xref: /openbmc/linux/drivers/spi/spi-atmel.c (revision ca79522c)
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/interrupt.h>
21 #include <linux/spi/spi.h>
22 #include <linux/slab.h>
23 #include <linux/platform_data/atmel.h>
24 #include <linux/platform_data/dma-atmel.h>
25 #include <linux/of.h>
26 
27 #include <linux/io.h>
28 #include <linux/gpio.h>
29 
30 /* SPI register offsets */
31 #define SPI_CR					0x0000
32 #define SPI_MR					0x0004
33 #define SPI_RDR					0x0008
34 #define SPI_TDR					0x000c
35 #define SPI_SR					0x0010
36 #define SPI_IER					0x0014
37 #define SPI_IDR					0x0018
38 #define SPI_IMR					0x001c
39 #define SPI_CSR0				0x0030
40 #define SPI_CSR1				0x0034
41 #define SPI_CSR2				0x0038
42 #define SPI_CSR3				0x003c
43 #define SPI_VERSION				0x00fc
44 #define SPI_RPR					0x0100
45 #define SPI_RCR					0x0104
46 #define SPI_TPR					0x0108
47 #define SPI_TCR					0x010c
48 #define SPI_RNPR				0x0110
49 #define SPI_RNCR				0x0114
50 #define SPI_TNPR				0x0118
51 #define SPI_TNCR				0x011c
52 #define SPI_PTCR				0x0120
53 #define SPI_PTSR				0x0124
54 
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET			0
57 #define SPI_SPIEN_SIZE				1
58 #define SPI_SPIDIS_OFFSET			1
59 #define SPI_SPIDIS_SIZE				1
60 #define SPI_SWRST_OFFSET			7
61 #define SPI_SWRST_SIZE				1
62 #define SPI_LASTXFER_OFFSET			24
63 #define SPI_LASTXFER_SIZE			1
64 
65 /* Bitfields in MR */
66 #define SPI_MSTR_OFFSET				0
67 #define SPI_MSTR_SIZE				1
68 #define SPI_PS_OFFSET				1
69 #define SPI_PS_SIZE				1
70 #define SPI_PCSDEC_OFFSET			2
71 #define SPI_PCSDEC_SIZE				1
72 #define SPI_FDIV_OFFSET				3
73 #define SPI_FDIV_SIZE				1
74 #define SPI_MODFDIS_OFFSET			4
75 #define SPI_MODFDIS_SIZE			1
76 #define SPI_WDRBT_OFFSET			5
77 #define SPI_WDRBT_SIZE				1
78 #define SPI_LLB_OFFSET				7
79 #define SPI_LLB_SIZE				1
80 #define SPI_PCS_OFFSET				16
81 #define SPI_PCS_SIZE				4
82 #define SPI_DLYBCS_OFFSET			24
83 #define SPI_DLYBCS_SIZE				8
84 
85 /* Bitfields in RDR */
86 #define SPI_RD_OFFSET				0
87 #define SPI_RD_SIZE				16
88 
89 /* Bitfields in TDR */
90 #define SPI_TD_OFFSET				0
91 #define SPI_TD_SIZE				16
92 
93 /* Bitfields in SR */
94 #define SPI_RDRF_OFFSET				0
95 #define SPI_RDRF_SIZE				1
96 #define SPI_TDRE_OFFSET				1
97 #define SPI_TDRE_SIZE				1
98 #define SPI_MODF_OFFSET				2
99 #define SPI_MODF_SIZE				1
100 #define SPI_OVRES_OFFSET			3
101 #define SPI_OVRES_SIZE				1
102 #define SPI_ENDRX_OFFSET			4
103 #define SPI_ENDRX_SIZE				1
104 #define SPI_ENDTX_OFFSET			5
105 #define SPI_ENDTX_SIZE				1
106 #define SPI_RXBUFF_OFFSET			6
107 #define SPI_RXBUFF_SIZE				1
108 #define SPI_TXBUFE_OFFSET			7
109 #define SPI_TXBUFE_SIZE				1
110 #define SPI_NSSR_OFFSET				8
111 #define SPI_NSSR_SIZE				1
112 #define SPI_TXEMPTY_OFFSET			9
113 #define SPI_TXEMPTY_SIZE			1
114 #define SPI_SPIENS_OFFSET			16
115 #define SPI_SPIENS_SIZE				1
116 
117 /* Bitfields in CSR0 */
118 #define SPI_CPOL_OFFSET				0
119 #define SPI_CPOL_SIZE				1
120 #define SPI_NCPHA_OFFSET			1
121 #define SPI_NCPHA_SIZE				1
122 #define SPI_CSAAT_OFFSET			3
123 #define SPI_CSAAT_SIZE				1
124 #define SPI_BITS_OFFSET				4
125 #define SPI_BITS_SIZE				4
126 #define SPI_SCBR_OFFSET				8
127 #define SPI_SCBR_SIZE				8
128 #define SPI_DLYBS_OFFSET			16
129 #define SPI_DLYBS_SIZE				8
130 #define SPI_DLYBCT_OFFSET			24
131 #define SPI_DLYBCT_SIZE				8
132 
133 /* Bitfields in RCR */
134 #define SPI_RXCTR_OFFSET			0
135 #define SPI_RXCTR_SIZE				16
136 
137 /* Bitfields in TCR */
138 #define SPI_TXCTR_OFFSET			0
139 #define SPI_TXCTR_SIZE				16
140 
141 /* Bitfields in RNCR */
142 #define SPI_RXNCR_OFFSET			0
143 #define SPI_RXNCR_SIZE				16
144 
145 /* Bitfields in TNCR */
146 #define SPI_TXNCR_OFFSET			0
147 #define SPI_TXNCR_SIZE				16
148 
149 /* Bitfields in PTCR */
150 #define SPI_RXTEN_OFFSET			0
151 #define SPI_RXTEN_SIZE				1
152 #define SPI_RXTDIS_OFFSET			1
153 #define SPI_RXTDIS_SIZE				1
154 #define SPI_TXTEN_OFFSET			8
155 #define SPI_TXTEN_SIZE				1
156 #define SPI_TXTDIS_OFFSET			9
157 #define SPI_TXTDIS_SIZE				1
158 
159 /* Constants for BITS */
160 #define SPI_BITS_8_BPT				0
161 #define SPI_BITS_9_BPT				1
162 #define SPI_BITS_10_BPT				2
163 #define SPI_BITS_11_BPT				3
164 #define SPI_BITS_12_BPT				4
165 #define SPI_BITS_13_BPT				5
166 #define SPI_BITS_14_BPT				6
167 #define SPI_BITS_15_BPT				7
168 #define SPI_BITS_16_BPT				8
169 
170 /* Bit manipulation macros */
171 #define SPI_BIT(name) \
172 	(1 << SPI_##name##_OFFSET)
173 #define SPI_BF(name,value) \
174 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
175 #define SPI_BFEXT(name,value) \
176 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
177 #define SPI_BFINS(name,value,old) \
178 	( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
179 	  | SPI_BF(name,value))
180 
181 /* Register access macros */
182 #define spi_readl(port,reg) \
183 	__raw_readl((port)->regs + SPI_##reg)
184 #define spi_writel(port,reg,value) \
185 	__raw_writel((value), (port)->regs + SPI_##reg)
186 
187 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
188  * cache operations; better heuristics consider wordsize and bitrate.
189  */
190 #define DMA_MIN_BYTES	16
191 
192 struct atmel_spi_dma {
193 	struct dma_chan			*chan_rx;
194 	struct dma_chan			*chan_tx;
195 	struct scatterlist		sgrx;
196 	struct scatterlist		sgtx;
197 	struct dma_async_tx_descriptor	*data_desc_rx;
198 	struct dma_async_tx_descriptor	*data_desc_tx;
199 
200 	struct at_dma_slave	dma_slave;
201 };
202 
203 struct atmel_spi_caps {
204 	bool	is_spi2;
205 	bool	has_wdrbt;
206 	bool	has_dma_support;
207 };
208 
209 /*
210  * The core SPI transfer engine just talks to a register bank to set up
211  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
212  * framework provides the base clock, subdivided for each spi_device.
213  */
214 struct atmel_spi {
215 	spinlock_t		lock;
216 	unsigned long		flags;
217 
218 	phys_addr_t		phybase;
219 	void __iomem		*regs;
220 	int			irq;
221 	struct clk		*clk;
222 	struct platform_device	*pdev;
223 	struct spi_device	*stay;
224 
225 	u8			stopping;
226 	struct list_head	queue;
227 	struct tasklet_struct	tasklet;
228 	struct spi_transfer	*current_transfer;
229 	unsigned long		current_remaining_bytes;
230 	struct spi_transfer	*next_transfer;
231 	unsigned long		next_remaining_bytes;
232 	int			done_status;
233 
234 	/* scratch buffer */
235 	void			*buffer;
236 	dma_addr_t		buffer_dma;
237 
238 	struct atmel_spi_caps	caps;
239 
240 	bool			use_dma;
241 	bool			use_pdc;
242 	/* dmaengine data */
243 	struct atmel_spi_dma	dma;
244 };
245 
246 /* Controller-specific per-slave state */
247 struct atmel_spi_device {
248 	unsigned int		npcs_pin;
249 	u32			csr;
250 };
251 
252 #define BUFFER_SIZE		PAGE_SIZE
253 #define INVALID_DMA_ADDRESS	0xffffffff
254 
255 /*
256  * Version 2 of the SPI controller has
257  *  - CR.LASTXFER
258  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
259  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
260  *  - SPI_CSRx.CSAAT
261  *  - SPI_CSRx.SBCR allows faster clocking
262  */
263 static bool atmel_spi_is_v2(struct atmel_spi *as)
264 {
265 	return as->caps.is_spi2;
266 }
267 
268 /*
269  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
270  * they assume that spi slave device state will not change on deselect, so
271  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
272  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
273  * controllers have CSAAT and friends.
274  *
275  * Since the CSAAT functionality is a bit weird on newer controllers as
276  * well, we use GPIO to control nCSx pins on all controllers, updating
277  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
278  * support active-high chipselects despite the controller's belief that
279  * only active-low devices/systems exists.
280  *
281  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
282  * right when driven with GPIO.  ("Mode Fault does not allow more than one
283  * Master on Chip Select 0.")  No workaround exists for that ... so for
284  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
285  * and (c) will trigger that first erratum in some cases.
286  */
287 
288 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
289 {
290 	struct atmel_spi_device *asd = spi->controller_state;
291 	unsigned active = spi->mode & SPI_CS_HIGH;
292 	u32 mr;
293 
294 	if (atmel_spi_is_v2(as)) {
295 		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
296 		/* For the low SPI version, there is a issue that PDC transfer
297 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
298 		 */
299 		spi_writel(as, CSR0, asd->csr);
300 		if (as->caps.has_wdrbt) {
301 			spi_writel(as, MR,
302 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
303 					| SPI_BIT(WDRBT)
304 					| SPI_BIT(MODFDIS)
305 					| SPI_BIT(MSTR));
306 		} else {
307 			spi_writel(as, MR,
308 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
309 					| SPI_BIT(MODFDIS)
310 					| SPI_BIT(MSTR));
311 		}
312 
313 		mr = spi_readl(as, MR);
314 		gpio_set_value(asd->npcs_pin, active);
315 	} else {
316 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
317 		int i;
318 		u32 csr;
319 
320 		/* Make sure clock polarity is correct */
321 		for (i = 0; i < spi->master->num_chipselect; i++) {
322 			csr = spi_readl(as, CSR0 + 4 * i);
323 			if ((csr ^ cpol) & SPI_BIT(CPOL))
324 				spi_writel(as, CSR0 + 4 * i,
325 						csr ^ SPI_BIT(CPOL));
326 		}
327 
328 		mr = spi_readl(as, MR);
329 		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
330 		if (spi->chip_select != 0)
331 			gpio_set_value(asd->npcs_pin, active);
332 		spi_writel(as, MR, mr);
333 	}
334 
335 	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
336 			asd->npcs_pin, active ? " (high)" : "",
337 			mr);
338 }
339 
340 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
341 {
342 	struct atmel_spi_device *asd = spi->controller_state;
343 	unsigned active = spi->mode & SPI_CS_HIGH;
344 	u32 mr;
345 
346 	/* only deactivate *this* device; sometimes transfers to
347 	 * another device may be active when this routine is called.
348 	 */
349 	mr = spi_readl(as, MR);
350 	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
351 		mr = SPI_BFINS(PCS, 0xf, mr);
352 		spi_writel(as, MR, mr);
353 	}
354 
355 	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
356 			asd->npcs_pin, active ? " (low)" : "",
357 			mr);
358 
359 	if (atmel_spi_is_v2(as) || spi->chip_select != 0)
360 		gpio_set_value(asd->npcs_pin, !active);
361 }
362 
363 static void atmel_spi_lock(struct atmel_spi *as)
364 {
365 	spin_lock_irqsave(&as->lock, as->flags);
366 }
367 
368 static void atmel_spi_unlock(struct atmel_spi *as)
369 {
370 	spin_unlock_irqrestore(&as->lock, as->flags);
371 }
372 
373 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
374 				struct spi_transfer *xfer)
375 {
376 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
377 }
378 
379 static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
380 					struct spi_transfer *xfer)
381 {
382 	return msg->transfers.prev == &xfer->transfer_list;
383 }
384 
385 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
386 {
387 	return xfer->delay_usecs == 0 && !xfer->cs_change;
388 }
389 
390 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
391 				struct dma_slave_config *slave_config,
392 				u8 bits_per_word)
393 {
394 	int err = 0;
395 
396 	if (bits_per_word > 8) {
397 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
398 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
399 	} else {
400 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
401 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
402 	}
403 
404 	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
405 	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
406 	slave_config->src_maxburst = 1;
407 	slave_config->dst_maxburst = 1;
408 	slave_config->device_fc = false;
409 
410 	slave_config->direction = DMA_MEM_TO_DEV;
411 	if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
412 		dev_err(&as->pdev->dev,
413 			"failed to configure tx dma channel\n");
414 		err = -EINVAL;
415 	}
416 
417 	slave_config->direction = DMA_DEV_TO_MEM;
418 	if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
419 		dev_err(&as->pdev->dev,
420 			"failed to configure rx dma channel\n");
421 		err = -EINVAL;
422 	}
423 
424 	return err;
425 }
426 
427 static bool filter(struct dma_chan *chan, void *slave)
428 {
429 	struct	at_dma_slave *sl = slave;
430 
431 	if (sl->dma_dev == chan->device->dev) {
432 		chan->private = sl;
433 		return true;
434 	} else {
435 		return false;
436 	}
437 }
438 
439 static int atmel_spi_configure_dma(struct atmel_spi *as)
440 {
441 	struct at_dma_slave *sdata = &as->dma.dma_slave;
442 	struct dma_slave_config	slave_config;
443 	int err;
444 
445 	if (sdata && sdata->dma_dev) {
446 		dma_cap_mask_t mask;
447 
448 		/* Try to grab two DMA channels */
449 		dma_cap_zero(mask);
450 		dma_cap_set(DMA_SLAVE, mask);
451 		as->dma.chan_tx = dma_request_channel(mask, filter, sdata);
452 		if (as->dma.chan_tx)
453 			as->dma.chan_rx =
454 				dma_request_channel(mask, filter, sdata);
455 	}
456 	if (!as->dma.chan_rx || !as->dma.chan_tx) {
457 		dev_err(&as->pdev->dev,
458 			"DMA channel not available, SPI unable to use DMA\n");
459 		err = -EBUSY;
460 		goto error;
461 	}
462 
463 	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
464 	if (err)
465 		goto error;
466 
467 	dev_info(&as->pdev->dev,
468 			"Using %s (tx) and %s (rx) for DMA transfers\n",
469 			dma_chan_name(as->dma.chan_tx),
470 			dma_chan_name(as->dma.chan_rx));
471 	return 0;
472 error:
473 	if (as->dma.chan_rx)
474 		dma_release_channel(as->dma.chan_rx);
475 	if (as->dma.chan_tx)
476 		dma_release_channel(as->dma.chan_tx);
477 	return err;
478 }
479 
480 static void atmel_spi_stop_dma(struct atmel_spi *as)
481 {
482 	if (as->dma.chan_rx)
483 		as->dma.chan_rx->device->device_control(as->dma.chan_rx,
484 							DMA_TERMINATE_ALL, 0);
485 	if (as->dma.chan_tx)
486 		as->dma.chan_tx->device->device_control(as->dma.chan_tx,
487 							DMA_TERMINATE_ALL, 0);
488 }
489 
490 static void atmel_spi_release_dma(struct atmel_spi *as)
491 {
492 	if (as->dma.chan_rx)
493 		dma_release_channel(as->dma.chan_rx);
494 	if (as->dma.chan_tx)
495 		dma_release_channel(as->dma.chan_tx);
496 }
497 
498 /* This function is called by the DMA driver from tasklet context */
499 static void dma_callback(void *data)
500 {
501 	struct spi_master	*master = data;
502 	struct atmel_spi	*as = spi_master_get_devdata(master);
503 
504 	/* trigger SPI tasklet */
505 	tasklet_schedule(&as->tasklet);
506 }
507 
508 /*
509  * Next transfer using PIO.
510  * lock is held, spi tasklet is blocked
511  */
512 static void atmel_spi_next_xfer_pio(struct spi_master *master,
513 				struct spi_transfer *xfer)
514 {
515 	struct atmel_spi	*as = spi_master_get_devdata(master);
516 
517 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
518 
519 	as->current_remaining_bytes = xfer->len;
520 
521 	/* Make sure data is not remaining in RDR */
522 	spi_readl(as, RDR);
523 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
524 		spi_readl(as, RDR);
525 		cpu_relax();
526 	}
527 
528 	if (xfer->tx_buf)
529 		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf));
530 	else
531 		spi_writel(as, TDR, 0);
532 
533 	dev_dbg(master->dev.parent,
534 		"  start pio xfer %p: len %u tx %p rx %p\n",
535 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf);
536 
537 	/* Enable relevant interrupts */
538 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
539 }
540 
541 /*
542  * Submit next transfer for DMA.
543  * lock is held, spi tasklet is blocked
544  */
545 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
546 				struct spi_transfer *xfer,
547 				u32 *plen)
548 {
549 	struct atmel_spi	*as = spi_master_get_devdata(master);
550 	struct dma_chan		*rxchan = as->dma.chan_rx;
551 	struct dma_chan		*txchan = as->dma.chan_tx;
552 	struct dma_async_tx_descriptor *rxdesc;
553 	struct dma_async_tx_descriptor *txdesc;
554 	struct dma_slave_config	slave_config;
555 	dma_cookie_t		cookie;
556 	u32	len = *plen;
557 
558 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
559 
560 	/* Check that the channels are available */
561 	if (!rxchan || !txchan)
562 		return -ENODEV;
563 
564 	/* release lock for DMA operations */
565 	atmel_spi_unlock(as);
566 
567 	/* prepare the RX dma transfer */
568 	sg_init_table(&as->dma.sgrx, 1);
569 	if (xfer->rx_buf) {
570 		as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
571 	} else {
572 		as->dma.sgrx.dma_address = as->buffer_dma;
573 		if (len > BUFFER_SIZE)
574 			len = BUFFER_SIZE;
575 	}
576 
577 	/* prepare the TX dma transfer */
578 	sg_init_table(&as->dma.sgtx, 1);
579 	if (xfer->tx_buf) {
580 		as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
581 	} else {
582 		as->dma.sgtx.dma_address = as->buffer_dma;
583 		if (len > BUFFER_SIZE)
584 			len = BUFFER_SIZE;
585 		memset(as->buffer, 0, len);
586 	}
587 
588 	sg_dma_len(&as->dma.sgtx) = len;
589 	sg_dma_len(&as->dma.sgrx) = len;
590 
591 	*plen = len;
592 
593 	if (atmel_spi_dma_slave_config(as, &slave_config, 8))
594 		goto err_exit;
595 
596 	/* Send both scatterlists */
597 	rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
598 					&as->dma.sgrx,
599 					1,
600 					DMA_FROM_DEVICE,
601 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
602 					NULL);
603 	if (!rxdesc)
604 		goto err_dma;
605 
606 	txdesc = txchan->device->device_prep_slave_sg(txchan,
607 					&as->dma.sgtx,
608 					1,
609 					DMA_TO_DEVICE,
610 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
611 					NULL);
612 	if (!txdesc)
613 		goto err_dma;
614 
615 	dev_dbg(master->dev.parent,
616 		"  start dma xfer %p: len %u tx %p/%08x rx %p/%08x\n",
617 		xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
618 		xfer->rx_buf, xfer->rx_dma);
619 
620 	/* Enable relevant interrupts */
621 	spi_writel(as, IER, SPI_BIT(OVRES));
622 
623 	/* Put the callback on the RX transfer only, that should finish last */
624 	rxdesc->callback = dma_callback;
625 	rxdesc->callback_param = master;
626 
627 	/* Submit and fire RX and TX with TX last so we're ready to read! */
628 	cookie = rxdesc->tx_submit(rxdesc);
629 	if (dma_submit_error(cookie))
630 		goto err_dma;
631 	cookie = txdesc->tx_submit(txdesc);
632 	if (dma_submit_error(cookie))
633 		goto err_dma;
634 	rxchan->device->device_issue_pending(rxchan);
635 	txchan->device->device_issue_pending(txchan);
636 
637 	/* take back lock */
638 	atmel_spi_lock(as);
639 	return 0;
640 
641 err_dma:
642 	spi_writel(as, IDR, SPI_BIT(OVRES));
643 	atmel_spi_stop_dma(as);
644 err_exit:
645 	atmel_spi_lock(as);
646 	return -ENOMEM;
647 }
648 
649 static void atmel_spi_next_xfer_data(struct spi_master *master,
650 				struct spi_transfer *xfer,
651 				dma_addr_t *tx_dma,
652 				dma_addr_t *rx_dma,
653 				u32 *plen)
654 {
655 	struct atmel_spi	*as = spi_master_get_devdata(master);
656 	u32			len = *plen;
657 
658 	/* use scratch buffer only when rx or tx data is unspecified */
659 	if (xfer->rx_buf)
660 		*rx_dma = xfer->rx_dma + xfer->len - *plen;
661 	else {
662 		*rx_dma = as->buffer_dma;
663 		if (len > BUFFER_SIZE)
664 			len = BUFFER_SIZE;
665 	}
666 
667 	if (xfer->tx_buf)
668 		*tx_dma = xfer->tx_dma + xfer->len - *plen;
669 	else {
670 		*tx_dma = as->buffer_dma;
671 		if (len > BUFFER_SIZE)
672 			len = BUFFER_SIZE;
673 		memset(as->buffer, 0, len);
674 		dma_sync_single_for_device(&as->pdev->dev,
675 				as->buffer_dma, len, DMA_TO_DEVICE);
676 	}
677 
678 	*plen = len;
679 }
680 
681 /*
682  * Submit next transfer for PDC.
683  * lock is held, spi irq is blocked
684  */
685 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
686 				struct spi_message *msg)
687 {
688 	struct atmel_spi	*as = spi_master_get_devdata(master);
689 	struct spi_transfer	*xfer;
690 	u32			len, remaining;
691 	u32			ieval;
692 	dma_addr_t		tx_dma, rx_dma;
693 
694 	if (!as->current_transfer)
695 		xfer = list_entry(msg->transfers.next,
696 				struct spi_transfer, transfer_list);
697 	else if (!as->next_transfer)
698 		xfer = list_entry(as->current_transfer->transfer_list.next,
699 				struct spi_transfer, transfer_list);
700 	else
701 		xfer = NULL;
702 
703 	if (xfer) {
704 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
705 
706 		len = xfer->len;
707 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
708 		remaining = xfer->len - len;
709 
710 		spi_writel(as, RPR, rx_dma);
711 		spi_writel(as, TPR, tx_dma);
712 
713 		if (msg->spi->bits_per_word > 8)
714 			len >>= 1;
715 		spi_writel(as, RCR, len);
716 		spi_writel(as, TCR, len);
717 
718 		dev_dbg(&msg->spi->dev,
719 			"  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
720 			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
721 			xfer->rx_buf, xfer->rx_dma);
722 	} else {
723 		xfer = as->next_transfer;
724 		remaining = as->next_remaining_bytes;
725 	}
726 
727 	as->current_transfer = xfer;
728 	as->current_remaining_bytes = remaining;
729 
730 	if (remaining > 0)
731 		len = remaining;
732 	else if (!atmel_spi_xfer_is_last(msg, xfer)
733 			&& atmel_spi_xfer_can_be_chained(xfer)) {
734 		xfer = list_entry(xfer->transfer_list.next,
735 				struct spi_transfer, transfer_list);
736 		len = xfer->len;
737 	} else
738 		xfer = NULL;
739 
740 	as->next_transfer = xfer;
741 
742 	if (xfer) {
743 		u32	total;
744 
745 		total = len;
746 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
747 		as->next_remaining_bytes = total - len;
748 
749 		spi_writel(as, RNPR, rx_dma);
750 		spi_writel(as, TNPR, tx_dma);
751 
752 		if (msg->spi->bits_per_word > 8)
753 			len >>= 1;
754 		spi_writel(as, RNCR, len);
755 		spi_writel(as, TNCR, len);
756 
757 		dev_dbg(&msg->spi->dev,
758 			"  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
759 			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
760 			xfer->rx_buf, xfer->rx_dma);
761 		ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
762 	} else {
763 		spi_writel(as, RNCR, 0);
764 		spi_writel(as, TNCR, 0);
765 		ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
766 	}
767 
768 	/* REVISIT: We're waiting for ENDRX before we start the next
769 	 * transfer because we need to handle some difficult timing
770 	 * issues otherwise. If we wait for ENDTX in one transfer and
771 	 * then starts waiting for ENDRX in the next, it's difficult
772 	 * to tell the difference between the ENDRX interrupt we're
773 	 * actually waiting for and the ENDRX interrupt of the
774 	 * previous transfer.
775 	 *
776 	 * It should be doable, though. Just not now...
777 	 */
778 	spi_writel(as, IER, ieval);
779 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
780 }
781 
782 /*
783  * Choose way to submit next transfer and start it.
784  * lock is held, spi tasklet is blocked
785  */
786 static void atmel_spi_dma_next_xfer(struct spi_master *master,
787 				struct spi_message *msg)
788 {
789 	struct atmel_spi	*as = spi_master_get_devdata(master);
790 	struct spi_transfer	*xfer;
791 	u32	remaining, len;
792 
793 	remaining = as->current_remaining_bytes;
794 	if (remaining) {
795 		xfer = as->current_transfer;
796 		len = remaining;
797 	} else {
798 		if (!as->current_transfer)
799 			xfer = list_entry(msg->transfers.next,
800 				struct spi_transfer, transfer_list);
801 		else
802 			xfer = list_entry(
803 				as->current_transfer->transfer_list.next,
804 					struct spi_transfer, transfer_list);
805 
806 		as->current_transfer = xfer;
807 		len = xfer->len;
808 	}
809 
810 	if (atmel_spi_use_dma(as, xfer)) {
811 		u32 total = len;
812 		if (!atmel_spi_next_xfer_dma_submit(master, xfer, &len)) {
813 			as->current_remaining_bytes = total - len;
814 			return;
815 		} else {
816 			dev_err(&msg->spi->dev, "unable to use DMA, fallback to PIO\n");
817 		}
818 	}
819 
820 	/* use PIO if error appened using DMA */
821 	atmel_spi_next_xfer_pio(master, xfer);
822 }
823 
824 static void atmel_spi_next_message(struct spi_master *master)
825 {
826 	struct atmel_spi	*as = spi_master_get_devdata(master);
827 	struct spi_message	*msg;
828 	struct spi_device	*spi;
829 
830 	BUG_ON(as->current_transfer);
831 
832 	msg = list_entry(as->queue.next, struct spi_message, queue);
833 	spi = msg->spi;
834 
835 	dev_dbg(master->dev.parent, "start message %p for %s\n",
836 			msg, dev_name(&spi->dev));
837 
838 	/* select chip if it's not still active */
839 	if (as->stay) {
840 		if (as->stay != spi) {
841 			cs_deactivate(as, as->stay);
842 			cs_activate(as, spi);
843 		}
844 		as->stay = NULL;
845 	} else
846 		cs_activate(as, spi);
847 
848 	if (as->use_pdc)
849 		atmel_spi_pdc_next_xfer(master, msg);
850 	else
851 		atmel_spi_dma_next_xfer(master, msg);
852 }
853 
854 /*
855  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
856  *  - The buffer is either valid for CPU access, else NULL
857  *  - If the buffer is valid, so is its DMA address
858  *
859  * This driver manages the dma address unless message->is_dma_mapped.
860  */
861 static int
862 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
863 {
864 	struct device	*dev = &as->pdev->dev;
865 
866 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
867 	if (xfer->tx_buf) {
868 		/* tx_buf is a const void* where we need a void * for the dma
869 		 * mapping */
870 		void *nonconst_tx = (void *)xfer->tx_buf;
871 
872 		xfer->tx_dma = dma_map_single(dev,
873 				nonconst_tx, xfer->len,
874 				DMA_TO_DEVICE);
875 		if (dma_mapping_error(dev, xfer->tx_dma))
876 			return -ENOMEM;
877 	}
878 	if (xfer->rx_buf) {
879 		xfer->rx_dma = dma_map_single(dev,
880 				xfer->rx_buf, xfer->len,
881 				DMA_FROM_DEVICE);
882 		if (dma_mapping_error(dev, xfer->rx_dma)) {
883 			if (xfer->tx_buf)
884 				dma_unmap_single(dev,
885 						xfer->tx_dma, xfer->len,
886 						DMA_TO_DEVICE);
887 			return -ENOMEM;
888 		}
889 	}
890 	return 0;
891 }
892 
893 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
894 				     struct spi_transfer *xfer)
895 {
896 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
897 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
898 				 xfer->len, DMA_TO_DEVICE);
899 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
900 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
901 				 xfer->len, DMA_FROM_DEVICE);
902 }
903 
904 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
905 {
906 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
907 }
908 
909 static void
910 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
911 		struct spi_message *msg, int stay)
912 {
913 	if (!stay || as->done_status < 0)
914 		cs_deactivate(as, msg->spi);
915 	else
916 		as->stay = msg->spi;
917 
918 	list_del(&msg->queue);
919 	msg->status = as->done_status;
920 
921 	dev_dbg(master->dev.parent,
922 		"xfer complete: %u bytes transferred\n",
923 		msg->actual_length);
924 
925 	atmel_spi_unlock(as);
926 	msg->complete(msg->context);
927 	atmel_spi_lock(as);
928 
929 	as->current_transfer = NULL;
930 	as->next_transfer = NULL;
931 	as->done_status = 0;
932 
933 	/* continue if needed */
934 	if (list_empty(&as->queue) || as->stopping) {
935 		if (as->use_pdc)
936 			atmel_spi_disable_pdc_transfer(as);
937 	} else {
938 		atmel_spi_next_message(master);
939 	}
940 }
941 
942 /* Called from IRQ
943  * lock is held
944  *
945  * Must update "current_remaining_bytes" to keep track of data
946  * to transfer.
947  */
948 static void
949 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
950 {
951 	u8		*txp;
952 	u8		*rxp;
953 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
954 
955 	if (xfer->rx_buf) {
956 		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
957 		*rxp = spi_readl(as, RDR);
958 	} else {
959 		spi_readl(as, RDR);
960 	}
961 
962 	as->current_remaining_bytes--;
963 
964 	if (as->current_remaining_bytes) {
965 		if (xfer->tx_buf) {
966 			txp = ((u8 *)xfer->tx_buf) + xfer_pos + 1;
967 			spi_writel(as, TDR, *txp);
968 		} else {
969 			spi_writel(as, TDR, 0);
970 		}
971 	}
972 }
973 
974 /* Tasklet
975  * Called from DMA callback + pio transfer and overrun IRQ.
976  */
977 static void atmel_spi_tasklet_func(unsigned long data)
978 {
979 	struct spi_master	*master = (struct spi_master *)data;
980 	struct atmel_spi	*as = spi_master_get_devdata(master);
981 	struct spi_message	*msg;
982 	struct spi_transfer	*xfer;
983 
984 	dev_vdbg(master->dev.parent, "atmel_spi_tasklet_func\n");
985 
986 	atmel_spi_lock(as);
987 
988 	xfer = as->current_transfer;
989 
990 	if (xfer == NULL)
991 		/* already been there */
992 		goto tasklet_out;
993 
994 	msg = list_entry(as->queue.next, struct spi_message, queue);
995 
996 	if (as->current_remaining_bytes == 0) {
997 		if (as->done_status < 0) {
998 			/* error happened (overrun) */
999 			if (atmel_spi_use_dma(as, xfer))
1000 				atmel_spi_stop_dma(as);
1001 		} else {
1002 			/* only update length if no error */
1003 			msg->actual_length += xfer->len;
1004 		}
1005 
1006 		if (atmel_spi_use_dma(as, xfer))
1007 			if (!msg->is_dma_mapped)
1008 				atmel_spi_dma_unmap_xfer(master, xfer);
1009 
1010 		if (xfer->delay_usecs)
1011 			udelay(xfer->delay_usecs);
1012 
1013 		if (atmel_spi_xfer_is_last(msg, xfer) || as->done_status < 0) {
1014 			/* report completed (or erroneous) message */
1015 			atmel_spi_msg_done(master, as, msg, xfer->cs_change);
1016 		} else {
1017 			if (xfer->cs_change) {
1018 				cs_deactivate(as, msg->spi);
1019 				udelay(1);
1020 				cs_activate(as, msg->spi);
1021 			}
1022 
1023 			/*
1024 			 * Not done yet. Submit the next transfer.
1025 			 *
1026 			 * FIXME handle protocol options for xfer
1027 			 */
1028 			atmel_spi_dma_next_xfer(master, msg);
1029 		}
1030 	} else {
1031 		/*
1032 		 * Keep going, we still have data to send in
1033 		 * the current transfer.
1034 		 */
1035 		atmel_spi_dma_next_xfer(master, msg);
1036 	}
1037 
1038 tasklet_out:
1039 	atmel_spi_unlock(as);
1040 }
1041 
1042 /* Interrupt
1043  *
1044  * No need for locking in this Interrupt handler: done_status is the
1045  * only information modified. What we need is the update of this field
1046  * before tasklet runs. This is ensured by using barrier.
1047  */
1048 static irqreturn_t
1049 atmel_spi_pio_interrupt(int irq, void *dev_id)
1050 {
1051 	struct spi_master	*master = dev_id;
1052 	struct atmel_spi	*as = spi_master_get_devdata(master);
1053 	u32			status, pending, imr;
1054 	struct spi_transfer	*xfer;
1055 	int			ret = IRQ_NONE;
1056 
1057 	imr = spi_readl(as, IMR);
1058 	status = spi_readl(as, SR);
1059 	pending = status & imr;
1060 
1061 	if (pending & SPI_BIT(OVRES)) {
1062 		ret = IRQ_HANDLED;
1063 		spi_writel(as, IDR, SPI_BIT(OVRES));
1064 		dev_warn(master->dev.parent, "overrun\n");
1065 
1066 		/*
1067 		 * When we get an overrun, we disregard the current
1068 		 * transfer. Data will not be copied back from any
1069 		 * bounce buffer and msg->actual_len will not be
1070 		 * updated with the last xfer.
1071 		 *
1072 		 * We will also not process any remaning transfers in
1073 		 * the message.
1074 		 *
1075 		 * All actions are done in tasklet with done_status indication
1076 		 */
1077 		as->done_status = -EIO;
1078 		smp_wmb();
1079 
1080 		/* Clear any overrun happening while cleaning up */
1081 		spi_readl(as, SR);
1082 
1083 		tasklet_schedule(&as->tasklet);
1084 
1085 	} else if (pending & SPI_BIT(RDRF)) {
1086 		atmel_spi_lock(as);
1087 
1088 		if (as->current_remaining_bytes) {
1089 			ret = IRQ_HANDLED;
1090 			xfer = as->current_transfer;
1091 			atmel_spi_pump_pio_data(as, xfer);
1092 			if (!as->current_remaining_bytes) {
1093 				/* no more data to xfer, kick tasklet */
1094 				spi_writel(as, IDR, pending);
1095 				tasklet_schedule(&as->tasklet);
1096 			}
1097 		}
1098 
1099 		atmel_spi_unlock(as);
1100 	} else {
1101 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1102 		ret = IRQ_HANDLED;
1103 		spi_writel(as, IDR, pending);
1104 	}
1105 
1106 	return ret;
1107 }
1108 
1109 static irqreturn_t
1110 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1111 {
1112 	struct spi_master	*master = dev_id;
1113 	struct atmel_spi	*as = spi_master_get_devdata(master);
1114 	struct spi_message	*msg;
1115 	struct spi_transfer	*xfer;
1116 	u32			status, pending, imr;
1117 	int			ret = IRQ_NONE;
1118 
1119 	atmel_spi_lock(as);
1120 
1121 	xfer = as->current_transfer;
1122 	msg = list_entry(as->queue.next, struct spi_message, queue);
1123 
1124 	imr = spi_readl(as, IMR);
1125 	status = spi_readl(as, SR);
1126 	pending = status & imr;
1127 
1128 	if (pending & SPI_BIT(OVRES)) {
1129 		int timeout;
1130 
1131 		ret = IRQ_HANDLED;
1132 
1133 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1134 				     | SPI_BIT(OVRES)));
1135 
1136 		/*
1137 		 * When we get an overrun, we disregard the current
1138 		 * transfer. Data will not be copied back from any
1139 		 * bounce buffer and msg->actual_len will not be
1140 		 * updated with the last xfer.
1141 		 *
1142 		 * We will also not process any remaning transfers in
1143 		 * the message.
1144 		 *
1145 		 * First, stop the transfer and unmap the DMA buffers.
1146 		 */
1147 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1148 		if (!msg->is_dma_mapped)
1149 			atmel_spi_dma_unmap_xfer(master, xfer);
1150 
1151 		/* REVISIT: udelay in irq is unfriendly */
1152 		if (xfer->delay_usecs)
1153 			udelay(xfer->delay_usecs);
1154 
1155 		dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
1156 			 spi_readl(as, TCR), spi_readl(as, RCR));
1157 
1158 		/*
1159 		 * Clean up DMA registers and make sure the data
1160 		 * registers are empty.
1161 		 */
1162 		spi_writel(as, RNCR, 0);
1163 		spi_writel(as, TNCR, 0);
1164 		spi_writel(as, RCR, 0);
1165 		spi_writel(as, TCR, 0);
1166 		for (timeout = 1000; timeout; timeout--)
1167 			if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1168 				break;
1169 		if (!timeout)
1170 			dev_warn(master->dev.parent,
1171 				 "timeout waiting for TXEMPTY");
1172 		while (spi_readl(as, SR) & SPI_BIT(RDRF))
1173 			spi_readl(as, RDR);
1174 
1175 		/* Clear any overrun happening while cleaning up */
1176 		spi_readl(as, SR);
1177 
1178 		as->done_status = -EIO;
1179 		atmel_spi_msg_done(master, as, msg, 0);
1180 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1181 		ret = IRQ_HANDLED;
1182 
1183 		spi_writel(as, IDR, pending);
1184 
1185 		if (as->current_remaining_bytes == 0) {
1186 			msg->actual_length += xfer->len;
1187 
1188 			if (!msg->is_dma_mapped)
1189 				atmel_spi_dma_unmap_xfer(master, xfer);
1190 
1191 			/* REVISIT: udelay in irq is unfriendly */
1192 			if (xfer->delay_usecs)
1193 				udelay(xfer->delay_usecs);
1194 
1195 			if (atmel_spi_xfer_is_last(msg, xfer)) {
1196 				/* report completed message */
1197 				atmel_spi_msg_done(master, as, msg,
1198 						xfer->cs_change);
1199 			} else {
1200 				if (xfer->cs_change) {
1201 					cs_deactivate(as, msg->spi);
1202 					udelay(1);
1203 					cs_activate(as, msg->spi);
1204 				}
1205 
1206 				/*
1207 				 * Not done yet. Submit the next transfer.
1208 				 *
1209 				 * FIXME handle protocol options for xfer
1210 				 */
1211 				atmel_spi_pdc_next_xfer(master, msg);
1212 			}
1213 		} else {
1214 			/*
1215 			 * Keep going, we still have data to send in
1216 			 * the current transfer.
1217 			 */
1218 			atmel_spi_pdc_next_xfer(master, msg);
1219 		}
1220 	}
1221 
1222 	atmel_spi_unlock(as);
1223 
1224 	return ret;
1225 }
1226 
1227 static int atmel_spi_setup(struct spi_device *spi)
1228 {
1229 	struct atmel_spi	*as;
1230 	struct atmel_spi_device	*asd;
1231 	u32			scbr, csr;
1232 	unsigned int		bits = spi->bits_per_word;
1233 	unsigned long		bus_hz;
1234 	unsigned int		npcs_pin;
1235 	int			ret;
1236 
1237 	as = spi_master_get_devdata(spi->master);
1238 
1239 	if (as->stopping)
1240 		return -ESHUTDOWN;
1241 
1242 	if (spi->chip_select > spi->master->num_chipselect) {
1243 		dev_dbg(&spi->dev,
1244 				"setup: invalid chipselect %u (%u defined)\n",
1245 				spi->chip_select, spi->master->num_chipselect);
1246 		return -EINVAL;
1247 	}
1248 
1249 	if (bits < 8 || bits > 16) {
1250 		dev_dbg(&spi->dev,
1251 				"setup: invalid bits_per_word %u (8 to 16)\n",
1252 				bits);
1253 		return -EINVAL;
1254 	}
1255 
1256 	/* see notes above re chipselect */
1257 	if (!atmel_spi_is_v2(as)
1258 			&& spi->chip_select == 0
1259 			&& (spi->mode & SPI_CS_HIGH)) {
1260 		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1261 		return -EINVAL;
1262 	}
1263 
1264 	/* v1 chips start out at half the peripheral bus speed. */
1265 	bus_hz = clk_get_rate(as->clk);
1266 	if (!atmel_spi_is_v2(as))
1267 		bus_hz /= 2;
1268 
1269 	if (spi->max_speed_hz) {
1270 		/*
1271 		 * Calculate the lowest divider that satisfies the
1272 		 * constraint, assuming div32/fdiv/mbz == 0.
1273 		 */
1274 		scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
1275 
1276 		/*
1277 		 * If the resulting divider doesn't fit into the
1278 		 * register bitfield, we can't satisfy the constraint.
1279 		 */
1280 		if (scbr >= (1 << SPI_SCBR_SIZE)) {
1281 			dev_dbg(&spi->dev,
1282 				"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
1283 				spi->max_speed_hz, scbr, bus_hz/255);
1284 			return -EINVAL;
1285 		}
1286 	} else
1287 		/* speed zero means "as slow as possible" */
1288 		scbr = 0xff;
1289 
1290 	csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
1291 	if (spi->mode & SPI_CPOL)
1292 		csr |= SPI_BIT(CPOL);
1293 	if (!(spi->mode & SPI_CPHA))
1294 		csr |= SPI_BIT(NCPHA);
1295 
1296 	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1297 	 *
1298 	 * DLYBCT would add delays between words, slowing down transfers.
1299 	 * It could potentially be useful to cope with DMA bottlenecks, but
1300 	 * in those cases it's probably best to just use a lower bitrate.
1301 	 */
1302 	csr |= SPI_BF(DLYBS, 0);
1303 	csr |= SPI_BF(DLYBCT, 0);
1304 
1305 	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
1306 	npcs_pin = (unsigned int)spi->controller_data;
1307 
1308 	if (gpio_is_valid(spi->cs_gpio))
1309 		npcs_pin = spi->cs_gpio;
1310 
1311 	asd = spi->controller_state;
1312 	if (!asd) {
1313 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1314 		if (!asd)
1315 			return -ENOMEM;
1316 
1317 		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1318 		if (ret) {
1319 			kfree(asd);
1320 			return ret;
1321 		}
1322 
1323 		asd->npcs_pin = npcs_pin;
1324 		spi->controller_state = asd;
1325 		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1326 	} else {
1327 		atmel_spi_lock(as);
1328 		if (as->stay == spi)
1329 			as->stay = NULL;
1330 		cs_deactivate(as, spi);
1331 		atmel_spi_unlock(as);
1332 	}
1333 
1334 	asd->csr = csr;
1335 
1336 	dev_dbg(&spi->dev,
1337 		"setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
1338 		bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
1339 
1340 	if (!atmel_spi_is_v2(as))
1341 		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1342 
1343 	return 0;
1344 }
1345 
1346 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
1347 {
1348 	struct atmel_spi	*as;
1349 	struct spi_transfer	*xfer;
1350 	struct device		*controller = spi->master->dev.parent;
1351 	u8			bits;
1352 	struct atmel_spi_device	*asd;
1353 
1354 	as = spi_master_get_devdata(spi->master);
1355 
1356 	dev_dbg(controller, "new message %p submitted for %s\n",
1357 			msg, dev_name(&spi->dev));
1358 
1359 	if (unlikely(list_empty(&msg->transfers)))
1360 		return -EINVAL;
1361 
1362 	if (as->stopping)
1363 		return -ESHUTDOWN;
1364 
1365 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1366 		if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1367 			dev_dbg(&spi->dev, "missing rx or tx buf\n");
1368 			return -EINVAL;
1369 		}
1370 
1371 		if (xfer->bits_per_word) {
1372 			asd = spi->controller_state;
1373 			bits = (asd->csr >> 4) & 0xf;
1374 			if (bits != xfer->bits_per_word - 8) {
1375 				dev_dbg(&spi->dev, "you can't yet change "
1376 					 "bits_per_word in transfers\n");
1377 				return -ENOPROTOOPT;
1378 			}
1379 		}
1380 
1381 		/* FIXME implement these protocol options!! */
1382 		if (xfer->speed_hz) {
1383 			dev_dbg(&spi->dev, "no protocol options yet\n");
1384 			return -ENOPROTOOPT;
1385 		}
1386 
1387 		/*
1388 		 * DMA map early, for performance (empties dcache ASAP) and
1389 		 * better fault reporting.
1390 		 */
1391 		if ((!msg->is_dma_mapped) && (atmel_spi_use_dma(as, xfer)
1392 			|| as->use_pdc)) {
1393 			if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1394 				return -ENOMEM;
1395 		}
1396 	}
1397 
1398 #ifdef VERBOSE
1399 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1400 		dev_dbg(controller,
1401 			"  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
1402 			xfer, xfer->len,
1403 			xfer->tx_buf, xfer->tx_dma,
1404 			xfer->rx_buf, xfer->rx_dma);
1405 	}
1406 #endif
1407 
1408 	msg->status = -EINPROGRESS;
1409 	msg->actual_length = 0;
1410 
1411 	atmel_spi_lock(as);
1412 	list_add_tail(&msg->queue, &as->queue);
1413 	if (!as->current_transfer)
1414 		atmel_spi_next_message(spi->master);
1415 	atmel_spi_unlock(as);
1416 
1417 	return 0;
1418 }
1419 
1420 static void atmel_spi_cleanup(struct spi_device *spi)
1421 {
1422 	struct atmel_spi	*as = spi_master_get_devdata(spi->master);
1423 	struct atmel_spi_device	*asd = spi->controller_state;
1424 	unsigned		gpio = (unsigned) spi->controller_data;
1425 
1426 	if (!asd)
1427 		return;
1428 
1429 	atmel_spi_lock(as);
1430 	if (as->stay == spi) {
1431 		as->stay = NULL;
1432 		cs_deactivate(as, spi);
1433 	}
1434 	atmel_spi_unlock(as);
1435 
1436 	spi->controller_state = NULL;
1437 	gpio_free(gpio);
1438 	kfree(asd);
1439 }
1440 
1441 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1442 {
1443 	return spi_readl(as, VERSION) & 0x00000fff;
1444 }
1445 
1446 static void atmel_get_caps(struct atmel_spi *as)
1447 {
1448 	unsigned int version;
1449 
1450 	version = atmel_get_version(as);
1451 	dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1452 
1453 	as->caps.is_spi2 = version > 0x121;
1454 	as->caps.has_wdrbt = version >= 0x210;
1455 	as->caps.has_dma_support = version >= 0x212;
1456 }
1457 
1458 /*-------------------------------------------------------------------------*/
1459 
1460 static int atmel_spi_probe(struct platform_device *pdev)
1461 {
1462 	struct resource		*regs;
1463 	int			irq;
1464 	struct clk		*clk;
1465 	int			ret;
1466 	struct spi_master	*master;
1467 	struct atmel_spi	*as;
1468 
1469 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1470 	if (!regs)
1471 		return -ENXIO;
1472 
1473 	irq = platform_get_irq(pdev, 0);
1474 	if (irq < 0)
1475 		return irq;
1476 
1477 	clk = clk_get(&pdev->dev, "spi_clk");
1478 	if (IS_ERR(clk))
1479 		return PTR_ERR(clk);
1480 
1481 	/* setup spi core then atmel-specific driver state */
1482 	ret = -ENOMEM;
1483 	master = spi_alloc_master(&pdev->dev, sizeof *as);
1484 	if (!master)
1485 		goto out_free;
1486 
1487 	/* the spi->mode bits understood by this driver: */
1488 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1489 
1490 	master->dev.of_node = pdev->dev.of_node;
1491 	master->bus_num = pdev->id;
1492 	master->num_chipselect = master->dev.of_node ? 0 : 4;
1493 	master->setup = atmel_spi_setup;
1494 	master->transfer = atmel_spi_transfer;
1495 	master->cleanup = atmel_spi_cleanup;
1496 	platform_set_drvdata(pdev, master);
1497 
1498 	as = spi_master_get_devdata(master);
1499 
1500 	/*
1501 	 * Scratch buffer is used for throwaway rx and tx data.
1502 	 * It's coherent to minimize dcache pollution.
1503 	 */
1504 	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1505 					&as->buffer_dma, GFP_KERNEL);
1506 	if (!as->buffer)
1507 		goto out_free;
1508 
1509 	spin_lock_init(&as->lock);
1510 	INIT_LIST_HEAD(&as->queue);
1511 
1512 	as->pdev = pdev;
1513 	as->regs = ioremap(regs->start, resource_size(regs));
1514 	if (!as->regs)
1515 		goto out_free_buffer;
1516 	as->phybase = regs->start;
1517 	as->irq = irq;
1518 	as->clk = clk;
1519 
1520 	atmel_get_caps(as);
1521 
1522 	as->use_dma = false;
1523 	as->use_pdc = false;
1524 	if (as->caps.has_dma_support) {
1525 		if (atmel_spi_configure_dma(as) == 0)
1526 			as->use_dma = true;
1527 	} else {
1528 		as->use_pdc = true;
1529 	}
1530 
1531 	if (as->caps.has_dma_support && !as->use_dma)
1532 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1533 
1534 	if (as->use_pdc) {
1535 		ret = request_irq(irq, atmel_spi_pdc_interrupt, 0,
1536 					dev_name(&pdev->dev), master);
1537 	} else {
1538 		tasklet_init(&as->tasklet, atmel_spi_tasklet_func,
1539 					(unsigned long)master);
1540 
1541 		ret = request_irq(irq, atmel_spi_pio_interrupt, 0,
1542 					dev_name(&pdev->dev), master);
1543 	}
1544 	if (ret)
1545 		goto out_unmap_regs;
1546 
1547 	/* Initialize the hardware */
1548 	clk_enable(clk);
1549 	spi_writel(as, CR, SPI_BIT(SWRST));
1550 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1551 	if (as->caps.has_wdrbt) {
1552 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1553 				| SPI_BIT(MSTR));
1554 	} else {
1555 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1556 	}
1557 
1558 	if (as->use_pdc)
1559 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1560 	spi_writel(as, CR, SPI_BIT(SPIEN));
1561 
1562 	/* go! */
1563 	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1564 			(unsigned long)regs->start, irq);
1565 
1566 	ret = spi_register_master(master);
1567 	if (ret)
1568 		goto out_free_dma;
1569 
1570 	return 0;
1571 
1572 out_free_dma:
1573 	if (as->use_dma)
1574 		atmel_spi_release_dma(as);
1575 
1576 	spi_writel(as, CR, SPI_BIT(SWRST));
1577 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1578 	clk_disable(clk);
1579 	free_irq(irq, master);
1580 out_unmap_regs:
1581 	iounmap(as->regs);
1582 out_free_buffer:
1583 	if (!as->use_pdc)
1584 		tasklet_kill(&as->tasklet);
1585 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1586 			as->buffer_dma);
1587 out_free:
1588 	clk_put(clk);
1589 	spi_master_put(master);
1590 	return ret;
1591 }
1592 
1593 static int atmel_spi_remove(struct platform_device *pdev)
1594 {
1595 	struct spi_master	*master = platform_get_drvdata(pdev);
1596 	struct atmel_spi	*as = spi_master_get_devdata(master);
1597 	struct spi_message	*msg;
1598 	struct spi_transfer	*xfer;
1599 
1600 	/* reset the hardware and block queue progress */
1601 	spin_lock_irq(&as->lock);
1602 	as->stopping = 1;
1603 	if (as->use_dma) {
1604 		atmel_spi_stop_dma(as);
1605 		atmel_spi_release_dma(as);
1606 	}
1607 
1608 	spi_writel(as, CR, SPI_BIT(SWRST));
1609 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1610 	spi_readl(as, SR);
1611 	spin_unlock_irq(&as->lock);
1612 
1613 	/* Terminate remaining queued transfers */
1614 	list_for_each_entry(msg, &as->queue, queue) {
1615 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1616 			if (!msg->is_dma_mapped
1617 				&& (atmel_spi_use_dma(as, xfer)
1618 					|| as->use_pdc))
1619 				atmel_spi_dma_unmap_xfer(master, xfer);
1620 		}
1621 		msg->status = -ESHUTDOWN;
1622 		msg->complete(msg->context);
1623 	}
1624 
1625 	if (!as->use_pdc)
1626 		tasklet_kill(&as->tasklet);
1627 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1628 			as->buffer_dma);
1629 
1630 	clk_disable(as->clk);
1631 	clk_put(as->clk);
1632 	free_irq(as->irq, master);
1633 	iounmap(as->regs);
1634 
1635 	spi_unregister_master(master);
1636 
1637 	return 0;
1638 }
1639 
1640 #ifdef	CONFIG_PM
1641 
1642 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
1643 {
1644 	struct spi_master	*master = platform_get_drvdata(pdev);
1645 	struct atmel_spi	*as = spi_master_get_devdata(master);
1646 
1647 	clk_disable(as->clk);
1648 	return 0;
1649 }
1650 
1651 static int atmel_spi_resume(struct platform_device *pdev)
1652 {
1653 	struct spi_master	*master = platform_get_drvdata(pdev);
1654 	struct atmel_spi	*as = spi_master_get_devdata(master);
1655 
1656 	clk_enable(as->clk);
1657 	return 0;
1658 }
1659 
1660 #else
1661 #define	atmel_spi_suspend	NULL
1662 #define	atmel_spi_resume	NULL
1663 #endif
1664 
1665 #if defined(CONFIG_OF)
1666 static const struct of_device_id atmel_spi_dt_ids[] = {
1667 	{ .compatible = "atmel,at91rm9200-spi" },
1668 	{ /* sentinel */ }
1669 };
1670 
1671 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1672 #endif
1673 
1674 static struct platform_driver atmel_spi_driver = {
1675 	.driver		= {
1676 		.name	= "atmel_spi",
1677 		.owner	= THIS_MODULE,
1678 		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1679 	},
1680 	.suspend	= atmel_spi_suspend,
1681 	.resume		= atmel_spi_resume,
1682 	.probe		= atmel_spi_probe,
1683 	.remove		= atmel_spi_remove,
1684 };
1685 module_platform_driver(atmel_spi_driver);
1686 
1687 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1688 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1689 MODULE_LICENSE("GPL");
1690 MODULE_ALIAS("platform:atmel_spi");
1691