1 /* 2 * Driver for Atmel AT32 and AT91 SPI Controllers 3 * 4 * Copyright (C) 2006 Atmel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/clk.h> 14 #include <linux/module.h> 15 #include <linux/platform_device.h> 16 #include <linux/delay.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/dmaengine.h> 19 #include <linux/err.h> 20 #include <linux/interrupt.h> 21 #include <linux/spi/spi.h> 22 #include <linux/slab.h> 23 #include <linux/platform_data/atmel.h> 24 #include <linux/platform_data/dma-atmel.h> 25 #include <linux/of.h> 26 27 #include <linux/io.h> 28 #include <linux/gpio.h> 29 30 /* SPI register offsets */ 31 #define SPI_CR 0x0000 32 #define SPI_MR 0x0004 33 #define SPI_RDR 0x0008 34 #define SPI_TDR 0x000c 35 #define SPI_SR 0x0010 36 #define SPI_IER 0x0014 37 #define SPI_IDR 0x0018 38 #define SPI_IMR 0x001c 39 #define SPI_CSR0 0x0030 40 #define SPI_CSR1 0x0034 41 #define SPI_CSR2 0x0038 42 #define SPI_CSR3 0x003c 43 #define SPI_VERSION 0x00fc 44 #define SPI_RPR 0x0100 45 #define SPI_RCR 0x0104 46 #define SPI_TPR 0x0108 47 #define SPI_TCR 0x010c 48 #define SPI_RNPR 0x0110 49 #define SPI_RNCR 0x0114 50 #define SPI_TNPR 0x0118 51 #define SPI_TNCR 0x011c 52 #define SPI_PTCR 0x0120 53 #define SPI_PTSR 0x0124 54 55 /* Bitfields in CR */ 56 #define SPI_SPIEN_OFFSET 0 57 #define SPI_SPIEN_SIZE 1 58 #define SPI_SPIDIS_OFFSET 1 59 #define SPI_SPIDIS_SIZE 1 60 #define SPI_SWRST_OFFSET 7 61 #define SPI_SWRST_SIZE 1 62 #define SPI_LASTXFER_OFFSET 24 63 #define SPI_LASTXFER_SIZE 1 64 65 /* Bitfields in MR */ 66 #define SPI_MSTR_OFFSET 0 67 #define SPI_MSTR_SIZE 1 68 #define SPI_PS_OFFSET 1 69 #define SPI_PS_SIZE 1 70 #define SPI_PCSDEC_OFFSET 2 71 #define SPI_PCSDEC_SIZE 1 72 #define SPI_FDIV_OFFSET 3 73 #define SPI_FDIV_SIZE 1 74 #define SPI_MODFDIS_OFFSET 4 75 #define SPI_MODFDIS_SIZE 1 76 #define SPI_WDRBT_OFFSET 5 77 #define SPI_WDRBT_SIZE 1 78 #define SPI_LLB_OFFSET 7 79 #define SPI_LLB_SIZE 1 80 #define SPI_PCS_OFFSET 16 81 #define SPI_PCS_SIZE 4 82 #define SPI_DLYBCS_OFFSET 24 83 #define SPI_DLYBCS_SIZE 8 84 85 /* Bitfields in RDR */ 86 #define SPI_RD_OFFSET 0 87 #define SPI_RD_SIZE 16 88 89 /* Bitfields in TDR */ 90 #define SPI_TD_OFFSET 0 91 #define SPI_TD_SIZE 16 92 93 /* Bitfields in SR */ 94 #define SPI_RDRF_OFFSET 0 95 #define SPI_RDRF_SIZE 1 96 #define SPI_TDRE_OFFSET 1 97 #define SPI_TDRE_SIZE 1 98 #define SPI_MODF_OFFSET 2 99 #define SPI_MODF_SIZE 1 100 #define SPI_OVRES_OFFSET 3 101 #define SPI_OVRES_SIZE 1 102 #define SPI_ENDRX_OFFSET 4 103 #define SPI_ENDRX_SIZE 1 104 #define SPI_ENDTX_OFFSET 5 105 #define SPI_ENDTX_SIZE 1 106 #define SPI_RXBUFF_OFFSET 6 107 #define SPI_RXBUFF_SIZE 1 108 #define SPI_TXBUFE_OFFSET 7 109 #define SPI_TXBUFE_SIZE 1 110 #define SPI_NSSR_OFFSET 8 111 #define SPI_NSSR_SIZE 1 112 #define SPI_TXEMPTY_OFFSET 9 113 #define SPI_TXEMPTY_SIZE 1 114 #define SPI_SPIENS_OFFSET 16 115 #define SPI_SPIENS_SIZE 1 116 117 /* Bitfields in CSR0 */ 118 #define SPI_CPOL_OFFSET 0 119 #define SPI_CPOL_SIZE 1 120 #define SPI_NCPHA_OFFSET 1 121 #define SPI_NCPHA_SIZE 1 122 #define SPI_CSAAT_OFFSET 3 123 #define SPI_CSAAT_SIZE 1 124 #define SPI_BITS_OFFSET 4 125 #define SPI_BITS_SIZE 4 126 #define SPI_SCBR_OFFSET 8 127 #define SPI_SCBR_SIZE 8 128 #define SPI_DLYBS_OFFSET 16 129 #define SPI_DLYBS_SIZE 8 130 #define SPI_DLYBCT_OFFSET 24 131 #define SPI_DLYBCT_SIZE 8 132 133 /* Bitfields in RCR */ 134 #define SPI_RXCTR_OFFSET 0 135 #define SPI_RXCTR_SIZE 16 136 137 /* Bitfields in TCR */ 138 #define SPI_TXCTR_OFFSET 0 139 #define SPI_TXCTR_SIZE 16 140 141 /* Bitfields in RNCR */ 142 #define SPI_RXNCR_OFFSET 0 143 #define SPI_RXNCR_SIZE 16 144 145 /* Bitfields in TNCR */ 146 #define SPI_TXNCR_OFFSET 0 147 #define SPI_TXNCR_SIZE 16 148 149 /* Bitfields in PTCR */ 150 #define SPI_RXTEN_OFFSET 0 151 #define SPI_RXTEN_SIZE 1 152 #define SPI_RXTDIS_OFFSET 1 153 #define SPI_RXTDIS_SIZE 1 154 #define SPI_TXTEN_OFFSET 8 155 #define SPI_TXTEN_SIZE 1 156 #define SPI_TXTDIS_OFFSET 9 157 #define SPI_TXTDIS_SIZE 1 158 159 /* Constants for BITS */ 160 #define SPI_BITS_8_BPT 0 161 #define SPI_BITS_9_BPT 1 162 #define SPI_BITS_10_BPT 2 163 #define SPI_BITS_11_BPT 3 164 #define SPI_BITS_12_BPT 4 165 #define SPI_BITS_13_BPT 5 166 #define SPI_BITS_14_BPT 6 167 #define SPI_BITS_15_BPT 7 168 #define SPI_BITS_16_BPT 8 169 170 /* Bit manipulation macros */ 171 #define SPI_BIT(name) \ 172 (1 << SPI_##name##_OFFSET) 173 #define SPI_BF(name,value) \ 174 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET) 175 #define SPI_BFEXT(name,value) \ 176 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1)) 177 #define SPI_BFINS(name,value,old) \ 178 ( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \ 179 | SPI_BF(name,value)) 180 181 /* Register access macros */ 182 #define spi_readl(port,reg) \ 183 __raw_readl((port)->regs + SPI_##reg) 184 #define spi_writel(port,reg,value) \ 185 __raw_writel((value), (port)->regs + SPI_##reg) 186 187 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 188 * cache operations; better heuristics consider wordsize and bitrate. 189 */ 190 #define DMA_MIN_BYTES 16 191 192 struct atmel_spi_dma { 193 struct dma_chan *chan_rx; 194 struct dma_chan *chan_tx; 195 struct scatterlist sgrx; 196 struct scatterlist sgtx; 197 struct dma_async_tx_descriptor *data_desc_rx; 198 struct dma_async_tx_descriptor *data_desc_tx; 199 200 struct at_dma_slave dma_slave; 201 }; 202 203 struct atmel_spi_caps { 204 bool is_spi2; 205 bool has_wdrbt; 206 bool has_dma_support; 207 }; 208 209 /* 210 * The core SPI transfer engine just talks to a register bank to set up 211 * DMA transfers; transfer queue progress is driven by IRQs. The clock 212 * framework provides the base clock, subdivided for each spi_device. 213 */ 214 struct atmel_spi { 215 spinlock_t lock; 216 unsigned long flags; 217 218 phys_addr_t phybase; 219 void __iomem *regs; 220 int irq; 221 struct clk *clk; 222 struct platform_device *pdev; 223 struct spi_device *stay; 224 225 u8 stopping; 226 struct list_head queue; 227 struct tasklet_struct tasklet; 228 struct spi_transfer *current_transfer; 229 unsigned long current_remaining_bytes; 230 struct spi_transfer *next_transfer; 231 unsigned long next_remaining_bytes; 232 int done_status; 233 234 /* scratch buffer */ 235 void *buffer; 236 dma_addr_t buffer_dma; 237 238 struct atmel_spi_caps caps; 239 240 bool use_dma; 241 bool use_pdc; 242 /* dmaengine data */ 243 struct atmel_spi_dma dma; 244 }; 245 246 /* Controller-specific per-slave state */ 247 struct atmel_spi_device { 248 unsigned int npcs_pin; 249 u32 csr; 250 }; 251 252 #define BUFFER_SIZE PAGE_SIZE 253 #define INVALID_DMA_ADDRESS 0xffffffff 254 255 /* 256 * Version 2 of the SPI controller has 257 * - CR.LASTXFER 258 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) 259 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) 260 * - SPI_CSRx.CSAAT 261 * - SPI_CSRx.SBCR allows faster clocking 262 */ 263 static bool atmel_spi_is_v2(struct atmel_spi *as) 264 { 265 return as->caps.is_spi2; 266 } 267 268 /* 269 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby 270 * they assume that spi slave device state will not change on deselect, so 271 * that automagic deselection is OK. ("NPCSx rises if no data is to be 272 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer 273 * controllers have CSAAT and friends. 274 * 275 * Since the CSAAT functionality is a bit weird on newer controllers as 276 * well, we use GPIO to control nCSx pins on all controllers, updating 277 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us 278 * support active-high chipselects despite the controller's belief that 279 * only active-low devices/systems exists. 280 * 281 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work 282 * right when driven with GPIO. ("Mode Fault does not allow more than one 283 * Master on Chip Select 0.") No workaround exists for that ... so for 284 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, 285 * and (c) will trigger that first erratum in some cases. 286 */ 287 288 static void cs_activate(struct atmel_spi *as, struct spi_device *spi) 289 { 290 struct atmel_spi_device *asd = spi->controller_state; 291 unsigned active = spi->mode & SPI_CS_HIGH; 292 u32 mr; 293 294 if (atmel_spi_is_v2(as)) { 295 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr); 296 /* For the low SPI version, there is a issue that PDC transfer 297 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS 298 */ 299 spi_writel(as, CSR0, asd->csr); 300 if (as->caps.has_wdrbt) { 301 spi_writel(as, MR, 302 SPI_BF(PCS, ~(0x01 << spi->chip_select)) 303 | SPI_BIT(WDRBT) 304 | SPI_BIT(MODFDIS) 305 | SPI_BIT(MSTR)); 306 } else { 307 spi_writel(as, MR, 308 SPI_BF(PCS, ~(0x01 << spi->chip_select)) 309 | SPI_BIT(MODFDIS) 310 | SPI_BIT(MSTR)); 311 } 312 313 mr = spi_readl(as, MR); 314 gpio_set_value(asd->npcs_pin, active); 315 } else { 316 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; 317 int i; 318 u32 csr; 319 320 /* Make sure clock polarity is correct */ 321 for (i = 0; i < spi->master->num_chipselect; i++) { 322 csr = spi_readl(as, CSR0 + 4 * i); 323 if ((csr ^ cpol) & SPI_BIT(CPOL)) 324 spi_writel(as, CSR0 + 4 * i, 325 csr ^ SPI_BIT(CPOL)); 326 } 327 328 mr = spi_readl(as, MR); 329 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr); 330 if (spi->chip_select != 0) 331 gpio_set_value(asd->npcs_pin, active); 332 spi_writel(as, MR, mr); 333 } 334 335 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n", 336 asd->npcs_pin, active ? " (high)" : "", 337 mr); 338 } 339 340 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) 341 { 342 struct atmel_spi_device *asd = spi->controller_state; 343 unsigned active = spi->mode & SPI_CS_HIGH; 344 u32 mr; 345 346 /* only deactivate *this* device; sometimes transfers to 347 * another device may be active when this routine is called. 348 */ 349 mr = spi_readl(as, MR); 350 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) { 351 mr = SPI_BFINS(PCS, 0xf, mr); 352 spi_writel(as, MR, mr); 353 } 354 355 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n", 356 asd->npcs_pin, active ? " (low)" : "", 357 mr); 358 359 if (atmel_spi_is_v2(as) || spi->chip_select != 0) 360 gpio_set_value(asd->npcs_pin, !active); 361 } 362 363 static void atmel_spi_lock(struct atmel_spi *as) 364 { 365 spin_lock_irqsave(&as->lock, as->flags); 366 } 367 368 static void atmel_spi_unlock(struct atmel_spi *as) 369 { 370 spin_unlock_irqrestore(&as->lock, as->flags); 371 } 372 373 static inline bool atmel_spi_use_dma(struct atmel_spi *as, 374 struct spi_transfer *xfer) 375 { 376 return as->use_dma && xfer->len >= DMA_MIN_BYTES; 377 } 378 379 static inline int atmel_spi_xfer_is_last(struct spi_message *msg, 380 struct spi_transfer *xfer) 381 { 382 return msg->transfers.prev == &xfer->transfer_list; 383 } 384 385 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer) 386 { 387 return xfer->delay_usecs == 0 && !xfer->cs_change; 388 } 389 390 static int atmel_spi_dma_slave_config(struct atmel_spi *as, 391 struct dma_slave_config *slave_config, 392 u8 bits_per_word) 393 { 394 int err = 0; 395 396 if (bits_per_word > 8) { 397 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 398 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 399 } else { 400 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 401 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 402 } 403 404 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR; 405 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR; 406 slave_config->src_maxburst = 1; 407 slave_config->dst_maxburst = 1; 408 slave_config->device_fc = false; 409 410 slave_config->direction = DMA_MEM_TO_DEV; 411 if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) { 412 dev_err(&as->pdev->dev, 413 "failed to configure tx dma channel\n"); 414 err = -EINVAL; 415 } 416 417 slave_config->direction = DMA_DEV_TO_MEM; 418 if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) { 419 dev_err(&as->pdev->dev, 420 "failed to configure rx dma channel\n"); 421 err = -EINVAL; 422 } 423 424 return err; 425 } 426 427 static bool filter(struct dma_chan *chan, void *slave) 428 { 429 struct at_dma_slave *sl = slave; 430 431 if (sl->dma_dev == chan->device->dev) { 432 chan->private = sl; 433 return true; 434 } else { 435 return false; 436 } 437 } 438 439 static int atmel_spi_configure_dma(struct atmel_spi *as) 440 { 441 struct at_dma_slave *sdata = &as->dma.dma_slave; 442 struct dma_slave_config slave_config; 443 int err; 444 445 if (sdata && sdata->dma_dev) { 446 dma_cap_mask_t mask; 447 448 /* Try to grab two DMA channels */ 449 dma_cap_zero(mask); 450 dma_cap_set(DMA_SLAVE, mask); 451 as->dma.chan_tx = dma_request_channel(mask, filter, sdata); 452 if (as->dma.chan_tx) 453 as->dma.chan_rx = 454 dma_request_channel(mask, filter, sdata); 455 } 456 if (!as->dma.chan_rx || !as->dma.chan_tx) { 457 dev_err(&as->pdev->dev, 458 "DMA channel not available, SPI unable to use DMA\n"); 459 err = -EBUSY; 460 goto error; 461 } 462 463 err = atmel_spi_dma_slave_config(as, &slave_config, 8); 464 if (err) 465 goto error; 466 467 dev_info(&as->pdev->dev, 468 "Using %s (tx) and %s (rx) for DMA transfers\n", 469 dma_chan_name(as->dma.chan_tx), 470 dma_chan_name(as->dma.chan_rx)); 471 return 0; 472 error: 473 if (as->dma.chan_rx) 474 dma_release_channel(as->dma.chan_rx); 475 if (as->dma.chan_tx) 476 dma_release_channel(as->dma.chan_tx); 477 return err; 478 } 479 480 static void atmel_spi_stop_dma(struct atmel_spi *as) 481 { 482 if (as->dma.chan_rx) 483 as->dma.chan_rx->device->device_control(as->dma.chan_rx, 484 DMA_TERMINATE_ALL, 0); 485 if (as->dma.chan_tx) 486 as->dma.chan_tx->device->device_control(as->dma.chan_tx, 487 DMA_TERMINATE_ALL, 0); 488 } 489 490 static void atmel_spi_release_dma(struct atmel_spi *as) 491 { 492 if (as->dma.chan_rx) 493 dma_release_channel(as->dma.chan_rx); 494 if (as->dma.chan_tx) 495 dma_release_channel(as->dma.chan_tx); 496 } 497 498 /* This function is called by the DMA driver from tasklet context */ 499 static void dma_callback(void *data) 500 { 501 struct spi_master *master = data; 502 struct atmel_spi *as = spi_master_get_devdata(master); 503 504 /* trigger SPI tasklet */ 505 tasklet_schedule(&as->tasklet); 506 } 507 508 /* 509 * Next transfer using PIO. 510 * lock is held, spi tasklet is blocked 511 */ 512 static void atmel_spi_next_xfer_pio(struct spi_master *master, 513 struct spi_transfer *xfer) 514 { 515 struct atmel_spi *as = spi_master_get_devdata(master); 516 517 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n"); 518 519 as->current_remaining_bytes = xfer->len; 520 521 /* Make sure data is not remaining in RDR */ 522 spi_readl(as, RDR); 523 while (spi_readl(as, SR) & SPI_BIT(RDRF)) { 524 spi_readl(as, RDR); 525 cpu_relax(); 526 } 527 528 if (xfer->tx_buf) 529 if (xfer->bits_per_word > 8) 530 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf)); 531 else 532 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf)); 533 else 534 spi_writel(as, TDR, 0); 535 536 dev_dbg(master->dev.parent, 537 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n", 538 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 539 xfer->bits_per_word); 540 541 /* Enable relevant interrupts */ 542 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES)); 543 } 544 545 /* 546 * Submit next transfer for DMA. 547 * lock is held, spi tasklet is blocked 548 */ 549 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master, 550 struct spi_transfer *xfer, 551 u32 *plen) 552 { 553 struct atmel_spi *as = spi_master_get_devdata(master); 554 struct dma_chan *rxchan = as->dma.chan_rx; 555 struct dma_chan *txchan = as->dma.chan_tx; 556 struct dma_async_tx_descriptor *rxdesc; 557 struct dma_async_tx_descriptor *txdesc; 558 struct dma_slave_config slave_config; 559 dma_cookie_t cookie; 560 u32 len = *plen; 561 562 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n"); 563 564 /* Check that the channels are available */ 565 if (!rxchan || !txchan) 566 return -ENODEV; 567 568 /* release lock for DMA operations */ 569 atmel_spi_unlock(as); 570 571 /* prepare the RX dma transfer */ 572 sg_init_table(&as->dma.sgrx, 1); 573 if (xfer->rx_buf) { 574 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen; 575 } else { 576 as->dma.sgrx.dma_address = as->buffer_dma; 577 if (len > BUFFER_SIZE) 578 len = BUFFER_SIZE; 579 } 580 581 /* prepare the TX dma transfer */ 582 sg_init_table(&as->dma.sgtx, 1); 583 if (xfer->tx_buf) { 584 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen; 585 } else { 586 as->dma.sgtx.dma_address = as->buffer_dma; 587 if (len > BUFFER_SIZE) 588 len = BUFFER_SIZE; 589 memset(as->buffer, 0, len); 590 } 591 592 sg_dma_len(&as->dma.sgtx) = len; 593 sg_dma_len(&as->dma.sgrx) = len; 594 595 *plen = len; 596 597 if (atmel_spi_dma_slave_config(as, &slave_config, 8)) 598 goto err_exit; 599 600 /* Send both scatterlists */ 601 rxdesc = rxchan->device->device_prep_slave_sg(rxchan, 602 &as->dma.sgrx, 603 1, 604 DMA_FROM_DEVICE, 605 DMA_PREP_INTERRUPT | DMA_CTRL_ACK, 606 NULL); 607 if (!rxdesc) 608 goto err_dma; 609 610 txdesc = txchan->device->device_prep_slave_sg(txchan, 611 &as->dma.sgtx, 612 1, 613 DMA_TO_DEVICE, 614 DMA_PREP_INTERRUPT | DMA_CTRL_ACK, 615 NULL); 616 if (!txdesc) 617 goto err_dma; 618 619 dev_dbg(master->dev.parent, 620 " start dma xfer %p: len %u tx %p/%08x rx %p/%08x\n", 621 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma, 622 xfer->rx_buf, xfer->rx_dma); 623 624 /* Enable relevant interrupts */ 625 spi_writel(as, IER, SPI_BIT(OVRES)); 626 627 /* Put the callback on the RX transfer only, that should finish last */ 628 rxdesc->callback = dma_callback; 629 rxdesc->callback_param = master; 630 631 /* Submit and fire RX and TX with TX last so we're ready to read! */ 632 cookie = rxdesc->tx_submit(rxdesc); 633 if (dma_submit_error(cookie)) 634 goto err_dma; 635 cookie = txdesc->tx_submit(txdesc); 636 if (dma_submit_error(cookie)) 637 goto err_dma; 638 rxchan->device->device_issue_pending(rxchan); 639 txchan->device->device_issue_pending(txchan); 640 641 /* take back lock */ 642 atmel_spi_lock(as); 643 return 0; 644 645 err_dma: 646 spi_writel(as, IDR, SPI_BIT(OVRES)); 647 atmel_spi_stop_dma(as); 648 err_exit: 649 atmel_spi_lock(as); 650 return -ENOMEM; 651 } 652 653 static void atmel_spi_next_xfer_data(struct spi_master *master, 654 struct spi_transfer *xfer, 655 dma_addr_t *tx_dma, 656 dma_addr_t *rx_dma, 657 u32 *plen) 658 { 659 struct atmel_spi *as = spi_master_get_devdata(master); 660 u32 len = *plen; 661 662 /* use scratch buffer only when rx or tx data is unspecified */ 663 if (xfer->rx_buf) 664 *rx_dma = xfer->rx_dma + xfer->len - *plen; 665 else { 666 *rx_dma = as->buffer_dma; 667 if (len > BUFFER_SIZE) 668 len = BUFFER_SIZE; 669 } 670 671 if (xfer->tx_buf) 672 *tx_dma = xfer->tx_dma + xfer->len - *plen; 673 else { 674 *tx_dma = as->buffer_dma; 675 if (len > BUFFER_SIZE) 676 len = BUFFER_SIZE; 677 memset(as->buffer, 0, len); 678 dma_sync_single_for_device(&as->pdev->dev, 679 as->buffer_dma, len, DMA_TO_DEVICE); 680 } 681 682 *plen = len; 683 } 684 685 /* 686 * Submit next transfer for PDC. 687 * lock is held, spi irq is blocked 688 */ 689 static void atmel_spi_pdc_next_xfer(struct spi_master *master, 690 struct spi_message *msg) 691 { 692 struct atmel_spi *as = spi_master_get_devdata(master); 693 struct spi_transfer *xfer; 694 u32 len, remaining; 695 u32 ieval; 696 dma_addr_t tx_dma, rx_dma; 697 698 if (!as->current_transfer) 699 xfer = list_entry(msg->transfers.next, 700 struct spi_transfer, transfer_list); 701 else if (!as->next_transfer) 702 xfer = list_entry(as->current_transfer->transfer_list.next, 703 struct spi_transfer, transfer_list); 704 else 705 xfer = NULL; 706 707 if (xfer) { 708 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 709 710 len = xfer->len; 711 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 712 remaining = xfer->len - len; 713 714 spi_writel(as, RPR, rx_dma); 715 spi_writel(as, TPR, tx_dma); 716 717 if (msg->spi->bits_per_word > 8) 718 len >>= 1; 719 spi_writel(as, RCR, len); 720 spi_writel(as, TCR, len); 721 722 dev_dbg(&msg->spi->dev, 723 " start xfer %p: len %u tx %p/%08x rx %p/%08x\n", 724 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma, 725 xfer->rx_buf, xfer->rx_dma); 726 } else { 727 xfer = as->next_transfer; 728 remaining = as->next_remaining_bytes; 729 } 730 731 as->current_transfer = xfer; 732 as->current_remaining_bytes = remaining; 733 734 if (remaining > 0) 735 len = remaining; 736 else if (!atmel_spi_xfer_is_last(msg, xfer) 737 && atmel_spi_xfer_can_be_chained(xfer)) { 738 xfer = list_entry(xfer->transfer_list.next, 739 struct spi_transfer, transfer_list); 740 len = xfer->len; 741 } else 742 xfer = NULL; 743 744 as->next_transfer = xfer; 745 746 if (xfer) { 747 u32 total; 748 749 total = len; 750 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 751 as->next_remaining_bytes = total - len; 752 753 spi_writel(as, RNPR, rx_dma); 754 spi_writel(as, TNPR, tx_dma); 755 756 if (msg->spi->bits_per_word > 8) 757 len >>= 1; 758 spi_writel(as, RNCR, len); 759 spi_writel(as, TNCR, len); 760 761 dev_dbg(&msg->spi->dev, 762 " next xfer %p: len %u tx %p/%08x rx %p/%08x\n", 763 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma, 764 xfer->rx_buf, xfer->rx_dma); 765 ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES); 766 } else { 767 spi_writel(as, RNCR, 0); 768 spi_writel(as, TNCR, 0); 769 ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES); 770 } 771 772 /* REVISIT: We're waiting for ENDRX before we start the next 773 * transfer because we need to handle some difficult timing 774 * issues otherwise. If we wait for ENDTX in one transfer and 775 * then starts waiting for ENDRX in the next, it's difficult 776 * to tell the difference between the ENDRX interrupt we're 777 * actually waiting for and the ENDRX interrupt of the 778 * previous transfer. 779 * 780 * It should be doable, though. Just not now... 781 */ 782 spi_writel(as, IER, ieval); 783 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); 784 } 785 786 /* 787 * Choose way to submit next transfer and start it. 788 * lock is held, spi tasklet is blocked 789 */ 790 static void atmel_spi_dma_next_xfer(struct spi_master *master, 791 struct spi_message *msg) 792 { 793 struct atmel_spi *as = spi_master_get_devdata(master); 794 struct spi_transfer *xfer; 795 u32 remaining, len; 796 797 remaining = as->current_remaining_bytes; 798 if (remaining) { 799 xfer = as->current_transfer; 800 len = remaining; 801 } else { 802 if (!as->current_transfer) 803 xfer = list_entry(msg->transfers.next, 804 struct spi_transfer, transfer_list); 805 else 806 xfer = list_entry( 807 as->current_transfer->transfer_list.next, 808 struct spi_transfer, transfer_list); 809 810 as->current_transfer = xfer; 811 len = xfer->len; 812 } 813 814 if (atmel_spi_use_dma(as, xfer)) { 815 u32 total = len; 816 if (!atmel_spi_next_xfer_dma_submit(master, xfer, &len)) { 817 as->current_remaining_bytes = total - len; 818 return; 819 } else { 820 dev_err(&msg->spi->dev, "unable to use DMA, fallback to PIO\n"); 821 } 822 } 823 824 /* use PIO if error appened using DMA */ 825 atmel_spi_next_xfer_pio(master, xfer); 826 } 827 828 static void atmel_spi_next_message(struct spi_master *master) 829 { 830 struct atmel_spi *as = spi_master_get_devdata(master); 831 struct spi_message *msg; 832 struct spi_device *spi; 833 834 BUG_ON(as->current_transfer); 835 836 msg = list_entry(as->queue.next, struct spi_message, queue); 837 spi = msg->spi; 838 839 dev_dbg(master->dev.parent, "start message %p for %s\n", 840 msg, dev_name(&spi->dev)); 841 842 /* select chip if it's not still active */ 843 if (as->stay) { 844 if (as->stay != spi) { 845 cs_deactivate(as, as->stay); 846 cs_activate(as, spi); 847 } 848 as->stay = NULL; 849 } else 850 cs_activate(as, spi); 851 852 if (as->use_pdc) 853 atmel_spi_pdc_next_xfer(master, msg); 854 else 855 atmel_spi_dma_next_xfer(master, msg); 856 } 857 858 /* 859 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: 860 * - The buffer is either valid for CPU access, else NULL 861 * - If the buffer is valid, so is its DMA address 862 * 863 * This driver manages the dma address unless message->is_dma_mapped. 864 */ 865 static int 866 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) 867 { 868 struct device *dev = &as->pdev->dev; 869 870 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; 871 if (xfer->tx_buf) { 872 /* tx_buf is a const void* where we need a void * for the dma 873 * mapping */ 874 void *nonconst_tx = (void *)xfer->tx_buf; 875 876 xfer->tx_dma = dma_map_single(dev, 877 nonconst_tx, xfer->len, 878 DMA_TO_DEVICE); 879 if (dma_mapping_error(dev, xfer->tx_dma)) 880 return -ENOMEM; 881 } 882 if (xfer->rx_buf) { 883 xfer->rx_dma = dma_map_single(dev, 884 xfer->rx_buf, xfer->len, 885 DMA_FROM_DEVICE); 886 if (dma_mapping_error(dev, xfer->rx_dma)) { 887 if (xfer->tx_buf) 888 dma_unmap_single(dev, 889 xfer->tx_dma, xfer->len, 890 DMA_TO_DEVICE); 891 return -ENOMEM; 892 } 893 } 894 return 0; 895 } 896 897 static void atmel_spi_dma_unmap_xfer(struct spi_master *master, 898 struct spi_transfer *xfer) 899 { 900 if (xfer->tx_dma != INVALID_DMA_ADDRESS) 901 dma_unmap_single(master->dev.parent, xfer->tx_dma, 902 xfer->len, DMA_TO_DEVICE); 903 if (xfer->rx_dma != INVALID_DMA_ADDRESS) 904 dma_unmap_single(master->dev.parent, xfer->rx_dma, 905 xfer->len, DMA_FROM_DEVICE); 906 } 907 908 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as) 909 { 910 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 911 } 912 913 static void 914 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as, 915 struct spi_message *msg, int stay) 916 { 917 if (!stay || as->done_status < 0) 918 cs_deactivate(as, msg->spi); 919 else 920 as->stay = msg->spi; 921 922 list_del(&msg->queue); 923 msg->status = as->done_status; 924 925 dev_dbg(master->dev.parent, 926 "xfer complete: %u bytes transferred\n", 927 msg->actual_length); 928 929 atmel_spi_unlock(as); 930 msg->complete(msg->context); 931 atmel_spi_lock(as); 932 933 as->current_transfer = NULL; 934 as->next_transfer = NULL; 935 as->done_status = 0; 936 937 /* continue if needed */ 938 if (list_empty(&as->queue) || as->stopping) { 939 if (as->use_pdc) 940 atmel_spi_disable_pdc_transfer(as); 941 } else { 942 atmel_spi_next_message(master); 943 } 944 } 945 946 /* Called from IRQ 947 * lock is held 948 * 949 * Must update "current_remaining_bytes" to keep track of data 950 * to transfer. 951 */ 952 static void 953 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer) 954 { 955 u8 *txp; 956 u8 *rxp; 957 u16 *txp16; 958 u16 *rxp16; 959 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 960 961 if (xfer->rx_buf) { 962 if (xfer->bits_per_word > 8) { 963 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos); 964 *rxp16 = spi_readl(as, RDR); 965 } else { 966 rxp = ((u8 *)xfer->rx_buf) + xfer_pos; 967 *rxp = spi_readl(as, RDR); 968 } 969 } else { 970 spi_readl(as, RDR); 971 } 972 if (xfer->bits_per_word > 8) { 973 as->current_remaining_bytes -= 2; 974 if (as->current_remaining_bytes < 0) 975 as->current_remaining_bytes = 0; 976 } else { 977 as->current_remaining_bytes--; 978 } 979 980 if (as->current_remaining_bytes) { 981 if (xfer->tx_buf) { 982 if (xfer->bits_per_word > 8) { 983 txp16 = (u16 *)(((u8 *)xfer->tx_buf) 984 + xfer_pos + 2); 985 spi_writel(as, TDR, *txp16); 986 } else { 987 txp = ((u8 *)xfer->tx_buf) + xfer_pos + 1; 988 spi_writel(as, TDR, *txp); 989 } 990 } else { 991 spi_writel(as, TDR, 0); 992 } 993 } 994 } 995 996 /* Tasklet 997 * Called from DMA callback + pio transfer and overrun IRQ. 998 */ 999 static void atmel_spi_tasklet_func(unsigned long data) 1000 { 1001 struct spi_master *master = (struct spi_master *)data; 1002 struct atmel_spi *as = spi_master_get_devdata(master); 1003 struct spi_message *msg; 1004 struct spi_transfer *xfer; 1005 1006 dev_vdbg(master->dev.parent, "atmel_spi_tasklet_func\n"); 1007 1008 atmel_spi_lock(as); 1009 1010 xfer = as->current_transfer; 1011 1012 if (xfer == NULL) 1013 /* already been there */ 1014 goto tasklet_out; 1015 1016 msg = list_entry(as->queue.next, struct spi_message, queue); 1017 1018 if (as->current_remaining_bytes == 0) { 1019 if (as->done_status < 0) { 1020 /* error happened (overrun) */ 1021 if (atmel_spi_use_dma(as, xfer)) 1022 atmel_spi_stop_dma(as); 1023 } else { 1024 /* only update length if no error */ 1025 msg->actual_length += xfer->len; 1026 } 1027 1028 if (atmel_spi_use_dma(as, xfer)) 1029 if (!msg->is_dma_mapped) 1030 atmel_spi_dma_unmap_xfer(master, xfer); 1031 1032 if (xfer->delay_usecs) 1033 udelay(xfer->delay_usecs); 1034 1035 if (atmel_spi_xfer_is_last(msg, xfer) || as->done_status < 0) { 1036 /* report completed (or erroneous) message */ 1037 atmel_spi_msg_done(master, as, msg, xfer->cs_change); 1038 } else { 1039 if (xfer->cs_change) { 1040 cs_deactivate(as, msg->spi); 1041 udelay(1); 1042 cs_activate(as, msg->spi); 1043 } 1044 1045 /* 1046 * Not done yet. Submit the next transfer. 1047 * 1048 * FIXME handle protocol options for xfer 1049 */ 1050 atmel_spi_dma_next_xfer(master, msg); 1051 } 1052 } else { 1053 /* 1054 * Keep going, we still have data to send in 1055 * the current transfer. 1056 */ 1057 atmel_spi_dma_next_xfer(master, msg); 1058 } 1059 1060 tasklet_out: 1061 atmel_spi_unlock(as); 1062 } 1063 1064 /* Interrupt 1065 * 1066 * No need for locking in this Interrupt handler: done_status is the 1067 * only information modified. What we need is the update of this field 1068 * before tasklet runs. This is ensured by using barrier. 1069 */ 1070 static irqreturn_t 1071 atmel_spi_pio_interrupt(int irq, void *dev_id) 1072 { 1073 struct spi_master *master = dev_id; 1074 struct atmel_spi *as = spi_master_get_devdata(master); 1075 u32 status, pending, imr; 1076 struct spi_transfer *xfer; 1077 int ret = IRQ_NONE; 1078 1079 imr = spi_readl(as, IMR); 1080 status = spi_readl(as, SR); 1081 pending = status & imr; 1082 1083 if (pending & SPI_BIT(OVRES)) { 1084 ret = IRQ_HANDLED; 1085 spi_writel(as, IDR, SPI_BIT(OVRES)); 1086 dev_warn(master->dev.parent, "overrun\n"); 1087 1088 /* 1089 * When we get an overrun, we disregard the current 1090 * transfer. Data will not be copied back from any 1091 * bounce buffer and msg->actual_len will not be 1092 * updated with the last xfer. 1093 * 1094 * We will also not process any remaning transfers in 1095 * the message. 1096 * 1097 * All actions are done in tasklet with done_status indication 1098 */ 1099 as->done_status = -EIO; 1100 smp_wmb(); 1101 1102 /* Clear any overrun happening while cleaning up */ 1103 spi_readl(as, SR); 1104 1105 tasklet_schedule(&as->tasklet); 1106 1107 } else if (pending & SPI_BIT(RDRF)) { 1108 atmel_spi_lock(as); 1109 1110 if (as->current_remaining_bytes) { 1111 ret = IRQ_HANDLED; 1112 xfer = as->current_transfer; 1113 atmel_spi_pump_pio_data(as, xfer); 1114 if (!as->current_remaining_bytes) { 1115 /* no more data to xfer, kick tasklet */ 1116 spi_writel(as, IDR, pending); 1117 tasklet_schedule(&as->tasklet); 1118 } 1119 } 1120 1121 atmel_spi_unlock(as); 1122 } else { 1123 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending); 1124 ret = IRQ_HANDLED; 1125 spi_writel(as, IDR, pending); 1126 } 1127 1128 return ret; 1129 } 1130 1131 static irqreturn_t 1132 atmel_spi_pdc_interrupt(int irq, void *dev_id) 1133 { 1134 struct spi_master *master = dev_id; 1135 struct atmel_spi *as = spi_master_get_devdata(master); 1136 struct spi_message *msg; 1137 struct spi_transfer *xfer; 1138 u32 status, pending, imr; 1139 int ret = IRQ_NONE; 1140 1141 atmel_spi_lock(as); 1142 1143 xfer = as->current_transfer; 1144 msg = list_entry(as->queue.next, struct spi_message, queue); 1145 1146 imr = spi_readl(as, IMR); 1147 status = spi_readl(as, SR); 1148 pending = status & imr; 1149 1150 if (pending & SPI_BIT(OVRES)) { 1151 int timeout; 1152 1153 ret = IRQ_HANDLED; 1154 1155 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) 1156 | SPI_BIT(OVRES))); 1157 1158 /* 1159 * When we get an overrun, we disregard the current 1160 * transfer. Data will not be copied back from any 1161 * bounce buffer and msg->actual_len will not be 1162 * updated with the last xfer. 1163 * 1164 * We will also not process any remaning transfers in 1165 * the message. 1166 * 1167 * First, stop the transfer and unmap the DMA buffers. 1168 */ 1169 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1170 if (!msg->is_dma_mapped) 1171 atmel_spi_dma_unmap_xfer(master, xfer); 1172 1173 /* REVISIT: udelay in irq is unfriendly */ 1174 if (xfer->delay_usecs) 1175 udelay(xfer->delay_usecs); 1176 1177 dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n", 1178 spi_readl(as, TCR), spi_readl(as, RCR)); 1179 1180 /* 1181 * Clean up DMA registers and make sure the data 1182 * registers are empty. 1183 */ 1184 spi_writel(as, RNCR, 0); 1185 spi_writel(as, TNCR, 0); 1186 spi_writel(as, RCR, 0); 1187 spi_writel(as, TCR, 0); 1188 for (timeout = 1000; timeout; timeout--) 1189 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) 1190 break; 1191 if (!timeout) 1192 dev_warn(master->dev.parent, 1193 "timeout waiting for TXEMPTY"); 1194 while (spi_readl(as, SR) & SPI_BIT(RDRF)) 1195 spi_readl(as, RDR); 1196 1197 /* Clear any overrun happening while cleaning up */ 1198 spi_readl(as, SR); 1199 1200 as->done_status = -EIO; 1201 atmel_spi_msg_done(master, as, msg, 0); 1202 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { 1203 ret = IRQ_HANDLED; 1204 1205 spi_writel(as, IDR, pending); 1206 1207 if (as->current_remaining_bytes == 0) { 1208 msg->actual_length += xfer->len; 1209 1210 if (!msg->is_dma_mapped) 1211 atmel_spi_dma_unmap_xfer(master, xfer); 1212 1213 /* REVISIT: udelay in irq is unfriendly */ 1214 if (xfer->delay_usecs) 1215 udelay(xfer->delay_usecs); 1216 1217 if (atmel_spi_xfer_is_last(msg, xfer)) { 1218 /* report completed message */ 1219 atmel_spi_msg_done(master, as, msg, 1220 xfer->cs_change); 1221 } else { 1222 if (xfer->cs_change) { 1223 cs_deactivate(as, msg->spi); 1224 udelay(1); 1225 cs_activate(as, msg->spi); 1226 } 1227 1228 /* 1229 * Not done yet. Submit the next transfer. 1230 * 1231 * FIXME handle protocol options for xfer 1232 */ 1233 atmel_spi_pdc_next_xfer(master, msg); 1234 } 1235 } else { 1236 /* 1237 * Keep going, we still have data to send in 1238 * the current transfer. 1239 */ 1240 atmel_spi_pdc_next_xfer(master, msg); 1241 } 1242 } 1243 1244 atmel_spi_unlock(as); 1245 1246 return ret; 1247 } 1248 1249 static int atmel_spi_setup(struct spi_device *spi) 1250 { 1251 struct atmel_spi *as; 1252 struct atmel_spi_device *asd; 1253 u32 scbr, csr; 1254 unsigned int bits = spi->bits_per_word; 1255 unsigned long bus_hz; 1256 unsigned int npcs_pin; 1257 int ret; 1258 1259 as = spi_master_get_devdata(spi->master); 1260 1261 if (as->stopping) 1262 return -ESHUTDOWN; 1263 1264 if (spi->chip_select > spi->master->num_chipselect) { 1265 dev_dbg(&spi->dev, 1266 "setup: invalid chipselect %u (%u defined)\n", 1267 spi->chip_select, spi->master->num_chipselect); 1268 return -EINVAL; 1269 } 1270 1271 if (bits < 8 || bits > 16) { 1272 dev_dbg(&spi->dev, 1273 "setup: invalid bits_per_word %u (8 to 16)\n", 1274 bits); 1275 return -EINVAL; 1276 } 1277 1278 /* see notes above re chipselect */ 1279 if (!atmel_spi_is_v2(as) 1280 && spi->chip_select == 0 1281 && (spi->mode & SPI_CS_HIGH)) { 1282 dev_dbg(&spi->dev, "setup: can't be active-high\n"); 1283 return -EINVAL; 1284 } 1285 1286 /* v1 chips start out at half the peripheral bus speed. */ 1287 bus_hz = clk_get_rate(as->clk); 1288 if (!atmel_spi_is_v2(as)) 1289 bus_hz /= 2; 1290 1291 if (spi->max_speed_hz) { 1292 /* 1293 * Calculate the lowest divider that satisfies the 1294 * constraint, assuming div32/fdiv/mbz == 0. 1295 */ 1296 scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz); 1297 1298 /* 1299 * If the resulting divider doesn't fit into the 1300 * register bitfield, we can't satisfy the constraint. 1301 */ 1302 if (scbr >= (1 << SPI_SCBR_SIZE)) { 1303 dev_dbg(&spi->dev, 1304 "setup: %d Hz too slow, scbr %u; min %ld Hz\n", 1305 spi->max_speed_hz, scbr, bus_hz/255); 1306 return -EINVAL; 1307 } 1308 } else 1309 /* speed zero means "as slow as possible" */ 1310 scbr = 0xff; 1311 1312 csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8); 1313 if (spi->mode & SPI_CPOL) 1314 csr |= SPI_BIT(CPOL); 1315 if (!(spi->mode & SPI_CPHA)) 1316 csr |= SPI_BIT(NCPHA); 1317 1318 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs. 1319 * 1320 * DLYBCT would add delays between words, slowing down transfers. 1321 * It could potentially be useful to cope with DMA bottlenecks, but 1322 * in those cases it's probably best to just use a lower bitrate. 1323 */ 1324 csr |= SPI_BF(DLYBS, 0); 1325 csr |= SPI_BF(DLYBCT, 0); 1326 1327 /* chipselect must have been muxed as GPIO (e.g. in board setup) */ 1328 npcs_pin = (unsigned int)spi->controller_data; 1329 1330 if (gpio_is_valid(spi->cs_gpio)) 1331 npcs_pin = spi->cs_gpio; 1332 1333 asd = spi->controller_state; 1334 if (!asd) { 1335 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); 1336 if (!asd) 1337 return -ENOMEM; 1338 1339 ret = gpio_request(npcs_pin, dev_name(&spi->dev)); 1340 if (ret) { 1341 kfree(asd); 1342 return ret; 1343 } 1344 1345 asd->npcs_pin = npcs_pin; 1346 spi->controller_state = asd; 1347 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH)); 1348 } else { 1349 atmel_spi_lock(as); 1350 if (as->stay == spi) 1351 as->stay = NULL; 1352 cs_deactivate(as, spi); 1353 atmel_spi_unlock(as); 1354 } 1355 1356 asd->csr = csr; 1357 1358 dev_dbg(&spi->dev, 1359 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n", 1360 bus_hz / scbr, bits, spi->mode, spi->chip_select, csr); 1361 1362 if (!atmel_spi_is_v2(as)) 1363 spi_writel(as, CSR0 + 4 * spi->chip_select, csr); 1364 1365 return 0; 1366 } 1367 1368 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg) 1369 { 1370 struct atmel_spi *as; 1371 struct spi_transfer *xfer; 1372 struct device *controller = spi->master->dev.parent; 1373 u8 bits; 1374 struct atmel_spi_device *asd; 1375 1376 as = spi_master_get_devdata(spi->master); 1377 1378 dev_dbg(controller, "new message %p submitted for %s\n", 1379 msg, dev_name(&spi->dev)); 1380 1381 if (unlikely(list_empty(&msg->transfers))) 1382 return -EINVAL; 1383 1384 if (as->stopping) 1385 return -ESHUTDOWN; 1386 1387 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1388 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1389 dev_dbg(&spi->dev, "missing rx or tx buf\n"); 1390 return -EINVAL; 1391 } 1392 1393 if (xfer->bits_per_word) { 1394 asd = spi->controller_state; 1395 bits = (asd->csr >> 4) & 0xf; 1396 if (bits != xfer->bits_per_word - 8) { 1397 dev_dbg(&spi->dev, "you can't yet change " 1398 "bits_per_word in transfers\n"); 1399 return -ENOPROTOOPT; 1400 } 1401 } 1402 1403 if (xfer->bits_per_word > 8) { 1404 if (xfer->len % 2) { 1405 dev_dbg(&spi->dev, "buffer len should be 16 bits aligned\n"); 1406 return -EINVAL; 1407 } 1408 } 1409 1410 /* FIXME implement these protocol options!! */ 1411 if (xfer->speed_hz < spi->max_speed_hz) { 1412 dev_dbg(&spi->dev, "can't change speed in transfer\n"); 1413 return -ENOPROTOOPT; 1414 } 1415 1416 /* 1417 * DMA map early, for performance (empties dcache ASAP) and 1418 * better fault reporting. 1419 */ 1420 if ((!msg->is_dma_mapped) && (atmel_spi_use_dma(as, xfer) 1421 || as->use_pdc)) { 1422 if (atmel_spi_dma_map_xfer(as, xfer) < 0) 1423 return -ENOMEM; 1424 } 1425 } 1426 1427 #ifdef VERBOSE 1428 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1429 dev_dbg(controller, 1430 " xfer %p: len %u tx %p/%08x rx %p/%08x\n", 1431 xfer, xfer->len, 1432 xfer->tx_buf, xfer->tx_dma, 1433 xfer->rx_buf, xfer->rx_dma); 1434 } 1435 #endif 1436 1437 msg->status = -EINPROGRESS; 1438 msg->actual_length = 0; 1439 1440 atmel_spi_lock(as); 1441 list_add_tail(&msg->queue, &as->queue); 1442 if (!as->current_transfer) 1443 atmel_spi_next_message(spi->master); 1444 atmel_spi_unlock(as); 1445 1446 return 0; 1447 } 1448 1449 static void atmel_spi_cleanup(struct spi_device *spi) 1450 { 1451 struct atmel_spi *as = spi_master_get_devdata(spi->master); 1452 struct atmel_spi_device *asd = spi->controller_state; 1453 unsigned gpio = (unsigned) spi->controller_data; 1454 1455 if (!asd) 1456 return; 1457 1458 atmel_spi_lock(as); 1459 if (as->stay == spi) { 1460 as->stay = NULL; 1461 cs_deactivate(as, spi); 1462 } 1463 atmel_spi_unlock(as); 1464 1465 spi->controller_state = NULL; 1466 gpio_free(gpio); 1467 kfree(asd); 1468 } 1469 1470 static inline unsigned int atmel_get_version(struct atmel_spi *as) 1471 { 1472 return spi_readl(as, VERSION) & 0x00000fff; 1473 } 1474 1475 static void atmel_get_caps(struct atmel_spi *as) 1476 { 1477 unsigned int version; 1478 1479 version = atmel_get_version(as); 1480 dev_info(&as->pdev->dev, "version: 0x%x\n", version); 1481 1482 as->caps.is_spi2 = version > 0x121; 1483 as->caps.has_wdrbt = version >= 0x210; 1484 as->caps.has_dma_support = version >= 0x212; 1485 } 1486 1487 /*-------------------------------------------------------------------------*/ 1488 1489 static int atmel_spi_probe(struct platform_device *pdev) 1490 { 1491 struct resource *regs; 1492 int irq; 1493 struct clk *clk; 1494 int ret; 1495 struct spi_master *master; 1496 struct atmel_spi *as; 1497 1498 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1499 if (!regs) 1500 return -ENXIO; 1501 1502 irq = platform_get_irq(pdev, 0); 1503 if (irq < 0) 1504 return irq; 1505 1506 clk = clk_get(&pdev->dev, "spi_clk"); 1507 if (IS_ERR(clk)) 1508 return PTR_ERR(clk); 1509 1510 /* setup spi core then atmel-specific driver state */ 1511 ret = -ENOMEM; 1512 master = spi_alloc_master(&pdev->dev, sizeof *as); 1513 if (!master) 1514 goto out_free; 1515 1516 /* the spi->mode bits understood by this driver: */ 1517 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1518 1519 master->dev.of_node = pdev->dev.of_node; 1520 master->bus_num = pdev->id; 1521 master->num_chipselect = master->dev.of_node ? 0 : 4; 1522 master->setup = atmel_spi_setup; 1523 master->transfer = atmel_spi_transfer; 1524 master->cleanup = atmel_spi_cleanup; 1525 platform_set_drvdata(pdev, master); 1526 1527 as = spi_master_get_devdata(master); 1528 1529 /* 1530 * Scratch buffer is used for throwaway rx and tx data. 1531 * It's coherent to minimize dcache pollution. 1532 */ 1533 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE, 1534 &as->buffer_dma, GFP_KERNEL); 1535 if (!as->buffer) 1536 goto out_free; 1537 1538 spin_lock_init(&as->lock); 1539 INIT_LIST_HEAD(&as->queue); 1540 1541 as->pdev = pdev; 1542 as->regs = ioremap(regs->start, resource_size(regs)); 1543 if (!as->regs) 1544 goto out_free_buffer; 1545 as->phybase = regs->start; 1546 as->irq = irq; 1547 as->clk = clk; 1548 1549 atmel_get_caps(as); 1550 1551 as->use_dma = false; 1552 as->use_pdc = false; 1553 if (as->caps.has_dma_support) { 1554 if (atmel_spi_configure_dma(as) == 0) 1555 as->use_dma = true; 1556 } else { 1557 as->use_pdc = true; 1558 } 1559 1560 if (as->caps.has_dma_support && !as->use_dma) 1561 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n"); 1562 1563 if (as->use_pdc) { 1564 ret = request_irq(irq, atmel_spi_pdc_interrupt, 0, 1565 dev_name(&pdev->dev), master); 1566 } else { 1567 tasklet_init(&as->tasklet, atmel_spi_tasklet_func, 1568 (unsigned long)master); 1569 1570 ret = request_irq(irq, atmel_spi_pio_interrupt, 0, 1571 dev_name(&pdev->dev), master); 1572 } 1573 if (ret) 1574 goto out_unmap_regs; 1575 1576 /* Initialize the hardware */ 1577 clk_enable(clk); 1578 spi_writel(as, CR, SPI_BIT(SWRST)); 1579 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1580 if (as->caps.has_wdrbt) { 1581 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS) 1582 | SPI_BIT(MSTR)); 1583 } else { 1584 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); 1585 } 1586 1587 if (as->use_pdc) 1588 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1589 spi_writel(as, CR, SPI_BIT(SPIEN)); 1590 1591 /* go! */ 1592 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n", 1593 (unsigned long)regs->start, irq); 1594 1595 ret = spi_register_master(master); 1596 if (ret) 1597 goto out_free_dma; 1598 1599 return 0; 1600 1601 out_free_dma: 1602 if (as->use_dma) 1603 atmel_spi_release_dma(as); 1604 1605 spi_writel(as, CR, SPI_BIT(SWRST)); 1606 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1607 clk_disable(clk); 1608 free_irq(irq, master); 1609 out_unmap_regs: 1610 iounmap(as->regs); 1611 out_free_buffer: 1612 if (!as->use_pdc) 1613 tasklet_kill(&as->tasklet); 1614 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, 1615 as->buffer_dma); 1616 out_free: 1617 clk_put(clk); 1618 spi_master_put(master); 1619 return ret; 1620 } 1621 1622 static int atmel_spi_remove(struct platform_device *pdev) 1623 { 1624 struct spi_master *master = platform_get_drvdata(pdev); 1625 struct atmel_spi *as = spi_master_get_devdata(master); 1626 struct spi_message *msg; 1627 struct spi_transfer *xfer; 1628 1629 /* reset the hardware and block queue progress */ 1630 spin_lock_irq(&as->lock); 1631 as->stopping = 1; 1632 if (as->use_dma) { 1633 atmel_spi_stop_dma(as); 1634 atmel_spi_release_dma(as); 1635 } 1636 1637 spi_writel(as, CR, SPI_BIT(SWRST)); 1638 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1639 spi_readl(as, SR); 1640 spin_unlock_irq(&as->lock); 1641 1642 /* Terminate remaining queued transfers */ 1643 list_for_each_entry(msg, &as->queue, queue) { 1644 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1645 if (!msg->is_dma_mapped 1646 && (atmel_spi_use_dma(as, xfer) 1647 || as->use_pdc)) 1648 atmel_spi_dma_unmap_xfer(master, xfer); 1649 } 1650 msg->status = -ESHUTDOWN; 1651 msg->complete(msg->context); 1652 } 1653 1654 if (!as->use_pdc) 1655 tasklet_kill(&as->tasklet); 1656 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, 1657 as->buffer_dma); 1658 1659 clk_disable(as->clk); 1660 clk_put(as->clk); 1661 free_irq(as->irq, master); 1662 iounmap(as->regs); 1663 1664 spi_unregister_master(master); 1665 1666 return 0; 1667 } 1668 1669 #ifdef CONFIG_PM 1670 1671 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg) 1672 { 1673 struct spi_master *master = platform_get_drvdata(pdev); 1674 struct atmel_spi *as = spi_master_get_devdata(master); 1675 1676 clk_disable(as->clk); 1677 return 0; 1678 } 1679 1680 static int atmel_spi_resume(struct platform_device *pdev) 1681 { 1682 struct spi_master *master = platform_get_drvdata(pdev); 1683 struct atmel_spi *as = spi_master_get_devdata(master); 1684 1685 clk_enable(as->clk); 1686 return 0; 1687 } 1688 1689 #else 1690 #define atmel_spi_suspend NULL 1691 #define atmel_spi_resume NULL 1692 #endif 1693 1694 #if defined(CONFIG_OF) 1695 static const struct of_device_id atmel_spi_dt_ids[] = { 1696 { .compatible = "atmel,at91rm9200-spi" }, 1697 { /* sentinel */ } 1698 }; 1699 1700 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids); 1701 #endif 1702 1703 static struct platform_driver atmel_spi_driver = { 1704 .driver = { 1705 .name = "atmel_spi", 1706 .owner = THIS_MODULE, 1707 .of_match_table = of_match_ptr(atmel_spi_dt_ids), 1708 }, 1709 .suspend = atmel_spi_suspend, 1710 .resume = atmel_spi_resume, 1711 .probe = atmel_spi_probe, 1712 .remove = atmel_spi_remove, 1713 }; 1714 module_platform_driver(atmel_spi_driver); 1715 1716 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); 1717 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 1718 MODULE_LICENSE("GPL"); 1719 MODULE_ALIAS("platform:atmel_spi"); 1720