #define SPI_BITS_11_BPT 3 164 #define SPI_BITS_12_BPT 4 165 #define SPI_BITS_13_BPT 5 166 #define SPI_BITS_14_BPT 6 167 #define SPI_BITS_15_BPT 7 168 #define SPI_BITS_16_BPT 8 169 170 /* Bit manipulation macros */ 171 #define SPI_BIT(name) \ 172 (1 << SPI_##name##_OFFSET) 173 #define SPI_BF(name, value) \ 174 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET) 175 #define SPI_BFEXT(name, value) \ 176 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1)) 177 #define SPI_BFINS(name, value, old) \ 178 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \ 179 | SPI_BF(name, value)) 180 181 /* Register access macros */ 182 #define spi_readl(port, reg) \ 183 __raw_readl((port)->regs + SPI_##reg) 184 #define spi_writel(port, reg, value) \ 185 __raw_writel((value), (port)->regs + SPI_##reg) 186 187 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 188 * cache operations; better heuristics consider wordsize and bitrate. 189 */ 190 #define DMA_MIN_BYTES 16 191 192 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) 193 194 struct atmel_spi_dma { 195 struct dma_chan *chan_rx; 196 struct dma_chan *chan_tx; 197 struct scatterlist sgrx; 198 struct scatterlist sgtx; 199 struct dma_async_tx_descriptor *data_desc_rx; 200 struct dma_async_tx_descriptor *data_desc_tx; 201 202 struct at_dma_slave dma_slave; 203 }; 204 205 struct atmel_spi_caps { 206 bool is_spi2; 207 bool has_wdrbt; 208 bool has_dma_support; 209 }; 210 211 /* 212 * The core SPI transfer engine just talks to a register bank to set up 213 * DMA transfers; transfer queue progress is driven by IRQs. The clock 214 * framework provides the base clock, subdivided for each spi_device. 215 */ 216 struct atmel_spi { 217 spinlock_t lock; 218 unsigned long flags; 219 220 phys_addr_t phybase; 221 void __iomem *regs; 222 int irq; 223 struct clk *clk; 224 struct platform_device *pdev; 225 226 struct spi_transfer *current_transfer; 227 int current_remaining_bytes; 228 int done_status; 229 230 struct completion xfer_completion; 231 232 /* scratch buffer */ 233 void *buffer; 234 dma_addr_t buffer_dma; 235 236 struct atmel_spi_caps caps; 237 238 bool use_dma; 239 bool use_pdc; 240 /* dmaengine data */ 241 struct atmel_spi_dma dma; 242 243 bool keep_cs; 244 bool cs_active; 245 }; 246 247 /* Controller-specific per-slave state */ 248 struct atmel_spi_device { 249 unsigned int npcs_pin; 250 u32 csr; 251 }; 252 253 #define BUFFER_SIZE PAGE_SIZE 254 #define INVALID_DMA_ADDRESS 0xffffffff 255 256 /* 257 * Version 2 of the SPI controller has 258 * - CR.LASTXFER 259 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) 260 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) 261 * - SPI_CSRx.CSAAT 262 * - SPI_CSRx.SBCR allows faster clocking 263 */ 264 static bool atmel_spi_is_v2(struct atmel_spi *as) 265 { 266 return as->caps.is_spi2; 267 } 268 269 /* 270 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby 271 * they assume that spi slave device state will not change on deselect, so 272 * that automagic deselection is OK. ("NPCSx rises if no data is to be 273 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer 274 * controllers have CSAAT and friends. 275 * 276 * Since the CSAAT functionality is a bit weird on newer controllers as 277 * well, we use GPIO to control nCSx pins on all controllers, updating 278 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us 279 * support active-high chipselects despite the controller's belief that 280 * only active-low devices/systems exists. 281 * 282 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work 283 * right when driven with GPIO. ("Mode Fault does not allow more than one 284 * Master on Chip Select 0.") No workaround exists for that ... so for 285 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, 286 * and (c) will trigger that first erratum in some cases. 287 */ 288 289 static void cs_activate(struct atmel_spi *as, struct spi_device *spi) 290 { 291 struct atmel_spi_device *asd = spi->controller_state; 292 unsigned active = spi->mode & SPI_CS_HIGH; 293 u32 mr; 294 295 if (atmel_spi_is_v2(as)) { 296 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr); 297 /* For the low SPI version, there is a issue that PDC transfer 298 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS 299 */ 300 spi_writel(as, CSR0, asd->csr); 301 if (as->caps.has_wdrbt) { 302 spi_writel(as, MR, 303 SPI_BF(PCS, ~(0x01 << spi->chip_select)) 304 | SPI_BIT(WDRBT) 305 | SPI_BIT(MODFDIS) 306 | SPI_BIT(MSTR)); 307 } else { 308 spi_writel(as, MR, 309 SPI_BF(PCS, ~(0x01 << spi->chip_select)) 310 | SPI_BIT(MODFDIS) 311 | SPI_BIT(MSTR)); 312 } 313 314 mr = spi_readl(as, MR); 315 gpio_set_value(asd->npcs_pin, active); 316 } else { 317 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; 318 int i; 319 u32 csr; 320 321 /* Make sure clock polarity is correct */ 322 for (i = 0; i < spi->master->num_chipselect; i++) { 323 csr = spi_readl(as, CSR0 + 4 * i); 324 if ((csr ^ cpol) & SPI_BIT(CPOL)) 325 spi_writel(as, CSR0 + 4 * i, 326 csr ^ SPI_BIT(CPOL)); 327 } 328 329 mr = spi_readl(as, MR); 330 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr); 331 if (spi->chip_select != 0) 332 gpio_set_value(asd->npcs_pin, active); 333 spi_writel(as, MR, mr); 334 } 335 336 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n", 337 asd->npcs_pin, active ? " (high)" : "", 338 mr); 339 } 340 341 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) 342 { 343 struct atmel_spi_device *asd = spi->controller_state; 344 unsigned active = spi->mode & SPI_CS_HIGH; 345 u32 mr; 346 347 /* only deactivate *this* device; sometimes transfers to 348 * another device may be active when this routine is called. 349 */ 350 mr = spi_readl(as, MR); 351 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) { 352 mr = SPI_BFINS(PCS, 0xf, mr); 353 spi_writel(as, MR, mr); 354 } 355 356 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n", 357 asd->npcs_pin, active ? " (low)" : "", 358 mr); 359 360 if (atmel_spi_is_v2(as) || spi->chip_select != 0) 361 gpio_set_value(asd->npcs_pin, !active); 362 } 363 364 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock) 365 { 366 spin_lock_irqsave(&as->lock, as->flags); 367 } 368 369 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock) 370 { 371 spin_unlock_irqrestore(&as->lock, as->flags); 372 } 373 374 static inline bool atmel_spi_use_dma(struct atmel_spi *as, 375 struct spi_transfer *xfer) 376 { 377 return as->use_dma && xfer->len >= DMA_MIN_BYTES; 378 } 379 380 static int atmel_spi_dma_slave_config(struct atmel_spi *as, 381 struct dma_slave_config *slave_config, 382 u8 bits_per_word) 383 { 384 int err = 0; 385 386 if (bits_per_word > 8) { 387 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 388 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 389 } else { 390 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 391 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 392 } 393 394 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR; 395 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR; 396 slave_config->src_maxburst = 1; 397 slave_config->dst_maxburst = 1; 398 slave_config->device_fc = false; 399 400 slave_config->direction = DMA_MEM_TO_DEV; 401 if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) { 402 dev_err(&as->pdev->dev, 403 "failed to configure tx dma channel\n"); 404 err = -EINVAL; 405 } 406 407 slave_config->direction = DMA_DEV_TO_MEM; 408 if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) { 409 dev_err(&as->pdev->dev, 410 "failed to configure rx dma channel\n"); 411 err = -EINVAL; 412 } 413 414 return err; 415 } 416 417 static bool filter(struct dma_chan *chan, void *pdata) 418 { 419 struct atmel_spi_dma *sl_pdata = pdata; 420 struct at_dma_slave *sl; 421 422 if (!sl_pdata) 423 return false; 424 425 sl = &sl_pdata->dma_slave; 426 if (sl->dma_dev == chan->device->dev) { 427 chan->private = sl; 428 return true; 429 } else { 430 return false; 431 } 432 } 433 434 static int atmel_spi_configure_dma(struct atmel_spi *as) 435 { 436 struct dma_slave_config slave_config; 437 struct device *dev = &as->pdev->dev; 438 int err; 439 440 dma_cap_mask_t mask; 441 dma_cap_zero(mask); 442 dma_cap_set(DMA_SLAVE, mask); 443 444 as->dma.chan_tx = dma_request_slave_channel_compat(mask, filter, 445 &as->dma, 446 dev, "tx"); 447 if (!as->dma.chan_tx) { 448 dev_err(dev, 449 "DMA TX channel not available, SPI unable to use DMA\n"); 450 err = -EBUSY; 451 goto error; 452 } 453 454 as->dma.chan_rx = dma_request_slave_channel_compat(mask, filter, 455 &as->dma, 456 dev, "rx"); 457 458 if (!as->dma.chan_rx) { 459 dev_err(dev, 460 "DMA RX channel not available, SPI unable to use DMA\n"); 461 err = -EBUSY; 462 goto error; 463 } 464 465 err = atmel_spi_dma_slave_config(as, &slave_config, 8); 466 if (err) 467 goto error; 468 469 dev_info(&as->pdev->dev, 470 "Using %s (tx) and %s (rx) for DMA transfers\n", 471 dma_chan_name(as->dma.chan_tx), 472 dma_chan_name(as->dma.chan_rx)); 473 return 0; 474 error: 475 if (as->dma.chan_rx) 476 dma_release_channel(as->dma.chan_rx); 477 if (as->dma.chan_tx) 478 dma_release_channel(as->dma.chan_tx); 479 return err; 480 } 481 482 static void atmel_spi_stop_dma(struct atmel_spi *as) 483 { 484 if (as->dma.chan_rx) 485 as->dma.chan_rx->device->device_control(as->dma.chan_rx, 486 DMA_TERMINATE_ALL, 0); 487 if (as->dma.chan_tx) 488 as->dma.chan_tx->device->device_control(as->dma.chan_tx, 489 DMA_TERMINATE_ALL, 0); 490 } 491 492 static void atmel_spi_release_dma(struct atmel_spi *as) 493 { 494 if (as->dma.chan_rx) 495 dma_release_channel(as->dma.chan_rx); 496 if (as->dma.chan_tx) 497 dma_release_channel(as->dma.chan_tx); 498 } 499 500 /* This function is called by the DMA driver from tasklet context */ 501 static void dma_callback(void *data) 502 { 503 struct spi_master *master = data; 504 struct atmel_spi *as = spi_master_get_devdata(master); 505 506 complete(&as->xfer_completion); 507 } 508 509 /* 510 * Next transfer using PIO. 511 */ 512 static void atmel_spi_next_xfer_pio(struct spi_master *master, 513 struct spi_transfer *xfer) 514 { 515 struct atmel_spi *as = spi_master_get_devdata(master); 516 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 517 518 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n"); 519 520 /* Make sure data is not remaining in RDR */ 521 spi_readl(as, RDR); 522 while (spi_readl(as, SR) & SPI_BIT(RDRF)) { 523 spi_readl(as, RDR); 524 cpu_relax(); 525 } 526 527 if (xfer->tx_buf) { 528 if (xfer->bits_per_word > 8) 529 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos)); 530 else 531 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos)); 532 } else { 533 spi_writel(as, TDR, 0); 534 } 535 536 dev_dbg(master->dev.parent, 537 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n", 538 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 539 xfer->bits_per_word); 540 541 /* Enable relevant interrupts */ 542 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES)); 543 } 544 545 /* 546 * Submit next transfer for DMA. 547 */ 548 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master, 549 struct spi_transfer *xfer, 550 u32 *plen) 551 { 552 struct atmel_spi *as = spi_master_get_devdata(master); 553 struct dma_chan *rxchan = as->dma.chan_rx; 554 struct dma_chan *txchan = as->dma.chan_tx; 555 struct dma_async_tx_descriptor *rxdesc; 556 struct dma_async_tx_descriptor *txdesc; 557 struct dma_slave_config slave_config; 558 dma_cookie_t cookie; 559 u32 len = *plen; 560 561 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n"); 562 563 /* Check that the channels are available */ 564 if (!rxchan || !txchan) 565 return -ENODEV; 566 567 /* release lock for DMA operations */ 568 atmel_spi_unlock(as); 569 570 /* prepare the RX dma transfer */ 571 sg_init_table(&as->dma.sgrx, 1); 572 if (xfer->rx_buf) { 573 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen; 574 } else { 575 as->dma.sgrx.dma_address = as->buffer_dma; 576 if (len > BUFFER_SIZE) 577 len = BUFFER_SIZE; 578 } 579 580 /* prepare the TX dma transfer */ 581 sg_init_table(&as->dma.sgtx, 1); 582 if (xfer->tx_buf) { 583 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen; 584 } else { 585 as->dma.sgtx.dma_address = as->buffer_dma; 586 if (len > BUFFER_SIZE) 587 len = BUFFER_SIZE; 588 memset(as->buffer, 0, len); 589 } 590 591 sg_dma_len(&as->dma.sgtx) = len; 592 sg_dma_len(&as->dma.sgrx) = len; 593 594 *plen = len; 595 596 if (atmel_spi_dma_slave_config(as, &slave_config, 8)) 597 goto err_exit; 598 599 /* Send both scatterlists */ 600 rxdesc = rxchan->device->device_prep_slave_sg(rxchan, 601 &as->dma.sgrx, 602 1, 603 DMA_FROM_DEVICE, 604 DMA_PREP_INTERRUPT | DMA_CTRL_ACK, 605 NULL); 606 if (!rxdesc) 607 goto err_dma; 608 609 txdesc = txchan->device->device_prep_slave_sg(txchan, 610 &as->dma.sgtx, 611 1, 612 DMA_TO_DEVICE, 613 DMA_PREP_INTERRUPT | DMA_CTRL_ACK, 614 NULL); 615 if (!txdesc) 616 goto err_dma; 617 618 dev_dbg(master->dev.parent, 619 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 620 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma, 621 xfer->rx_buf, (unsigned long long)xfer->rx_dma); 622 623 /* Enable relevant interrupts */ 624 spi_writel(as, IER, SPI_BIT(OVRES)); 625 626 /* Put the callback on the RX transfer only, that should finish last */ 627 rxdesc->callback = dma_callback; 628 rxdesc->callback_param = master; 629 630 /* Submit and fire RX and TX with TX last so we're ready to read! */ 631 cookie = rxdesc->tx_submit(rxdesc); 632 if (dma_submit_error(cookie)) 633 goto err_dma; 634 cookie = txdesc->tx_submit(txdesc); 635 if (dma_submit_error(cookie)) 636 goto err_dma; 637 rxchan->device->device_issue_pending(rxchan); 638 txchan->device->device_issue_pending(txchan); 639 640 /* take back lock */ 641 atmel_spi_lock(as); 642 return 0; 643 644 err_dma: 645 spi_writel(as, IDR, SPI_BIT(OVRES)); 646 atmel_spi_stop_dma(as); 647 err_exit: 648 atmel_spi_lock(as); 649 return -ENOMEM; 650 } 651 652 static void atmel_spi_next_xfer_data(struct spi_master *master, 653 struct spi_transfer *xfer, 654 dma_addr_t *tx_dma, 655 dma_addr_t *rx_dma, 656 u32 *plen) 657 { 658 struct atmel_spi *as = spi_master_get_devdata(master); 659 u32 len = *plen; 660 661 /* use scratch buffer only when rx or tx data is unspecified */ 662 if (xfer->rx_buf) 663 *rx_dma = xfer->rx_dma + xfer->len - *plen; 664 else { 665 *rx_dma = as->buffer_dma; 666 if (len > BUFFER_SIZE) 667 len = BUFFER_SIZE; 668 } 669 670 if (xfer->tx_buf) 671 *tx_dma = xfer->tx_dma + xfer->len - *plen; 672 else { 673 *tx_dma = as->buffer_dma; 674 if (len > BUFFER_SIZE) 675 len = BUFFER_SIZE; 676 memset(as->buffer, 0, len); 677 dma_sync_single_for_device(&as->pdev->dev, 678 as->buffer_dma, len, DMA_TO_DEVICE); 679 } 680 681 *plen = len; 682 } 683 684 static int atmel_spi_set_xfer_speed(struct atmel_spi *as, 685 struct spi_device *spi, 686 struct spi_transfer *xfer) 687 { 688 u32 scbr, csr; 689 unsigned long bus_hz; 690 691 /* v1 chips start out at half the peripheral bus speed. */ 692 bus_hz = clk_get_rate(as->clk); 693 if (!atmel_spi_is_v2(as)) 694 bus_hz /= 2; 695 696 /* 697 * Calculate the lowest divider that satisfies the 698 * constraint, assuming div32/fdiv/mbz == 0. 699 */ 700 if (xfer->speed_hz) 701 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz); 702 else 703 /* 704 * This can happend if max_speed is null. 705 * In this case, we set the lowest possible speed 706 */ 707 scbr = 0xff; 708 709 /* 710 * If the resulting divider doesn't fit into the 711 * register bitfield, we can't satisfy the constraint. 712 */ 713 if (scbr >= (1 << SPI_SCBR_SIZE)) { 714 dev_err(&spi->dev, 715 "setup: %d Hz too slow, scbr %u; min %ld Hz\n", 716 xfer->speed_hz, scbr, bus_hz/255); 717 return -EINVAL; 718 } 719 if (scbr == 0) { 720 dev_err(&spi->dev, 721 "setup: %d Hz too high, scbr %u; max %ld Hz\n", 722 xfer->speed_hz, scbr, bus_hz); 723 return -EINVAL; 724 } 725 csr = spi_readl(as, CSR0 + 4 * spi->chip_select); 726 csr = SPI_BFINS(SCBR, scbr, csr); 727 spi_writel(as, CSR0 + 4 * spi->chip_select, csr); 728 729 return 0; 730 } 731 732 /* 733 * Submit next transfer for PDC. 734 * lock is held, spi irq is blocked 735 */ 736 static void atmel_spi_pdc_next_xfer(struct spi_master *master, 737 struct spi_message *msg, 738 struct spi_transfer *xfer) 739 { 740 struct atmel_spi *as = spi_master_get_devdata(master); 741 u32 len; 742 dma_addr_t tx_dma, rx_dma; 743 744 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 745 746 len = as->current_remaining_bytes; 747 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 748 as->current_remaining_bytes -= len; 749 750 spi_writel(as, RPR, rx_dma); 751 spi_writel(as, TPR, tx_dma); 752 753 if (msg->spi->bits_per_word > 8) 754 len >>= 1; 755 spi_writel(as, RCR, len); 756 spi_writel(as, TCR, len); 757 758 dev_dbg(&msg->spi->dev, 759 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 760 xfer, xfer->len, xfer->tx_buf, 761 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 762 (unsigned long long)xfer->rx_dma); 763 764 if (as->current_remaining_bytes) { 765 len = as->current_remaining_bytes; 766 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 767 as->current_remaining_bytes -= len; 768 769 spi_writel(as, RNPR, rx_dma); 770 spi_writel(as, TNPR, tx_dma); 771 772 if (msg->spi->bits_per_word > 8) 773 len >>= 1; 774 spi_writel(as, RNCR, len); 775 spi_writel(as, TNCR, len); 776 777 dev_dbg(&msg->spi->dev, 778 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 779 xfer, xfer->len, xfer->tx_buf, 780 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 781 (unsigned long long)xfer->rx_dma); 782 } 783 784 /* REVISIT: We're waiting for ENDRX before we start the next 785 * transfer because we need to handle some difficult timing 786 * issues otherwise. If we wait for ENDTX in one transfer and 787 * then starts waiting for ENDRX in the next, it's difficult 788 * to tell the difference between the ENDRX interrupt we're 789 * actually waiting for and the ENDRX interrupt of the 790 * previous transfer. 791 * 792 * It should be doable, though. Just not now... 793 */ 794 spi_writel(as, IER, SPI_BIT(ENDRX) | SPI_BIT(OVRES)); 795 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); 796 } 797 798 /* 799 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: 800 * - The buffer is either valid for CPU access, else NULL 801 * - If the buffer is valid, so is its DMA address 802 * 803 * This driver manages the dma address unless message->is_dma_mapped. 804 */ 805 static int 806 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) 807 { 808 struct device *dev = &as->pdev->dev; 809 810 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; 811 if (xfer->tx_buf) { 812 /* tx_buf is a const void* where we need a void * for the dma 813 * mapping */ 814 void *nonconst_tx = (void *)xfer->tx_buf; 815 816 xfer->tx_dma = dma_map_single(dev, 817 nonconst_tx, xfer->len, 818 DMA_TO_DEVICE); 819 if (dma_mapping_error(dev, xfer->tx_dma)) 820 return -ENOMEM; 821 } 822 if (xfer->rx_buf) { 823 xfer->rx_dma = dma_map_single(dev, 824 xfer->rx_buf, xfer->len, 825 DMA_FROM_DEVICE); 826 if (dma_mapping_error(dev, xfer->rx_dma)) { 827 if (xfer->tx_buf) 828 dma_unmap_single(dev, 829 xfer->tx_dma, xfer->len, 830 DMA_TO_DEVICE); 831 return -ENOMEM; 832 } 833 } 834 return 0; 835 } 836 837 static void atmel_spi_dma_unmap_xfer(struct spi_master *master, 838 struct spi_transfer *xfer) 839 { 840 if (xfer->tx_dma != INVALID_DMA_ADDRESS) 841 dma_unmap_single(master->dev.parent, xfer->tx_dma, 842 xfer->len, DMA_TO_DEVICE); 843 if (xfer->rx_dma != INVALID_DMA_ADDRESS) 844 dma_unmap_single(master->dev.parent, xfer->rx_dma, 845 xfer->len, DMA_FROM_DEVICE); 846 } 847 848 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as) 849 { 850 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 851 } 852 853 /* Called from IRQ 854 * 855 * Must update "current_remaining_bytes" to keep track of data 856 * to transfer. 857 */ 858 static void 859 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer) 860 { 861 u8 *rxp; 862 u16 *rxp16; 863 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 864 865 if (xfer->rx_buf) { 866 if (xfer->bits_per_word > 8) { 867 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos); 868 *rxp16 = spi_readl(as, RDR); 869 } else { 870 rxp = ((u8 *)xfer->rx_buf) + xfer_pos; 871 *rxp = spi_readl(as, RDR); 872 } 873 } else { 874 spi_readl(as, RDR); 875 } 876 if (xfer->bits_per_word > 8) { 877 if (as->current_remaining_bytes > 2) 878 as->current_remaining_bytes -= 2; 879 else 880 as->current_remaining_bytes = 0; 881 } else { 882 as->current_remaining_bytes--; 883 } 884 } 885 886 /* Interrupt 887 * 888 * No need for locking in this Interrupt handler: done_status is the 889 * only information modified. 890 */ 891 static irqreturn_t 892 atmel_spi_pio_interrupt(int irq, void *dev_id) 893 { 894 struct spi_master *master = dev_id; 895 struct atmel_spi *as = spi_master_get_devdata(master); 896 u32 status, pending, imr; 897 struct spi_transfer *xfer; 898 int ret = IRQ_NONE; 899 900 imr = spi_readl(as, IMR); 901 status = spi_readl(as, SR); 902 pending = status & imr; 903 904 if (pending & SPI_BIT(OVRES)) { 905 ret = IRQ_HANDLED; 906 spi_writel(as, IDR, SPI_BIT(OVRES)); 907 dev_warn(master->dev.parent, "overrun\n"); 908 909 /* 910 * When we get an overrun, we disregard the current 911 * transfer. Data will not be copied back from any 912 * bounce buffer and msg->actual_len will not be 913 * updated with the last xfer. 914 * 915 * We will also not process any remaning transfers in 916 * the message. 917 */ 918 as->done_status = -EIO; 919 smp_wmb(); 920 921 /* Clear any overrun happening while cleaning up */ 922 spi_readl(as, SR); 923 924 complete(&as->xfer_completion); 925 926 } else if (pending & SPI_BIT(RDRF)) { 927 atmel_spi_lock(as); 928 929 if (as->current_remaining_bytes) { 930 ret = IRQ_HANDLED; 931 xfer = as->current_transfer; 932 atmel_spi_pump_pio_data(as, xfer); 933 if (!as->current_remaining_bytes) 934 spi_writel(as, IDR, pending); 935 936 complete(&as->xfer_completion); 937 } 938 939 atmel_spi_unlock(as); 940 } else { 941 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending); 942 ret = IRQ_HANDLED; 943 spi_writel(as, IDR, pending); 944 } 945 946 return ret; 947 } 948 949 static irqreturn_t 950 atmel_spi_pdc_interrupt(int irq, void *dev_id) 951 { 952 struct spi_master *master = dev_id; 953 struct atmel_spi *as = spi_master_get_devdata(master); 954 u32 status, pending, imr; 955 int ret = IRQ_NONE; 956 957 imr = spi_readl(as, IMR); 958 status = spi_readl(as, SR); 959 pending = status & imr; 960 961 if (pending & SPI_BIT(OVRES)) { 962 963 ret = IRQ_HANDLED; 964 965 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) 966 | SPI_BIT(OVRES))); 967 968 /* Clear any overrun happening while cleaning up */ 969 spi_readl(as, SR); 970 971 as->done_status = -EIO; 972 973 complete(&as->xfer_completion); 974 975 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { 976 ret = IRQ_HANDLED; 977 978 spi_writel(as, IDR, pending); 979 980 complete(&as->xfer_completion); 981 } 982 983 return ret; 984 } 985 986 static int atmel_spi_setup(struct spi_device *spi) 987 { 988 struct atmel_spi *as; 989 struct atmel_spi_device *asd; 990 u32 csr; 991 unsigned int bits = spi->bits_per_word; 992 unsigned int npcs_pin; 993 int ret; 994 995 as = spi_master_get_devdata(spi->master); 996 997 /* see notes above re chipselect */ 998 if (!atmel_spi_is_v2(as) 999 && spi->chip_select == 0 1000 && (spi->mode & SPI_CS_HIGH)) { 1001 dev_dbg(&spi->dev, "setup: can't be active-high\n"); 1002 return -EINVAL; 1003 } 1004 1005 csr = SPI_BF(BITS, bits - 8); 1006 if (spi->mode & SPI_CPOL) 1007 csr |= SPI_BIT(CPOL); 1008 if (!(spi->mode & SPI_CPHA)) 1009 csr |= SPI_BIT(NCPHA); 1010 1011 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs. 1012 * 1013 * DLYBCT would add delays between words, slowing down transfers. 1014 * It could potentially be useful to cope with DMA bottlenecks, but 1015 * in those cases it's probably best to just use a lower bitrate. 1016 */ 1017 csr |= SPI_BF(DLYBS, 0); 1018 csr |= SPI_BF(DLYBCT, 0); 1019 1020 /* chipselect must have been muxed as GPIO (e.g. in board setup) */ 1021 npcs_pin = (unsigned int)spi->controller_data; 1022 1023 if (gpio_is_valid(spi->cs_gpio)) 1024 npcs_pin = spi->cs_gpio; 1025 1026 asd = spi->controller_state; 1027 if (!asd) { 1028 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); 1029 if (!asd) 1030 return -ENOMEM; 1031 1032 ret = gpio_request(npcs_pin, dev_name(&spi->dev)); 1033 if (ret) { 1034 kfree(asd); 1035 return ret; 1036 } 1037 1038 asd->npcs_pin = npcs_pin; 1039 spi->controller_state = asd; 1040 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH)); 1041 } 1042 1043 asd->csr = csr; 1044 1045 dev_dbg(&spi->dev, 1046 "setup: bpw %u mode 0x%x -> csr%d %08x\n", 1047 bits, spi->mode, spi->chip_select, csr); 1048 1049 if (!atmel_spi_is_v2(as)) 1050 spi_writel(as, CSR0 + 4 * spi->chip_select, csr); 1051 1052 return 0; 1053 } 1054 1055 static int atmel_spi_one_transfer(struct spi_master *master, 1056 struct spi_message *msg, 1057 struct spi_transfer *xfer) 1058 { 1059 struct atmel_spi *as; 1060 struct spi_device *spi = msg->spi; 1061 u8 bits; 1062 u32 len; 1063 struct atmel_spi_device *asd; 1064 int timeout; 1065 int ret; 1066 1067 as = spi_master_get_devdata(master); 1068 1069 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1070 dev_dbg(&spi->dev, "missing rx or tx buf\n"); 1071 return -EINVAL; 1072 } 1073 1074 if (xfer->bits_per_word) { 1075 asd = spi->controller_state; 1076 bits = (asd->csr >> 4) & 0xf; 1077 if (bits != xfer->bits_per_word - 8) { 1078 dev_dbg(&spi->dev, 1079 "you can't yet change bits_per_word in transfers\n"); 1080 return -ENOPROTOOPT; 1081 } 1082 } 1083 1084 /* 1085 * DMA map early, for performance (empties dcache ASAP) and 1086 * better fault reporting. 1087 */ 1088 if ((!msg->is_dma_mapped) 1089 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) { 1090 if (atmel_spi_dma_map_xfer(as, xfer) < 0) 1091 return -ENOMEM; 1092 } 1093 1094 atmel_spi_set_xfer_speed(as, msg->spi, xfer); 1095 1096 as->done_status = 0; 1097 as->current_transfer = xfer; 1098 as->current_remaining_bytes = xfer->len; 1099 while (as->current_remaining_bytes) { 1100 reinit_completion(&as->xfer_completion); 1101 1102 if (as->use_pdc) { 1103 atmel_spi_pdc_next_xfer(master, msg, xfer); 1104 } else if (atmel_spi_use_dma(as, xfer)) { 1105 len = as->current_remaining_bytes; 1106 ret = atmel_spi_next_xfer_dma_submit(master, 1107 xfer, &len); 1108 if (ret) { 1109 dev_err(&spi->dev, 1110 "unable to use DMA, fallback to PIO\n"); 1111 atmel_spi_next_xfer_pio(master, xfer); 1112 } else { 1113 as->current_remaining_bytes -= len; 1114 if (as->current_remaining_bytes < 0) 1115 as->current_remaining_bytes = 0; 1116 } 1117 } else { 1118 atmel_spi_next_xfer_pio(master, xfer); 1119 } 1120 1121 /* interrupts are disabled, so free the lock for schedule */ 1122 atmel_spi_unlock(as); 1123 ret = wait_for_completion_timeout(&as->xfer_completion, 1124 SPI_DMA_TIMEOUT); 1125 atmel_spi_lock(as); 1126 if (WARN_ON(ret == 0)) { 1127 dev_err(&spi->dev, 1128 "spi trasfer timeout, err %d\n", ret); 1129 as->done_status = -EIO; 1130 } else { 1131 ret = 0; 1132 } 1133 1134 if (as->done_status) 1135 break; 1136 } 1137 1138 if (as->done_status) { 1139 if (as->use_pdc) { 1140 dev_warn(master->dev.parent, 1141 "overrun (%u/%u remaining)\n", 1142 spi_readl(as, TCR), spi_readl(as, RCR)); 1143 1144 /* 1145 * Clean up DMA registers and make sure the data 1146 * registers are empty. 1147 */ 1148 spi_writel(as, RNCR, 0); 1149 spi_writel(as, TNCR, 0); 1150 spi_writel(as, RCR, 0); 1151 spi_writel(as, TCR, 0); 1152 for (timeout = 1000; timeout; timeout--) 1153 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) 1154 break; 1155 if (!timeout) 1156 dev_warn(master->dev.parent, 1157 "timeout waiting for TXEMPTY"); 1158 while (spi_readl(as, SR) & SPI_BIT(RDRF)) 1159 spi_readl(as, RDR); 1160 1161 /* Clear any overrun happening while cleaning up */ 1162 spi_readl(as, SR); 1163 1164 } else if (atmel_spi_use_dma(as, xfer)) { 1165 atmel_spi_stop_dma(as); 1166 } 1167 1168 if (!msg->is_dma_mapped 1169 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) 1170 atmel_spi_dma_unmap_xfer(master, xfer); 1171 1172 return 0; 1173 1174 } else { 1175 /* only update length if no error */ 1176 msg->actual_length += xfer->len; 1177 } 1178 1179 if (!msg->is_dma_mapped 1180 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) 1181 atmel_spi_dma_unmap_xfer(master, xfer); 1182 1183 if (xfer->delay_usecs) 1184 udelay(xfer->delay_usecs); 1185 1186 if (xfer->cs_change) { 1187 if (list_is_last(&xfer->transfer_list, 1188 &msg->transfers)) { 1189 as->keep_cs = true; 1190 } else { 1191 as->cs_active = !as->cs_active; 1192 if (as->cs_active) 1193 cs_activate(as, msg->spi); 1194 else 1195 cs_deactivate(as, msg->spi); 1196 } 1197 } 1198 1199 return 0; 1200 } 1201 1202 static int atmel_spi_transfer_one_message(struct spi_master *master, 1203 struct spi_message *msg) 1204 { 1205 struct atmel_spi *as; 1206 struct spi_transfer *xfer; 1207 struct spi_device *spi = msg->spi; 1208 int ret = 0; 1209 1210 as = spi_master_get_devdata(master); 1211 1212 dev_dbg(&spi->dev, "new message %p submitted for %s\n", 1213 msg, dev_name(&spi->dev)); 1214 1215 atmel_spi_lock(as); 1216 cs_activate(as, spi); 1217 1218 as->cs_active = true; 1219 as->keep_cs = false; 1220 1221 msg->status = 0; 1222 msg->actual_length = 0; 1223 1224 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1225 ret = atmel_spi_one_transfer(master, msg, xfer); 1226 if (ret) 1227 goto msg_done; 1228 } 1229 1230 if (as->use_pdc) 1231 atmel_spi_disable_pdc_transfer(as); 1232 1233 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1234 dev_dbg(&spi->dev, 1235 " xfer %p: len %u tx %p/%pad rx %p/%pad\n", 1236 xfer, xfer->len, 1237 xfer->tx_buf, &xfer->tx_dma, 1238 xfer->rx_buf, &xfer->rx_dma); 1239 } 1240 1241 msg_done: 1242 if (!as->keep_cs) 1243 cs_deactivate(as, msg->spi); 1244 1245 atmel_spi_unlock(as); 1246 1247 msg->status = as->done_status; 1248 spi_finalize_current_message(spi->master); 1249 1250 return ret; 1251 } 1252 1253 static void atmel_spi_cleanup(struct spi_device *spi) 1254 { 1255 struct atmel_spi_device *asd = spi->controller_state; 1256 unsigned gpio = (unsigned) spi->controller_data; 1257 1258 if (!asd) 1259 return; 1260 1261 spi->controller_state = NULL; 1262 gpio_free(gpio); 1263 kfree(asd); 1264 } 1265 1266 static inline unsigned int atmel_get_version(struct atmel_spi *as) 1267 { 1268 return spi_readl(as, VERSION) & 0x00000fff; 1269 } 1270 1271 static void atmel_get_caps(struct atmel_spi *as) 1272 { 1273 unsigned int version; 1274 1275 version = atmel_get_version(as); 1276 dev_info(&as->pdev->dev, "version: 0x%x\n", version); 1277 1278 as->caps.is_spi2 = version > 0x121; 1279 as->caps.has_wdrbt = version >= 0x210; 1280 as->caps.has_dma_support = version >= 0x212; 1281 } 1282 1283 /*-------------------------------------------------------------------------*/ 1284 1285 static int atmel_spi_probe(struct platform_device *pdev) 1286 { 1287 struct resource *regs; 1288 int irq; 1289 struct clk *clk; 1290 int ret; 1291 struct spi_master *master; 1292 struct atmel_spi *as; 1293 1294 /* Select default pin state */ 1295 pinctrl_pm_select_default_state(&pdev->dev); 1296 1297 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1298 if (!regs) 1299 return -ENXIO; 1300 1301 irq = platform_get_irq(pdev, 0); 1302 if (irq < 0) 1303 return irq; 1304 1305 clk = devm_clk_get(&pdev->dev, "spi_clk"); 1306 if (IS_ERR(clk)) 1307 return PTR_ERR(clk); 1308 1309 /* setup spi core then atmel-specific driver state */ 1310 ret = -ENOMEM; 1311 master = spi_alloc_master(&pdev->dev, sizeof(*as)); 1312 if (!master) 1313 goto out_free; 1314 1315 /* the spi->mode bits understood by this driver: */ 1316 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1317 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16); 1318 master->dev.of_node = pdev->dev.of_node; 1319 master->bus_num = pdev->id; 1320 master->num_chipselect = master->dev.of_node ? 0 : 4; 1321 master->setup = atmel_spi_setup; 1322 master->transfer_one_message = atmel_spi_transfer_one_message; 1323 master->cleanup = atmel_spi_cleanup; 1324 platform_set_drvdata(pdev, master); 1325 1326 as = spi_master_get_devdata(master); 1327 1328 /* 1329 * Scratch buffer is used for throwaway rx and tx data. 1330 * It's coherent to minimize dcache pollution. 1331 */ 1332 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE, 1333 &as->buffer_dma, GFP_KERNEL); 1334 if (!as->buffer) 1335 goto out_free; 1336 1337 spin_lock_init(&as->lock); 1338 1339 as->pdev = pdev; 1340 as->regs = devm_ioremap_resource(&pdev->dev, regs); 1341 if (IS_ERR(as->regs)) { 1342 ret = PTR_ERR(as->regs); 1343 goto out_free_buffer; 1344 } 1345 as->phybase = regs->start; 1346 as->irq = irq; 1347 as->clk = clk; 1348 1349 init_completion(&as->xfer_completion); 1350 1351 atmel_get_caps(as); 1352 1353 as->use_dma = false; 1354 as->use_pdc = false; 1355 if (as->caps.has_dma_support) { 1356 if (atmel_spi_configure_dma(as) == 0) 1357 as->use_dma = true; 1358 } else { 1359 as->use_pdc = true; 1360 } 1361 1362 if (as->caps.has_dma_support && !as->use_dma) 1363 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n"); 1364 1365 if (as->use_pdc) { 1366 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt, 1367 0, dev_name(&pdev->dev), master); 1368 } else { 1369 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt, 1370 0, dev_name(&pdev->dev), master); 1371 } 1372 if (ret) 1373 goto out_unmap_regs; 1374 1375 /* Initialize the hardware */ 1376 ret = clk_prepare_enable(clk); 1377 if (ret) 1378 goto out_free_irq; 1379 spi_writel(as, CR, SPI_BIT(SWRST)); 1380 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1381 if (as->caps.has_wdrbt) { 1382 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS) 1383 | SPI_BIT(MSTR)); 1384 } else { 1385 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); 1386 } 1387 1388 if (as->use_pdc) 1389 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1390 spi_writel(as, CR, SPI_BIT(SPIEN)); 1391 1392 /* go! */ 1393 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n", 1394 (unsigned long)regs->start, irq); 1395 1396 ret = devm_spi_register_master(&pdev->dev, master); 1397 if (ret) 1398 goto out_free_dma; 1399 1400 return 0; 1401 1402 out_free_dma: 1403 if (as->use_dma) 1404 atmel_spi_release_dma(as); 1405 1406 spi_writel(as, CR, SPI_BIT(SWRST)); 1407 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1408 clk_disable_unprepare(clk); 1409 out_free_irq: 1410 out_unmap_regs: 1411 out_free_buffer: 1412 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, 1413 as->buffer_dma); 1414 out_free: 1415 spi_master_put(master); 1416 return ret; 1417 } 1418 1419 static int atmel_spi_remove(struct platform_device *pdev) 1420 { 1421 struct spi_master *master = platform_get_drvdata(pdev); 1422 struct atmel_spi *as = spi_master_get_devdata(master); 1423 1424 /* reset the hardware and block queue progress */ 1425 spin_lock_irq(&as->lock); 1426 if (as->use_dma) { 1427 atmel_spi_stop_dma(as); 1428 atmel_spi_release_dma(as); 1429 } 1430 1431 spi_writel(as, CR, SPI_BIT(SWRST)); 1432 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1433 spi_readl(as, SR); 1434 spin_unlock_irq(&as->lock); 1435 1436 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, 1437 as->buffer_dma); 1438 1439 clk_disable_unprepare(as->clk); 1440 1441 return 0; 1442 } 1443 1444 #ifdef CONFIG_PM_SLEEP 1445 static int atmel_spi_suspend(struct device *dev) 1446 { 1447 struct spi_master *master = dev_get_drvdata(dev); 1448 struct atmel_spi *as = spi_master_get_devdata(master); 1449 int ret; 1450 1451 /* Stop the queue running */ 1452 ret = spi_master_suspend(master); 1453 if (ret) { 1454 dev_warn(dev, "cannot suspend master\n"); 1455 return ret; 1456 } 1457 1458 clk_disable_unprepare(as->clk); 1459 1460 pinctrl_pm_select_sleep_state(dev); 1461 1462 return 0; 1463 } 1464 1465 static int atmel_spi_resume(struct device *dev) 1466 { 1467 struct spi_master *master = dev_get_drvdata(dev); 1468 struct atmel_spi *as = spi_master_get_devdata(master); 1469 int ret; 1470 1471 pinctrl_pm_select_default_state(dev); 1472 1473 clk_prepare_enable(as->clk); 1474 1475 /* Start the queue running */ 1476 ret = spi_master_resume(master); 1477 if (ret) 1478 dev_err(dev, "problem starting queue (%d)\n", ret); 1479 1480 return ret; 1481 } 1482 1483 static SIMPLE_DEV_PM_OPS(atmel_spi_pm_ops, atmel_spi_suspend, atmel_spi_resume); 1484 1485 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops) 1486 #else 1487 #define ATMEL_SPI_PM_OPS NULL 1488 #endif 1489 1490 #if defined(CONFIG_OF) 1491 static const struct of_device_id atmel_spi_dt_ids[] = { 1492 { .compatible = "atmel,at91rm9200-spi" }, 1493 { /* sentinel */ } 1494 }; 1495 1496 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids); 1497 #endif 1498 1499 static struct platform_driver atmel_spi_driver = { 1500 .driver = { 1501 .name = "atmel_spi", 1502 .owner = THIS_MODULE, 1503 .pm = ATMEL_SPI_PM_OPS, 1504 .of_match_table = of_match_ptr(atmel_spi_dt_ids), 1505 }, 1506 .probe = atmel_spi_probe, 1507 .remove = atmel_spi_remove, 1508 }; 1509 module_platform_driver(atmel_spi_driver); 1510 1511 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); 1512 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 1513 MODULE_LICENSE("GPL"); 1514 MODULE_ALIAS("platform:atmel_spi"); 1515