xref: /openbmc/linux/drivers/spi/spi-atmel.c (revision d7a3d85e)
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/atmel.h>
23 #include <linux/platform_data/dma-atmel.h>
24 #include <linux/of.h>
25 
26 #include <linux/io.h>
27 #include <linux/gpio.h>
28 #include <linux/pinctrl/consumer.h>
29 #include <linux/pm_runtime.h>
30 
31 /* SPI register offsets */
32 #define SPI_CR					0x0000
33 #define SPI_MR					0x0004
34 #define SPI_RDR					0x0008
35 #define SPI_TDR					0x000c
36 #define SPI_SR					0x0010
37 #define SPI_IER					0x0014
38 #define SPI_IDR					0x0018
39 #define SPI_IMR					0x001c
40 #define SPI_CSR0				0x0030
41 #define SPI_CSR1				0x0034
42 #define SPI_CSR2				0x0038
43 #define SPI_CSR3				0x003c
44 #define SPI_VERSION				0x00fc
45 #define SPI_RPR					0x0100
46 #define SPI_RCR					0x0104
47 #define SPI_TPR					0x0108
48 #define SPI_TCR					0x010c
49 #define SPI_RNPR				0x0110
50 #define SPI_RNCR				0x0114
51 #define SPI_TNPR				0x0118
52 #define SPI_TNCR				0x011c
53 #define SPI_PTCR				0x0120
54 #define SPI_PTSR				0x0124
55 
56 /* Bitfields in CR */
57 #define SPI_SPIEN_OFFSET			0
58 #define SPI_SPIEN_SIZE				1
59 #define SPI_SPIDIS_OFFSET			1
60 #define SPI_SPIDIS_SIZE				1
61 #define SPI_SWRST_OFFSET			7
62 #define SPI_SWRST_SIZE				1
63 #define SPI_LASTXFER_OFFSET			24
64 #define SPI_LASTXFER_SIZE			1
65 
66 /* Bitfields in MR */
67 #define SPI_MSTR_OFFSET				0
68 #define SPI_MSTR_SIZE				1
69 #define SPI_PS_OFFSET				1
70 #define SPI_PS_SIZE				1
71 #define SPI_PCSDEC_OFFSET			2
72 #define SPI_PCSDEC_SIZE				1
73 #define SPI_FDIV_OFFSET				3
74 #define SPI_FDIV_SIZE				1
75 #define SPI_MODFDIS_OFFSET			4
76 #define SPI_MODFDIS_SIZE			1
77 #define SPI_WDRBT_OFFSET			5
78 #define SPI_WDRBT_SIZE				1
79 #define SPI_LLB_OFFSET				7
80 #define SPI_LLB_SIZE				1
81 #define SPI_PCS_OFFSET				16
82 #define SPI_PCS_SIZE				4
83 #define SPI_DLYBCS_OFFSET			24
84 #define SPI_DLYBCS_SIZE				8
85 
86 /* Bitfields in RDR */
87 #define SPI_RD_OFFSET				0
88 #define SPI_RD_SIZE				16
89 
90 /* Bitfields in TDR */
91 #define SPI_TD_OFFSET				0
92 #define SPI_TD_SIZE				16
93 
94 /* Bitfields in SR */
95 #define SPI_RDRF_OFFSET				0
96 #define SPI_RDRF_SIZE				1
97 #define SPI_TDRE_OFFSET				1
98 #define SPI_TDRE_SIZE				1
99 #define SPI_MODF_OFFSET				2
100 #define SPI_MODF_SIZE				1
101 #define SPI_OVRES_OFFSET			3
102 #define SPI_OVRES_SIZE				1
103 #define SPI_ENDRX_OFFSET			4
104 #define SPI_ENDRX_SIZE				1
105 #define SPI_ENDTX_OFFSET			5
106 #define SPI_ENDTX_SIZE				1
107 #define SPI_RXBUFF_OFFSET			6
108 #define SPI_RXBUFF_SIZE				1
109 #define SPI_TXBUFE_OFFSET			7
110 #define SPI_TXBUFE_SIZE				1
111 #define SPI_NSSR_OFFSET				8
112 #define SPI_NSSR_SIZE				1
113 #define SPI_TXEMPTY_OFFSET			9
114 #define SPI_TXEMPTY_SIZE			1
115 #define SPI_SPIENS_OFFSET			16
116 #define SPI_SPIENS_SIZE				1
117 
118 /* Bitfields in CSR0 */
119 #define SPI_CPOL_OFFSET				0
120 #define SPI_CPOL_SIZE				1
121 #define SPI_NCPHA_OFFSET			1
122 #define SPI_NCPHA_SIZE				1
123 #define SPI_CSAAT_OFFSET			3
124 #define SPI_CSAAT_SIZE				1
125 #define SPI_BITS_OFFSET				4
126 #define SPI_BITS_SIZE				4
127 #define SPI_SCBR_OFFSET				8
128 #define SPI_SCBR_SIZE				8
129 #define SPI_DLYBS_OFFSET			16
130 #define SPI_DLYBS_SIZE				8
131 #define SPI_DLYBCT_OFFSET			24
132 #define SPI_DLYBCT_SIZE				8
133 
134 /* Bitfields in RCR */
135 #define SPI_RXCTR_OFFSET			0
136 #define SPI_RXCTR_SIZE				16
137 
138 /* Bitfields in TCR */
139 #define SPI_TXCTR_OFFSET			0
140 #define SPI_TXCTR_SIZE				16
141 
142 /* Bitfields in RNCR */
143 #define SPI_RXNCR_OFFSET			0
144 #define SPI_RXNCR_SIZE				16
145 
146 /* Bitfields in TNCR */
147 #define SPI_TXNCR_OFFSET			0
148 #define SPI_TXNCR_SIZE				16
149 
150 /* Bitfields in PTCR */
151 #define SPI_RXTEN_OFFSET			0
152 #define SPI_RXTEN_SIZE				1
153 #define SPI_RXTDIS_OFFSET			1
154 #define SPI_RXTDIS_SIZE				1
155 #define SPI_TXTEN_OFFSET			8
156 #define SPI_TXTEN_SIZE				1
157 #define SPI_TXTDIS_OFFSET			9
158 #define SPI_TXTDIS_SIZE				1
159 
160 /* Constants for BITS */
161 #define SPI_BITS_8_BPT				0
162 #define SPI_BITS_9_BPT				1
163 #define SPI_BITS_10_BPT				2
164 #define SPI_BITS_11_BPT				3
165 #define SPI_BITS_12_BPT				4
166 #define SPI_BITS_13_BPT				5
167 #define SPI_BITS_14_BPT				6
168 #define SPI_BITS_15_BPT				7
169 #define SPI_BITS_16_BPT				8
170 
171 /* Bit manipulation macros */
172 #define SPI_BIT(name) \
173 	(1 << SPI_##name##_OFFSET)
174 #define SPI_BF(name, value) \
175 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
176 #define SPI_BFEXT(name, value) \
177 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
178 #define SPI_BFINS(name, value, old) \
179 	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
180 	  | SPI_BF(name, value))
181 
182 /* Register access macros */
183 #ifdef CONFIG_AVR32
184 #define spi_readl(port, reg) \
185 	__raw_readl((port)->regs + SPI_##reg)
186 #define spi_writel(port, reg, value) \
187 	__raw_writel((value), (port)->regs + SPI_##reg)
188 #else
189 #define spi_readl(port, reg) \
190 	readl_relaxed((port)->regs + SPI_##reg)
191 #define spi_writel(port, reg, value) \
192 	writel_relaxed((value), (port)->regs + SPI_##reg)
193 #endif
194 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
195  * cache operations; better heuristics consider wordsize and bitrate.
196  */
197 #define DMA_MIN_BYTES	16
198 
199 #define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
200 
201 #define AUTOSUSPEND_TIMEOUT	2000
202 
203 struct atmel_spi_dma {
204 	struct dma_chan			*chan_rx;
205 	struct dma_chan			*chan_tx;
206 	struct scatterlist		sgrx;
207 	struct scatterlist		sgtx;
208 	struct dma_async_tx_descriptor	*data_desc_rx;
209 	struct dma_async_tx_descriptor	*data_desc_tx;
210 
211 	struct at_dma_slave	dma_slave;
212 };
213 
214 struct atmel_spi_caps {
215 	bool	is_spi2;
216 	bool	has_wdrbt;
217 	bool	has_dma_support;
218 };
219 
220 /*
221  * The core SPI transfer engine just talks to a register bank to set up
222  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
223  * framework provides the base clock, subdivided for each spi_device.
224  */
225 struct atmel_spi {
226 	spinlock_t		lock;
227 	unsigned long		flags;
228 
229 	phys_addr_t		phybase;
230 	void __iomem		*regs;
231 	int			irq;
232 	struct clk		*clk;
233 	struct platform_device	*pdev;
234 
235 	struct spi_transfer	*current_transfer;
236 	int			current_remaining_bytes;
237 	int			done_status;
238 
239 	struct completion	xfer_completion;
240 
241 	/* scratch buffer */
242 	void			*buffer;
243 	dma_addr_t		buffer_dma;
244 
245 	struct atmel_spi_caps	caps;
246 
247 	bool			use_dma;
248 	bool			use_pdc;
249 	/* dmaengine data */
250 	struct atmel_spi_dma	dma;
251 
252 	bool			keep_cs;
253 	bool			cs_active;
254 };
255 
256 /* Controller-specific per-slave state */
257 struct atmel_spi_device {
258 	unsigned int		npcs_pin;
259 	u32			csr;
260 };
261 
262 #define BUFFER_SIZE		PAGE_SIZE
263 #define INVALID_DMA_ADDRESS	0xffffffff
264 
265 /*
266  * Version 2 of the SPI controller has
267  *  - CR.LASTXFER
268  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
269  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
270  *  - SPI_CSRx.CSAAT
271  *  - SPI_CSRx.SBCR allows faster clocking
272  */
273 static bool atmel_spi_is_v2(struct atmel_spi *as)
274 {
275 	return as->caps.is_spi2;
276 }
277 
278 /*
279  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
280  * they assume that spi slave device state will not change on deselect, so
281  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
282  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
283  * controllers have CSAAT and friends.
284  *
285  * Since the CSAAT functionality is a bit weird on newer controllers as
286  * well, we use GPIO to control nCSx pins on all controllers, updating
287  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
288  * support active-high chipselects despite the controller's belief that
289  * only active-low devices/systems exists.
290  *
291  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
292  * right when driven with GPIO.  ("Mode Fault does not allow more than one
293  * Master on Chip Select 0.")  No workaround exists for that ... so for
294  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
295  * and (c) will trigger that first erratum in some cases.
296  */
297 
298 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
299 {
300 	struct atmel_spi_device *asd = spi->controller_state;
301 	unsigned active = spi->mode & SPI_CS_HIGH;
302 	u32 mr;
303 
304 	if (atmel_spi_is_v2(as)) {
305 		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
306 		/* For the low SPI version, there is a issue that PDC transfer
307 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
308 		 */
309 		spi_writel(as, CSR0, asd->csr);
310 		if (as->caps.has_wdrbt) {
311 			spi_writel(as, MR,
312 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
313 					| SPI_BIT(WDRBT)
314 					| SPI_BIT(MODFDIS)
315 					| SPI_BIT(MSTR));
316 		} else {
317 			spi_writel(as, MR,
318 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
319 					| SPI_BIT(MODFDIS)
320 					| SPI_BIT(MSTR));
321 		}
322 
323 		mr = spi_readl(as, MR);
324 		gpio_set_value(asd->npcs_pin, active);
325 	} else {
326 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
327 		int i;
328 		u32 csr;
329 
330 		/* Make sure clock polarity is correct */
331 		for (i = 0; i < spi->master->num_chipselect; i++) {
332 			csr = spi_readl(as, CSR0 + 4 * i);
333 			if ((csr ^ cpol) & SPI_BIT(CPOL))
334 				spi_writel(as, CSR0 + 4 * i,
335 						csr ^ SPI_BIT(CPOL));
336 		}
337 
338 		mr = spi_readl(as, MR);
339 		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
340 		if (spi->chip_select != 0)
341 			gpio_set_value(asd->npcs_pin, active);
342 		spi_writel(as, MR, mr);
343 	}
344 
345 	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
346 			asd->npcs_pin, active ? " (high)" : "",
347 			mr);
348 }
349 
350 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
351 {
352 	struct atmel_spi_device *asd = spi->controller_state;
353 	unsigned active = spi->mode & SPI_CS_HIGH;
354 	u32 mr;
355 
356 	/* only deactivate *this* device; sometimes transfers to
357 	 * another device may be active when this routine is called.
358 	 */
359 	mr = spi_readl(as, MR);
360 	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
361 		mr = SPI_BFINS(PCS, 0xf, mr);
362 		spi_writel(as, MR, mr);
363 	}
364 
365 	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
366 			asd->npcs_pin, active ? " (low)" : "",
367 			mr);
368 
369 	if (atmel_spi_is_v2(as) || spi->chip_select != 0)
370 		gpio_set_value(asd->npcs_pin, !active);
371 }
372 
373 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
374 {
375 	spin_lock_irqsave(&as->lock, as->flags);
376 }
377 
378 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
379 {
380 	spin_unlock_irqrestore(&as->lock, as->flags);
381 }
382 
383 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
384 				struct spi_transfer *xfer)
385 {
386 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
387 }
388 
389 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
390 				struct dma_slave_config *slave_config,
391 				u8 bits_per_word)
392 {
393 	int err = 0;
394 
395 	if (bits_per_word > 8) {
396 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
397 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
398 	} else {
399 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
400 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
401 	}
402 
403 	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
404 	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
405 	slave_config->src_maxburst = 1;
406 	slave_config->dst_maxburst = 1;
407 	slave_config->device_fc = false;
408 
409 	slave_config->direction = DMA_MEM_TO_DEV;
410 	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
411 		dev_err(&as->pdev->dev,
412 			"failed to configure tx dma channel\n");
413 		err = -EINVAL;
414 	}
415 
416 	slave_config->direction = DMA_DEV_TO_MEM;
417 	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
418 		dev_err(&as->pdev->dev,
419 			"failed to configure rx dma channel\n");
420 		err = -EINVAL;
421 	}
422 
423 	return err;
424 }
425 
426 static int atmel_spi_configure_dma(struct atmel_spi *as)
427 {
428 	struct dma_slave_config	slave_config;
429 	struct device *dev = &as->pdev->dev;
430 	int err;
431 
432 	dma_cap_mask_t mask;
433 	dma_cap_zero(mask);
434 	dma_cap_set(DMA_SLAVE, mask);
435 
436 	as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
437 	if (IS_ERR(as->dma.chan_tx)) {
438 		err = PTR_ERR(as->dma.chan_tx);
439 		if (err == -EPROBE_DEFER) {
440 			dev_warn(dev, "no DMA channel available at the moment\n");
441 			return err;
442 		}
443 		dev_err(dev,
444 			"DMA TX channel not available, SPI unable to use DMA\n");
445 		err = -EBUSY;
446 		goto error;
447 	}
448 
449 	/*
450 	 * No reason to check EPROBE_DEFER here since we have already requested
451 	 * tx channel. If it fails here, it's for another reason.
452 	 */
453 	as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
454 
455 	if (!as->dma.chan_rx) {
456 		dev_err(dev,
457 			"DMA RX channel not available, SPI unable to use DMA\n");
458 		err = -EBUSY;
459 		goto error;
460 	}
461 
462 	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
463 	if (err)
464 		goto error;
465 
466 	dev_info(&as->pdev->dev,
467 			"Using %s (tx) and %s (rx) for DMA transfers\n",
468 			dma_chan_name(as->dma.chan_tx),
469 			dma_chan_name(as->dma.chan_rx));
470 	return 0;
471 error:
472 	if (as->dma.chan_rx)
473 		dma_release_channel(as->dma.chan_rx);
474 	if (!IS_ERR(as->dma.chan_tx))
475 		dma_release_channel(as->dma.chan_tx);
476 	return err;
477 }
478 
479 static void atmel_spi_stop_dma(struct atmel_spi *as)
480 {
481 	if (as->dma.chan_rx)
482 		dmaengine_terminate_all(as->dma.chan_rx);
483 	if (as->dma.chan_tx)
484 		dmaengine_terminate_all(as->dma.chan_tx);
485 }
486 
487 static void atmel_spi_release_dma(struct atmel_spi *as)
488 {
489 	if (as->dma.chan_rx)
490 		dma_release_channel(as->dma.chan_rx);
491 	if (as->dma.chan_tx)
492 		dma_release_channel(as->dma.chan_tx);
493 }
494 
495 /* This function is called by the DMA driver from tasklet context */
496 static void dma_callback(void *data)
497 {
498 	struct spi_master	*master = data;
499 	struct atmel_spi	*as = spi_master_get_devdata(master);
500 
501 	complete(&as->xfer_completion);
502 }
503 
504 /*
505  * Next transfer using PIO.
506  */
507 static void atmel_spi_next_xfer_pio(struct spi_master *master,
508 				struct spi_transfer *xfer)
509 {
510 	struct atmel_spi	*as = spi_master_get_devdata(master);
511 	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
512 
513 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
514 
515 	/* Make sure data is not remaining in RDR */
516 	spi_readl(as, RDR);
517 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
518 		spi_readl(as, RDR);
519 		cpu_relax();
520 	}
521 
522 	if (xfer->tx_buf) {
523 		if (xfer->bits_per_word > 8)
524 			spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
525 		else
526 			spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
527 	} else {
528 		spi_writel(as, TDR, 0);
529 	}
530 
531 	dev_dbg(master->dev.parent,
532 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
533 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
534 		xfer->bits_per_word);
535 
536 	/* Enable relevant interrupts */
537 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
538 }
539 
540 /*
541  * Submit next transfer for DMA.
542  */
543 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
544 				struct spi_transfer *xfer,
545 				u32 *plen)
546 {
547 	struct atmel_spi	*as = spi_master_get_devdata(master);
548 	struct dma_chan		*rxchan = as->dma.chan_rx;
549 	struct dma_chan		*txchan = as->dma.chan_tx;
550 	struct dma_async_tx_descriptor *rxdesc;
551 	struct dma_async_tx_descriptor *txdesc;
552 	struct dma_slave_config	slave_config;
553 	dma_cookie_t		cookie;
554 	u32	len = *plen;
555 
556 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
557 
558 	/* Check that the channels are available */
559 	if (!rxchan || !txchan)
560 		return -ENODEV;
561 
562 	/* release lock for DMA operations */
563 	atmel_spi_unlock(as);
564 
565 	/* prepare the RX dma transfer */
566 	sg_init_table(&as->dma.sgrx, 1);
567 	if (xfer->rx_buf) {
568 		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
569 	} else {
570 		as->dma.sgrx.dma_address = as->buffer_dma;
571 		if (len > BUFFER_SIZE)
572 			len = BUFFER_SIZE;
573 	}
574 
575 	/* prepare the TX dma transfer */
576 	sg_init_table(&as->dma.sgtx, 1);
577 	if (xfer->tx_buf) {
578 		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
579 	} else {
580 		as->dma.sgtx.dma_address = as->buffer_dma;
581 		if (len > BUFFER_SIZE)
582 			len = BUFFER_SIZE;
583 		memset(as->buffer, 0, len);
584 	}
585 
586 	sg_dma_len(&as->dma.sgtx) = len;
587 	sg_dma_len(&as->dma.sgrx) = len;
588 
589 	*plen = len;
590 
591 	if (atmel_spi_dma_slave_config(as, &slave_config, 8))
592 		goto err_exit;
593 
594 	/* Send both scatterlists */
595 	rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
596 					 DMA_FROM_DEVICE,
597 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
598 	if (!rxdesc)
599 		goto err_dma;
600 
601 	txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
602 					 DMA_TO_DEVICE,
603 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
604 	if (!txdesc)
605 		goto err_dma;
606 
607 	dev_dbg(master->dev.parent,
608 		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
609 		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
610 		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
611 
612 	/* Enable relevant interrupts */
613 	spi_writel(as, IER, SPI_BIT(OVRES));
614 
615 	/* Put the callback on the RX transfer only, that should finish last */
616 	rxdesc->callback = dma_callback;
617 	rxdesc->callback_param = master;
618 
619 	/* Submit and fire RX and TX with TX last so we're ready to read! */
620 	cookie = rxdesc->tx_submit(rxdesc);
621 	if (dma_submit_error(cookie))
622 		goto err_dma;
623 	cookie = txdesc->tx_submit(txdesc);
624 	if (dma_submit_error(cookie))
625 		goto err_dma;
626 	rxchan->device->device_issue_pending(rxchan);
627 	txchan->device->device_issue_pending(txchan);
628 
629 	/* take back lock */
630 	atmel_spi_lock(as);
631 	return 0;
632 
633 err_dma:
634 	spi_writel(as, IDR, SPI_BIT(OVRES));
635 	atmel_spi_stop_dma(as);
636 err_exit:
637 	atmel_spi_lock(as);
638 	return -ENOMEM;
639 }
640 
641 static void atmel_spi_next_xfer_data(struct spi_master *master,
642 				struct spi_transfer *xfer,
643 				dma_addr_t *tx_dma,
644 				dma_addr_t *rx_dma,
645 				u32 *plen)
646 {
647 	struct atmel_spi	*as = spi_master_get_devdata(master);
648 	u32			len = *plen;
649 
650 	/* use scratch buffer only when rx or tx data is unspecified */
651 	if (xfer->rx_buf)
652 		*rx_dma = xfer->rx_dma + xfer->len - *plen;
653 	else {
654 		*rx_dma = as->buffer_dma;
655 		if (len > BUFFER_SIZE)
656 			len = BUFFER_SIZE;
657 	}
658 
659 	if (xfer->tx_buf)
660 		*tx_dma = xfer->tx_dma + xfer->len - *plen;
661 	else {
662 		*tx_dma = as->buffer_dma;
663 		if (len > BUFFER_SIZE)
664 			len = BUFFER_SIZE;
665 		memset(as->buffer, 0, len);
666 		dma_sync_single_for_device(&as->pdev->dev,
667 				as->buffer_dma, len, DMA_TO_DEVICE);
668 	}
669 
670 	*plen = len;
671 }
672 
673 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
674 				    struct spi_device *spi,
675 				    struct spi_transfer *xfer)
676 {
677 	u32			scbr, csr;
678 	unsigned long		bus_hz;
679 
680 	/* v1 chips start out at half the peripheral bus speed. */
681 	bus_hz = clk_get_rate(as->clk);
682 	if (!atmel_spi_is_v2(as))
683 		bus_hz /= 2;
684 
685 	/*
686 	 * Calculate the lowest divider that satisfies the
687 	 * constraint, assuming div32/fdiv/mbz == 0.
688 	 */
689 	if (xfer->speed_hz)
690 		scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
691 	else
692 		/*
693 		 * This can happend if max_speed is null.
694 		 * In this case, we set the lowest possible speed
695 		 */
696 		scbr = 0xff;
697 
698 	/*
699 	 * If the resulting divider doesn't fit into the
700 	 * register bitfield, we can't satisfy the constraint.
701 	 */
702 	if (scbr >= (1 << SPI_SCBR_SIZE)) {
703 		dev_err(&spi->dev,
704 			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
705 			xfer->speed_hz, scbr, bus_hz/255);
706 		return -EINVAL;
707 	}
708 	if (scbr == 0) {
709 		dev_err(&spi->dev,
710 			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
711 			xfer->speed_hz, scbr, bus_hz);
712 		return -EINVAL;
713 	}
714 	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
715 	csr = SPI_BFINS(SCBR, scbr, csr);
716 	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
717 
718 	return 0;
719 }
720 
721 /*
722  * Submit next transfer for PDC.
723  * lock is held, spi irq is blocked
724  */
725 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
726 					struct spi_message *msg,
727 					struct spi_transfer *xfer)
728 {
729 	struct atmel_spi	*as = spi_master_get_devdata(master);
730 	u32			len;
731 	dma_addr_t		tx_dma, rx_dma;
732 
733 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
734 
735 	len = as->current_remaining_bytes;
736 	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
737 	as->current_remaining_bytes -= len;
738 
739 	spi_writel(as, RPR, rx_dma);
740 	spi_writel(as, TPR, tx_dma);
741 
742 	if (msg->spi->bits_per_word > 8)
743 		len >>= 1;
744 	spi_writel(as, RCR, len);
745 	spi_writel(as, TCR, len);
746 
747 	dev_dbg(&msg->spi->dev,
748 		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
749 		xfer, xfer->len, xfer->tx_buf,
750 		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
751 		(unsigned long long)xfer->rx_dma);
752 
753 	if (as->current_remaining_bytes) {
754 		len = as->current_remaining_bytes;
755 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
756 		as->current_remaining_bytes -= len;
757 
758 		spi_writel(as, RNPR, rx_dma);
759 		spi_writel(as, TNPR, tx_dma);
760 
761 		if (msg->spi->bits_per_word > 8)
762 			len >>= 1;
763 		spi_writel(as, RNCR, len);
764 		spi_writel(as, TNCR, len);
765 
766 		dev_dbg(&msg->spi->dev,
767 			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
768 			xfer, xfer->len, xfer->tx_buf,
769 			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
770 			(unsigned long long)xfer->rx_dma);
771 	}
772 
773 	/* REVISIT: We're waiting for RXBUFF before we start the next
774 	 * transfer because we need to handle some difficult timing
775 	 * issues otherwise. If we wait for TXBUFE in one transfer and
776 	 * then starts waiting for RXBUFF in the next, it's difficult
777 	 * to tell the difference between the RXBUFF interrupt we're
778 	 * actually waiting for and the RXBUFF interrupt of the
779 	 * previous transfer.
780 	 *
781 	 * It should be doable, though. Just not now...
782 	 */
783 	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
784 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
785 }
786 
787 /*
788  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
789  *  - The buffer is either valid for CPU access, else NULL
790  *  - If the buffer is valid, so is its DMA address
791  *
792  * This driver manages the dma address unless message->is_dma_mapped.
793  */
794 static int
795 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
796 {
797 	struct device	*dev = &as->pdev->dev;
798 
799 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
800 	if (xfer->tx_buf) {
801 		/* tx_buf is a const void* where we need a void * for the dma
802 		 * mapping */
803 		void *nonconst_tx = (void *)xfer->tx_buf;
804 
805 		xfer->tx_dma = dma_map_single(dev,
806 				nonconst_tx, xfer->len,
807 				DMA_TO_DEVICE);
808 		if (dma_mapping_error(dev, xfer->tx_dma))
809 			return -ENOMEM;
810 	}
811 	if (xfer->rx_buf) {
812 		xfer->rx_dma = dma_map_single(dev,
813 				xfer->rx_buf, xfer->len,
814 				DMA_FROM_DEVICE);
815 		if (dma_mapping_error(dev, xfer->rx_dma)) {
816 			if (xfer->tx_buf)
817 				dma_unmap_single(dev,
818 						xfer->tx_dma, xfer->len,
819 						DMA_TO_DEVICE);
820 			return -ENOMEM;
821 		}
822 	}
823 	return 0;
824 }
825 
826 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
827 				     struct spi_transfer *xfer)
828 {
829 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
830 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
831 				 xfer->len, DMA_TO_DEVICE);
832 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
833 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
834 				 xfer->len, DMA_FROM_DEVICE);
835 }
836 
837 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
838 {
839 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
840 }
841 
842 /* Called from IRQ
843  *
844  * Must update "current_remaining_bytes" to keep track of data
845  * to transfer.
846  */
847 static void
848 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
849 {
850 	u8		*rxp;
851 	u16		*rxp16;
852 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
853 
854 	if (xfer->rx_buf) {
855 		if (xfer->bits_per_word > 8) {
856 			rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
857 			*rxp16 = spi_readl(as, RDR);
858 		} else {
859 			rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
860 			*rxp = spi_readl(as, RDR);
861 		}
862 	} else {
863 		spi_readl(as, RDR);
864 	}
865 	if (xfer->bits_per_word > 8) {
866 		if (as->current_remaining_bytes > 2)
867 			as->current_remaining_bytes -= 2;
868 		else
869 			as->current_remaining_bytes = 0;
870 	} else {
871 		as->current_remaining_bytes--;
872 	}
873 }
874 
875 /* Interrupt
876  *
877  * No need for locking in this Interrupt handler: done_status is the
878  * only information modified.
879  */
880 static irqreturn_t
881 atmel_spi_pio_interrupt(int irq, void *dev_id)
882 {
883 	struct spi_master	*master = dev_id;
884 	struct atmel_spi	*as = spi_master_get_devdata(master);
885 	u32			status, pending, imr;
886 	struct spi_transfer	*xfer;
887 	int			ret = IRQ_NONE;
888 
889 	imr = spi_readl(as, IMR);
890 	status = spi_readl(as, SR);
891 	pending = status & imr;
892 
893 	if (pending & SPI_BIT(OVRES)) {
894 		ret = IRQ_HANDLED;
895 		spi_writel(as, IDR, SPI_BIT(OVRES));
896 		dev_warn(master->dev.parent, "overrun\n");
897 
898 		/*
899 		 * When we get an overrun, we disregard the current
900 		 * transfer. Data will not be copied back from any
901 		 * bounce buffer and msg->actual_len will not be
902 		 * updated with the last xfer.
903 		 *
904 		 * We will also not process any remaning transfers in
905 		 * the message.
906 		 */
907 		as->done_status = -EIO;
908 		smp_wmb();
909 
910 		/* Clear any overrun happening while cleaning up */
911 		spi_readl(as, SR);
912 
913 		complete(&as->xfer_completion);
914 
915 	} else if (pending & SPI_BIT(RDRF)) {
916 		atmel_spi_lock(as);
917 
918 		if (as->current_remaining_bytes) {
919 			ret = IRQ_HANDLED;
920 			xfer = as->current_transfer;
921 			atmel_spi_pump_pio_data(as, xfer);
922 			if (!as->current_remaining_bytes)
923 				spi_writel(as, IDR, pending);
924 
925 			complete(&as->xfer_completion);
926 		}
927 
928 		atmel_spi_unlock(as);
929 	} else {
930 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
931 		ret = IRQ_HANDLED;
932 		spi_writel(as, IDR, pending);
933 	}
934 
935 	return ret;
936 }
937 
938 static irqreturn_t
939 atmel_spi_pdc_interrupt(int irq, void *dev_id)
940 {
941 	struct spi_master	*master = dev_id;
942 	struct atmel_spi	*as = spi_master_get_devdata(master);
943 	u32			status, pending, imr;
944 	int			ret = IRQ_NONE;
945 
946 	imr = spi_readl(as, IMR);
947 	status = spi_readl(as, SR);
948 	pending = status & imr;
949 
950 	if (pending & SPI_BIT(OVRES)) {
951 
952 		ret = IRQ_HANDLED;
953 
954 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
955 				     | SPI_BIT(OVRES)));
956 
957 		/* Clear any overrun happening while cleaning up */
958 		spi_readl(as, SR);
959 
960 		as->done_status = -EIO;
961 
962 		complete(&as->xfer_completion);
963 
964 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
965 		ret = IRQ_HANDLED;
966 
967 		spi_writel(as, IDR, pending);
968 
969 		complete(&as->xfer_completion);
970 	}
971 
972 	return ret;
973 }
974 
975 static int atmel_spi_setup(struct spi_device *spi)
976 {
977 	struct atmel_spi	*as;
978 	struct atmel_spi_device	*asd;
979 	u32			csr;
980 	unsigned int		bits = spi->bits_per_word;
981 	unsigned int		npcs_pin;
982 	int			ret;
983 
984 	as = spi_master_get_devdata(spi->master);
985 
986 	/* see notes above re chipselect */
987 	if (!atmel_spi_is_v2(as)
988 			&& spi->chip_select == 0
989 			&& (spi->mode & SPI_CS_HIGH)) {
990 		dev_dbg(&spi->dev, "setup: can't be active-high\n");
991 		return -EINVAL;
992 	}
993 
994 	csr = SPI_BF(BITS, bits - 8);
995 	if (spi->mode & SPI_CPOL)
996 		csr |= SPI_BIT(CPOL);
997 	if (!(spi->mode & SPI_CPHA))
998 		csr |= SPI_BIT(NCPHA);
999 
1000 	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1001 	 *
1002 	 * DLYBCT would add delays between words, slowing down transfers.
1003 	 * It could potentially be useful to cope with DMA bottlenecks, but
1004 	 * in those cases it's probably best to just use a lower bitrate.
1005 	 */
1006 	csr |= SPI_BF(DLYBS, 0);
1007 	csr |= SPI_BF(DLYBCT, 0);
1008 
1009 	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1010 	npcs_pin = (unsigned long)spi->controller_data;
1011 
1012 	if (gpio_is_valid(spi->cs_gpio))
1013 		npcs_pin = spi->cs_gpio;
1014 
1015 	asd = spi->controller_state;
1016 	if (!asd) {
1017 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1018 		if (!asd)
1019 			return -ENOMEM;
1020 
1021 		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1022 		if (ret) {
1023 			kfree(asd);
1024 			return ret;
1025 		}
1026 
1027 		asd->npcs_pin = npcs_pin;
1028 		spi->controller_state = asd;
1029 		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1030 	}
1031 
1032 	asd->csr = csr;
1033 
1034 	dev_dbg(&spi->dev,
1035 		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1036 		bits, spi->mode, spi->chip_select, csr);
1037 
1038 	if (!atmel_spi_is_v2(as))
1039 		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1040 
1041 	return 0;
1042 }
1043 
1044 static int atmel_spi_one_transfer(struct spi_master *master,
1045 					struct spi_message *msg,
1046 					struct spi_transfer *xfer)
1047 {
1048 	struct atmel_spi	*as;
1049 	struct spi_device	*spi = msg->spi;
1050 	u8			bits;
1051 	u32			len;
1052 	struct atmel_spi_device	*asd;
1053 	int			timeout;
1054 	int			ret;
1055 	unsigned long		dma_timeout;
1056 
1057 	as = spi_master_get_devdata(master);
1058 
1059 	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1060 		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1061 		return -EINVAL;
1062 	}
1063 
1064 	if (xfer->bits_per_word) {
1065 		asd = spi->controller_state;
1066 		bits = (asd->csr >> 4) & 0xf;
1067 		if (bits != xfer->bits_per_word - 8) {
1068 			dev_dbg(&spi->dev,
1069 			"you can't yet change bits_per_word in transfers\n");
1070 			return -ENOPROTOOPT;
1071 		}
1072 	}
1073 
1074 	/*
1075 	 * DMA map early, for performance (empties dcache ASAP) and
1076 	 * better fault reporting.
1077 	 */
1078 	if ((!msg->is_dma_mapped)
1079 		&& (atmel_spi_use_dma(as, xfer)	|| as->use_pdc)) {
1080 		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1081 			return -ENOMEM;
1082 	}
1083 
1084 	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1085 
1086 	as->done_status = 0;
1087 	as->current_transfer = xfer;
1088 	as->current_remaining_bytes = xfer->len;
1089 	while (as->current_remaining_bytes) {
1090 		reinit_completion(&as->xfer_completion);
1091 
1092 		if (as->use_pdc) {
1093 			atmel_spi_pdc_next_xfer(master, msg, xfer);
1094 		} else if (atmel_spi_use_dma(as, xfer)) {
1095 			len = as->current_remaining_bytes;
1096 			ret = atmel_spi_next_xfer_dma_submit(master,
1097 								xfer, &len);
1098 			if (ret) {
1099 				dev_err(&spi->dev,
1100 					"unable to use DMA, fallback to PIO\n");
1101 				atmel_spi_next_xfer_pio(master, xfer);
1102 			} else {
1103 				as->current_remaining_bytes -= len;
1104 				if (as->current_remaining_bytes < 0)
1105 					as->current_remaining_bytes = 0;
1106 			}
1107 		} else {
1108 			atmel_spi_next_xfer_pio(master, xfer);
1109 		}
1110 
1111 		/* interrupts are disabled, so free the lock for schedule */
1112 		atmel_spi_unlock(as);
1113 		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1114 							  SPI_DMA_TIMEOUT);
1115 		atmel_spi_lock(as);
1116 		if (WARN_ON(dma_timeout == 0)) {
1117 			dev_err(&spi->dev, "spi transfer timeout\n");
1118 			as->done_status = -EIO;
1119 		}
1120 
1121 		if (as->done_status)
1122 			break;
1123 	}
1124 
1125 	if (as->done_status) {
1126 		if (as->use_pdc) {
1127 			dev_warn(master->dev.parent,
1128 				"overrun (%u/%u remaining)\n",
1129 				spi_readl(as, TCR), spi_readl(as, RCR));
1130 
1131 			/*
1132 			 * Clean up DMA registers and make sure the data
1133 			 * registers are empty.
1134 			 */
1135 			spi_writel(as, RNCR, 0);
1136 			spi_writel(as, TNCR, 0);
1137 			spi_writel(as, RCR, 0);
1138 			spi_writel(as, TCR, 0);
1139 			for (timeout = 1000; timeout; timeout--)
1140 				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1141 					break;
1142 			if (!timeout)
1143 				dev_warn(master->dev.parent,
1144 					 "timeout waiting for TXEMPTY");
1145 			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1146 				spi_readl(as, RDR);
1147 
1148 			/* Clear any overrun happening while cleaning up */
1149 			spi_readl(as, SR);
1150 
1151 		} else if (atmel_spi_use_dma(as, xfer)) {
1152 			atmel_spi_stop_dma(as);
1153 		}
1154 
1155 		if (!msg->is_dma_mapped
1156 			&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1157 			atmel_spi_dma_unmap_xfer(master, xfer);
1158 
1159 		return 0;
1160 
1161 	} else {
1162 		/* only update length if no error */
1163 		msg->actual_length += xfer->len;
1164 	}
1165 
1166 	if (!msg->is_dma_mapped
1167 		&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1168 		atmel_spi_dma_unmap_xfer(master, xfer);
1169 
1170 	if (xfer->delay_usecs)
1171 		udelay(xfer->delay_usecs);
1172 
1173 	if (xfer->cs_change) {
1174 		if (list_is_last(&xfer->transfer_list,
1175 				 &msg->transfers)) {
1176 			as->keep_cs = true;
1177 		} else {
1178 			as->cs_active = !as->cs_active;
1179 			if (as->cs_active)
1180 				cs_activate(as, msg->spi);
1181 			else
1182 				cs_deactivate(as, msg->spi);
1183 		}
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 static int atmel_spi_transfer_one_message(struct spi_master *master,
1190 						struct spi_message *msg)
1191 {
1192 	struct atmel_spi *as;
1193 	struct spi_transfer *xfer;
1194 	struct spi_device *spi = msg->spi;
1195 	int ret = 0;
1196 
1197 	as = spi_master_get_devdata(master);
1198 
1199 	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1200 					msg, dev_name(&spi->dev));
1201 
1202 	atmel_spi_lock(as);
1203 	cs_activate(as, spi);
1204 
1205 	as->cs_active = true;
1206 	as->keep_cs = false;
1207 
1208 	msg->status = 0;
1209 	msg->actual_length = 0;
1210 
1211 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1212 		ret = atmel_spi_one_transfer(master, msg, xfer);
1213 		if (ret)
1214 			goto msg_done;
1215 	}
1216 
1217 	if (as->use_pdc)
1218 		atmel_spi_disable_pdc_transfer(as);
1219 
1220 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1221 		dev_dbg(&spi->dev,
1222 			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1223 			xfer, xfer->len,
1224 			xfer->tx_buf, &xfer->tx_dma,
1225 			xfer->rx_buf, &xfer->rx_dma);
1226 	}
1227 
1228 msg_done:
1229 	if (!as->keep_cs)
1230 		cs_deactivate(as, msg->spi);
1231 
1232 	atmel_spi_unlock(as);
1233 
1234 	msg->status = as->done_status;
1235 	spi_finalize_current_message(spi->master);
1236 
1237 	return ret;
1238 }
1239 
1240 static void atmel_spi_cleanup(struct spi_device *spi)
1241 {
1242 	struct atmel_spi_device	*asd = spi->controller_state;
1243 	unsigned		gpio = (unsigned long) spi->controller_data;
1244 
1245 	if (!asd)
1246 		return;
1247 
1248 	spi->controller_state = NULL;
1249 	gpio_free(gpio);
1250 	kfree(asd);
1251 }
1252 
1253 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1254 {
1255 	return spi_readl(as, VERSION) & 0x00000fff;
1256 }
1257 
1258 static void atmel_get_caps(struct atmel_spi *as)
1259 {
1260 	unsigned int version;
1261 
1262 	version = atmel_get_version(as);
1263 	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1264 
1265 	as->caps.is_spi2 = version > 0x121;
1266 	as->caps.has_wdrbt = version >= 0x210;
1267 	as->caps.has_dma_support = version >= 0x212;
1268 }
1269 
1270 /*-------------------------------------------------------------------------*/
1271 
1272 static int atmel_spi_probe(struct platform_device *pdev)
1273 {
1274 	struct resource		*regs;
1275 	int			irq;
1276 	struct clk		*clk;
1277 	int			ret;
1278 	struct spi_master	*master;
1279 	struct atmel_spi	*as;
1280 
1281 	/* Select default pin state */
1282 	pinctrl_pm_select_default_state(&pdev->dev);
1283 
1284 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1285 	if (!regs)
1286 		return -ENXIO;
1287 
1288 	irq = platform_get_irq(pdev, 0);
1289 	if (irq < 0)
1290 		return irq;
1291 
1292 	clk = devm_clk_get(&pdev->dev, "spi_clk");
1293 	if (IS_ERR(clk))
1294 		return PTR_ERR(clk);
1295 
1296 	/* setup spi core then atmel-specific driver state */
1297 	ret = -ENOMEM;
1298 	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1299 	if (!master)
1300 		goto out_free;
1301 
1302 	/* the spi->mode bits understood by this driver: */
1303 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1304 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1305 	master->dev.of_node = pdev->dev.of_node;
1306 	master->bus_num = pdev->id;
1307 	master->num_chipselect = master->dev.of_node ? 0 : 4;
1308 	master->setup = atmel_spi_setup;
1309 	master->transfer_one_message = atmel_spi_transfer_one_message;
1310 	master->cleanup = atmel_spi_cleanup;
1311 	master->auto_runtime_pm = true;
1312 	platform_set_drvdata(pdev, master);
1313 
1314 	as = spi_master_get_devdata(master);
1315 
1316 	/*
1317 	 * Scratch buffer is used for throwaway rx and tx data.
1318 	 * It's coherent to minimize dcache pollution.
1319 	 */
1320 	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1321 					&as->buffer_dma, GFP_KERNEL);
1322 	if (!as->buffer)
1323 		goto out_free;
1324 
1325 	spin_lock_init(&as->lock);
1326 
1327 	as->pdev = pdev;
1328 	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1329 	if (IS_ERR(as->regs)) {
1330 		ret = PTR_ERR(as->regs);
1331 		goto out_free_buffer;
1332 	}
1333 	as->phybase = regs->start;
1334 	as->irq = irq;
1335 	as->clk = clk;
1336 
1337 	init_completion(&as->xfer_completion);
1338 
1339 	atmel_get_caps(as);
1340 
1341 	as->use_dma = false;
1342 	as->use_pdc = false;
1343 	if (as->caps.has_dma_support) {
1344 		ret = atmel_spi_configure_dma(as);
1345 		if (ret == 0)
1346 			as->use_dma = true;
1347 		else if (ret == -EPROBE_DEFER)
1348 			return ret;
1349 	} else {
1350 		as->use_pdc = true;
1351 	}
1352 
1353 	if (as->caps.has_dma_support && !as->use_dma)
1354 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1355 
1356 	if (as->use_pdc) {
1357 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1358 					0, dev_name(&pdev->dev), master);
1359 	} else {
1360 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1361 					0, dev_name(&pdev->dev), master);
1362 	}
1363 	if (ret)
1364 		goto out_unmap_regs;
1365 
1366 	/* Initialize the hardware */
1367 	ret = clk_prepare_enable(clk);
1368 	if (ret)
1369 		goto out_free_irq;
1370 	spi_writel(as, CR, SPI_BIT(SWRST));
1371 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1372 	if (as->caps.has_wdrbt) {
1373 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1374 				| SPI_BIT(MSTR));
1375 	} else {
1376 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1377 	}
1378 
1379 	if (as->use_pdc)
1380 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1381 	spi_writel(as, CR, SPI_BIT(SPIEN));
1382 
1383 	/* go! */
1384 	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1385 			(unsigned long)regs->start, irq);
1386 
1387 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1388 	pm_runtime_use_autosuspend(&pdev->dev);
1389 	pm_runtime_set_active(&pdev->dev);
1390 	pm_runtime_enable(&pdev->dev);
1391 
1392 	ret = devm_spi_register_master(&pdev->dev, master);
1393 	if (ret)
1394 		goto out_free_dma;
1395 
1396 	return 0;
1397 
1398 out_free_dma:
1399 	pm_runtime_disable(&pdev->dev);
1400 	pm_runtime_set_suspended(&pdev->dev);
1401 
1402 	if (as->use_dma)
1403 		atmel_spi_release_dma(as);
1404 
1405 	spi_writel(as, CR, SPI_BIT(SWRST));
1406 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1407 	clk_disable_unprepare(clk);
1408 out_free_irq:
1409 out_unmap_regs:
1410 out_free_buffer:
1411 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1412 			as->buffer_dma);
1413 out_free:
1414 	spi_master_put(master);
1415 	return ret;
1416 }
1417 
1418 static int atmel_spi_remove(struct platform_device *pdev)
1419 {
1420 	struct spi_master	*master = platform_get_drvdata(pdev);
1421 	struct atmel_spi	*as = spi_master_get_devdata(master);
1422 
1423 	pm_runtime_get_sync(&pdev->dev);
1424 
1425 	/* reset the hardware and block queue progress */
1426 	spin_lock_irq(&as->lock);
1427 	if (as->use_dma) {
1428 		atmel_spi_stop_dma(as);
1429 		atmel_spi_release_dma(as);
1430 	}
1431 
1432 	spi_writel(as, CR, SPI_BIT(SWRST));
1433 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1434 	spi_readl(as, SR);
1435 	spin_unlock_irq(&as->lock);
1436 
1437 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1438 			as->buffer_dma);
1439 
1440 	clk_disable_unprepare(as->clk);
1441 
1442 	pm_runtime_put_noidle(&pdev->dev);
1443 	pm_runtime_disable(&pdev->dev);
1444 
1445 	return 0;
1446 }
1447 
1448 #ifdef CONFIG_PM
1449 static int atmel_spi_runtime_suspend(struct device *dev)
1450 {
1451 	struct spi_master *master = dev_get_drvdata(dev);
1452 	struct atmel_spi *as = spi_master_get_devdata(master);
1453 
1454 	clk_disable_unprepare(as->clk);
1455 	pinctrl_pm_select_sleep_state(dev);
1456 
1457 	return 0;
1458 }
1459 
1460 static int atmel_spi_runtime_resume(struct device *dev)
1461 {
1462 	struct spi_master *master = dev_get_drvdata(dev);
1463 	struct atmel_spi *as = spi_master_get_devdata(master);
1464 
1465 	pinctrl_pm_select_default_state(dev);
1466 
1467 	return clk_prepare_enable(as->clk);
1468 }
1469 
1470 static int atmel_spi_suspend(struct device *dev)
1471 {
1472 	struct spi_master *master = dev_get_drvdata(dev);
1473 	int ret;
1474 
1475 	/* Stop the queue running */
1476 	ret = spi_master_suspend(master);
1477 	if (ret) {
1478 		dev_warn(dev, "cannot suspend master\n");
1479 		return ret;
1480 	}
1481 
1482 	if (!pm_runtime_suspended(dev))
1483 		atmel_spi_runtime_suspend(dev);
1484 
1485 	return 0;
1486 }
1487 
1488 static int atmel_spi_resume(struct device *dev)
1489 {
1490 	struct spi_master *master = dev_get_drvdata(dev);
1491 	int ret;
1492 
1493 	if (!pm_runtime_suspended(dev)) {
1494 		ret = atmel_spi_runtime_resume(dev);
1495 		if (ret)
1496 			return ret;
1497 	}
1498 
1499 	/* Start the queue running */
1500 	ret = spi_master_resume(master);
1501 	if (ret)
1502 		dev_err(dev, "problem starting queue (%d)\n", ret);
1503 
1504 	return ret;
1505 }
1506 
1507 static const struct dev_pm_ops atmel_spi_pm_ops = {
1508 	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1509 	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1510 			   atmel_spi_runtime_resume, NULL)
1511 };
1512 #define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1513 #else
1514 #define ATMEL_SPI_PM_OPS	NULL
1515 #endif
1516 
1517 #if defined(CONFIG_OF)
1518 static const struct of_device_id atmel_spi_dt_ids[] = {
1519 	{ .compatible = "atmel,at91rm9200-spi" },
1520 	{ /* sentinel */ }
1521 };
1522 
1523 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1524 #endif
1525 
1526 static struct platform_driver atmel_spi_driver = {
1527 	.driver		= {
1528 		.name	= "atmel_spi",
1529 		.pm	= ATMEL_SPI_PM_OPS,
1530 		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1531 	},
1532 	.probe		= atmel_spi_probe,
1533 	.remove		= atmel_spi_remove,
1534 };
1535 module_platform_driver(atmel_spi_driver);
1536 
1537 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1538 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1539 MODULE_LICENSE("GPL");
1540 MODULE_ALIAS("platform:atmel_spi");
1541