xref: /openbmc/linux/drivers/spi/spi-atmel.c (revision be80507d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/platform_data/dma-atmel.h>
20 #include <linux/of.h>
21 
22 #include <linux/io.h>
23 #include <linux/gpio/consumer.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <trace/events/spi.h>
27 
28 /* SPI register offsets */
29 #define SPI_CR					0x0000
30 #define SPI_MR					0x0004
31 #define SPI_RDR					0x0008
32 #define SPI_TDR					0x000c
33 #define SPI_SR					0x0010
34 #define SPI_IER					0x0014
35 #define SPI_IDR					0x0018
36 #define SPI_IMR					0x001c
37 #define SPI_CSR0				0x0030
38 #define SPI_CSR1				0x0034
39 #define SPI_CSR2				0x0038
40 #define SPI_CSR3				0x003c
41 #define SPI_FMR					0x0040
42 #define SPI_FLR					0x0044
43 #define SPI_VERSION				0x00fc
44 #define SPI_RPR					0x0100
45 #define SPI_RCR					0x0104
46 #define SPI_TPR					0x0108
47 #define SPI_TCR					0x010c
48 #define SPI_RNPR				0x0110
49 #define SPI_RNCR				0x0114
50 #define SPI_TNPR				0x0118
51 #define SPI_TNCR				0x011c
52 #define SPI_PTCR				0x0120
53 #define SPI_PTSR				0x0124
54 
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET			0
57 #define SPI_SPIEN_SIZE				1
58 #define SPI_SPIDIS_OFFSET			1
59 #define SPI_SPIDIS_SIZE				1
60 #define SPI_SWRST_OFFSET			7
61 #define SPI_SWRST_SIZE				1
62 #define SPI_LASTXFER_OFFSET			24
63 #define SPI_LASTXFER_SIZE			1
64 #define SPI_TXFCLR_OFFSET			16
65 #define SPI_TXFCLR_SIZE				1
66 #define SPI_RXFCLR_OFFSET			17
67 #define SPI_RXFCLR_SIZE				1
68 #define SPI_FIFOEN_OFFSET			30
69 #define SPI_FIFOEN_SIZE				1
70 #define SPI_FIFODIS_OFFSET			31
71 #define SPI_FIFODIS_SIZE			1
72 
73 /* Bitfields in MR */
74 #define SPI_MSTR_OFFSET				0
75 #define SPI_MSTR_SIZE				1
76 #define SPI_PS_OFFSET				1
77 #define SPI_PS_SIZE				1
78 #define SPI_PCSDEC_OFFSET			2
79 #define SPI_PCSDEC_SIZE				1
80 #define SPI_FDIV_OFFSET				3
81 #define SPI_FDIV_SIZE				1
82 #define SPI_MODFDIS_OFFSET			4
83 #define SPI_MODFDIS_SIZE			1
84 #define SPI_WDRBT_OFFSET			5
85 #define SPI_WDRBT_SIZE				1
86 #define SPI_LLB_OFFSET				7
87 #define SPI_LLB_SIZE				1
88 #define SPI_PCS_OFFSET				16
89 #define SPI_PCS_SIZE				4
90 #define SPI_DLYBCS_OFFSET			24
91 #define SPI_DLYBCS_SIZE				8
92 
93 /* Bitfields in RDR */
94 #define SPI_RD_OFFSET				0
95 #define SPI_RD_SIZE				16
96 
97 /* Bitfields in TDR */
98 #define SPI_TD_OFFSET				0
99 #define SPI_TD_SIZE				16
100 
101 /* Bitfields in SR */
102 #define SPI_RDRF_OFFSET				0
103 #define SPI_RDRF_SIZE				1
104 #define SPI_TDRE_OFFSET				1
105 #define SPI_TDRE_SIZE				1
106 #define SPI_MODF_OFFSET				2
107 #define SPI_MODF_SIZE				1
108 #define SPI_OVRES_OFFSET			3
109 #define SPI_OVRES_SIZE				1
110 #define SPI_ENDRX_OFFSET			4
111 #define SPI_ENDRX_SIZE				1
112 #define SPI_ENDTX_OFFSET			5
113 #define SPI_ENDTX_SIZE				1
114 #define SPI_RXBUFF_OFFSET			6
115 #define SPI_RXBUFF_SIZE				1
116 #define SPI_TXBUFE_OFFSET			7
117 #define SPI_TXBUFE_SIZE				1
118 #define SPI_NSSR_OFFSET				8
119 #define SPI_NSSR_SIZE				1
120 #define SPI_TXEMPTY_OFFSET			9
121 #define SPI_TXEMPTY_SIZE			1
122 #define SPI_SPIENS_OFFSET			16
123 #define SPI_SPIENS_SIZE				1
124 #define SPI_TXFEF_OFFSET			24
125 #define SPI_TXFEF_SIZE				1
126 #define SPI_TXFFF_OFFSET			25
127 #define SPI_TXFFF_SIZE				1
128 #define SPI_TXFTHF_OFFSET			26
129 #define SPI_TXFTHF_SIZE				1
130 #define SPI_RXFEF_OFFSET			27
131 #define SPI_RXFEF_SIZE				1
132 #define SPI_RXFFF_OFFSET			28
133 #define SPI_RXFFF_SIZE				1
134 #define SPI_RXFTHF_OFFSET			29
135 #define SPI_RXFTHF_SIZE				1
136 #define SPI_TXFPTEF_OFFSET			30
137 #define SPI_TXFPTEF_SIZE			1
138 #define SPI_RXFPTEF_OFFSET			31
139 #define SPI_RXFPTEF_SIZE			1
140 
141 /* Bitfields in CSR0 */
142 #define SPI_CPOL_OFFSET				0
143 #define SPI_CPOL_SIZE				1
144 #define SPI_NCPHA_OFFSET			1
145 #define SPI_NCPHA_SIZE				1
146 #define SPI_CSAAT_OFFSET			3
147 #define SPI_CSAAT_SIZE				1
148 #define SPI_BITS_OFFSET				4
149 #define SPI_BITS_SIZE				4
150 #define SPI_SCBR_OFFSET				8
151 #define SPI_SCBR_SIZE				8
152 #define SPI_DLYBS_OFFSET			16
153 #define SPI_DLYBS_SIZE				8
154 #define SPI_DLYBCT_OFFSET			24
155 #define SPI_DLYBCT_SIZE				8
156 
157 /* Bitfields in RCR */
158 #define SPI_RXCTR_OFFSET			0
159 #define SPI_RXCTR_SIZE				16
160 
161 /* Bitfields in TCR */
162 #define SPI_TXCTR_OFFSET			0
163 #define SPI_TXCTR_SIZE				16
164 
165 /* Bitfields in RNCR */
166 #define SPI_RXNCR_OFFSET			0
167 #define SPI_RXNCR_SIZE				16
168 
169 /* Bitfields in TNCR */
170 #define SPI_TXNCR_OFFSET			0
171 #define SPI_TXNCR_SIZE				16
172 
173 /* Bitfields in PTCR */
174 #define SPI_RXTEN_OFFSET			0
175 #define SPI_RXTEN_SIZE				1
176 #define SPI_RXTDIS_OFFSET			1
177 #define SPI_RXTDIS_SIZE				1
178 #define SPI_TXTEN_OFFSET			8
179 #define SPI_TXTEN_SIZE				1
180 #define SPI_TXTDIS_OFFSET			9
181 #define SPI_TXTDIS_SIZE				1
182 
183 /* Bitfields in FMR */
184 #define SPI_TXRDYM_OFFSET			0
185 #define SPI_TXRDYM_SIZE				2
186 #define SPI_RXRDYM_OFFSET			4
187 #define SPI_RXRDYM_SIZE				2
188 #define SPI_TXFTHRES_OFFSET			16
189 #define SPI_TXFTHRES_SIZE			6
190 #define SPI_RXFTHRES_OFFSET			24
191 #define SPI_RXFTHRES_SIZE			6
192 
193 /* Bitfields in FLR */
194 #define SPI_TXFL_OFFSET				0
195 #define SPI_TXFL_SIZE				6
196 #define SPI_RXFL_OFFSET				16
197 #define SPI_RXFL_SIZE				6
198 
199 /* Constants for BITS */
200 #define SPI_BITS_8_BPT				0
201 #define SPI_BITS_9_BPT				1
202 #define SPI_BITS_10_BPT				2
203 #define SPI_BITS_11_BPT				3
204 #define SPI_BITS_12_BPT				4
205 #define SPI_BITS_13_BPT				5
206 #define SPI_BITS_14_BPT				6
207 #define SPI_BITS_15_BPT				7
208 #define SPI_BITS_16_BPT				8
209 #define SPI_ONE_DATA				0
210 #define SPI_TWO_DATA				1
211 #define SPI_FOUR_DATA				2
212 
213 /* Bit manipulation macros */
214 #define SPI_BIT(name) \
215 	(1 << SPI_##name##_OFFSET)
216 #define SPI_BF(name, value) \
217 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218 #define SPI_BFEXT(name, value) \
219 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220 #define SPI_BFINS(name, value, old) \
221 	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222 	  | SPI_BF(name, value))
223 
224 /* Register access macros */
225 #ifdef CONFIG_AVR32
226 #define spi_readl(port, reg) \
227 	__raw_readl((port)->regs + SPI_##reg)
228 #define spi_writel(port, reg, value) \
229 	__raw_writel((value), (port)->regs + SPI_##reg)
230 
231 #define spi_readw(port, reg) \
232 	__raw_readw((port)->regs + SPI_##reg)
233 #define spi_writew(port, reg, value) \
234 	__raw_writew((value), (port)->regs + SPI_##reg)
235 
236 #define spi_readb(port, reg) \
237 	__raw_readb((port)->regs + SPI_##reg)
238 #define spi_writeb(port, reg, value) \
239 	__raw_writeb((value), (port)->regs + SPI_##reg)
240 #else
241 #define spi_readl(port, reg) \
242 	readl_relaxed((port)->regs + SPI_##reg)
243 #define spi_writel(port, reg, value) \
244 	writel_relaxed((value), (port)->regs + SPI_##reg)
245 
246 #define spi_readw(port, reg) \
247 	readw_relaxed((port)->regs + SPI_##reg)
248 #define spi_writew(port, reg, value) \
249 	writew_relaxed((value), (port)->regs + SPI_##reg)
250 
251 #define spi_readb(port, reg) \
252 	readb_relaxed((port)->regs + SPI_##reg)
253 #define spi_writeb(port, reg, value) \
254 	writeb_relaxed((value), (port)->regs + SPI_##reg)
255 #endif
256 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
257  * cache operations; better heuristics consider wordsize and bitrate.
258  */
259 #define DMA_MIN_BYTES	16
260 
261 #define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
262 
263 #define AUTOSUSPEND_TIMEOUT	2000
264 
265 struct atmel_spi_caps {
266 	bool	is_spi2;
267 	bool	has_wdrbt;
268 	bool	has_dma_support;
269 	bool	has_pdc_support;
270 };
271 
272 /*
273  * The core SPI transfer engine just talks to a register bank to set up
274  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
275  * framework provides the base clock, subdivided for each spi_device.
276  */
277 struct atmel_spi {
278 	spinlock_t		lock;
279 	unsigned long		flags;
280 
281 	phys_addr_t		phybase;
282 	void __iomem		*regs;
283 	int			irq;
284 	struct clk		*clk;
285 	struct platform_device	*pdev;
286 	unsigned long		spi_clk;
287 
288 	struct spi_transfer	*current_transfer;
289 	int			current_remaining_bytes;
290 	int			done_status;
291 	dma_addr_t		dma_addr_rx_bbuf;
292 	dma_addr_t		dma_addr_tx_bbuf;
293 	void			*addr_rx_bbuf;
294 	void			*addr_tx_bbuf;
295 
296 	struct completion	xfer_completion;
297 
298 	struct atmel_spi_caps	caps;
299 
300 	bool			use_dma;
301 	bool			use_pdc;
302 	bool			use_cs_gpios;
303 
304 	bool			keep_cs;
305 	bool			cs_active;
306 
307 	u32			fifo_size;
308 };
309 
310 /* Controller-specific per-slave state */
311 struct atmel_spi_device {
312 	struct gpio_desc	*npcs_pin;
313 	u32			csr;
314 };
315 
316 #define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
317 #define INVALID_DMA_ADDRESS	0xffffffff
318 
319 /*
320  * Version 2 of the SPI controller has
321  *  - CR.LASTXFER
322  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
323  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
324  *  - SPI_CSRx.CSAAT
325  *  - SPI_CSRx.SBCR allows faster clocking
326  */
327 static bool atmel_spi_is_v2(struct atmel_spi *as)
328 {
329 	return as->caps.is_spi2;
330 }
331 
332 /*
333  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
334  * they assume that spi slave device state will not change on deselect, so
335  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
336  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
337  * controllers have CSAAT and friends.
338  *
339  * Since the CSAAT functionality is a bit weird on newer controllers as
340  * well, we use GPIO to control nCSx pins on all controllers, updating
341  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
342  * support active-high chipselects despite the controller's belief that
343  * only active-low devices/systems exists.
344  *
345  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
346  * right when driven with GPIO.  ("Mode Fault does not allow more than one
347  * Master on Chip Select 0.")  No workaround exists for that ... so for
348  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
349  * and (c) will trigger that first erratum in some cases.
350  */
351 
352 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
353 {
354 	struct atmel_spi_device *asd = spi->controller_state;
355 	u32 mr;
356 
357 	if (atmel_spi_is_v2(as)) {
358 		spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
359 		/* For the low SPI version, there is a issue that PDC transfer
360 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
361 		 */
362 		spi_writel(as, CSR0, asd->csr);
363 		if (as->caps.has_wdrbt) {
364 			spi_writel(as, MR,
365 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
366 					| SPI_BIT(WDRBT)
367 					| SPI_BIT(MODFDIS)
368 					| SPI_BIT(MSTR));
369 		} else {
370 			spi_writel(as, MR,
371 					SPI_BF(PCS, ~(0x01 << spi->chip_select))
372 					| SPI_BIT(MODFDIS)
373 					| SPI_BIT(MSTR));
374 		}
375 
376 		mr = spi_readl(as, MR);
377 		if (as->use_cs_gpios)
378 			gpiod_set_value(asd->npcs_pin, 1);
379 	} else {
380 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
381 		int i;
382 		u32 csr;
383 
384 		/* Make sure clock polarity is correct */
385 		for (i = 0; i < spi->master->num_chipselect; i++) {
386 			csr = spi_readl(as, CSR0 + 4 * i);
387 			if ((csr ^ cpol) & SPI_BIT(CPOL))
388 				spi_writel(as, CSR0 + 4 * i,
389 						csr ^ SPI_BIT(CPOL));
390 		}
391 
392 		mr = spi_readl(as, MR);
393 		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
394 		if (as->use_cs_gpios && spi->chip_select != 0)
395 			gpiod_set_value(asd->npcs_pin, 1);
396 		spi_writel(as, MR, mr);
397 	}
398 
399 	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
400 }
401 
402 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
403 {
404 	struct atmel_spi_device *asd = spi->controller_state;
405 	u32 mr;
406 
407 	/* only deactivate *this* device; sometimes transfers to
408 	 * another device may be active when this routine is called.
409 	 */
410 	mr = spi_readl(as, MR);
411 	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
412 		mr = SPI_BFINS(PCS, 0xf, mr);
413 		spi_writel(as, MR, mr);
414 	}
415 
416 	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
417 
418 	if (!as->use_cs_gpios)
419 		spi_writel(as, CR, SPI_BIT(LASTXFER));
420 	else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
421 		gpiod_set_value(asd->npcs_pin, 0);
422 }
423 
424 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
425 {
426 	spin_lock_irqsave(&as->lock, as->flags);
427 }
428 
429 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
430 {
431 	spin_unlock_irqrestore(&as->lock, as->flags);
432 }
433 
434 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
435 {
436 	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
437 }
438 
439 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
440 				struct spi_transfer *xfer)
441 {
442 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
443 }
444 
445 static bool atmel_spi_can_dma(struct spi_master *master,
446 			      struct spi_device *spi,
447 			      struct spi_transfer *xfer)
448 {
449 	struct atmel_spi *as = spi_master_get_devdata(master);
450 
451 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
452 		return atmel_spi_use_dma(as, xfer) &&
453 			!atmel_spi_is_vmalloc_xfer(xfer);
454 	else
455 		return atmel_spi_use_dma(as, xfer);
456 
457 }
458 
459 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
460 				struct dma_slave_config *slave_config,
461 				u8 bits_per_word)
462 {
463 	struct spi_master *master = platform_get_drvdata(as->pdev);
464 	int err = 0;
465 
466 	if (bits_per_word > 8) {
467 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
468 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
469 	} else {
470 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
471 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
472 	}
473 
474 	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
475 	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
476 	slave_config->src_maxburst = 1;
477 	slave_config->dst_maxburst = 1;
478 	slave_config->device_fc = false;
479 
480 	/*
481 	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
482 	 * the Mode Register).
483 	 * So according to the datasheet, when FIFOs are available (and
484 	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
485 	 * In this mode, up to 2 data, not 4, can be written into the Transmit
486 	 * Data Register in a single access.
487 	 * However, the first data has to be written into the lowest 16 bits and
488 	 * the second data into the highest 16 bits of the Transmit
489 	 * Data Register. For 8bit data (the most frequent case), it would
490 	 * require to rework tx_buf so each data would actualy fit 16 bits.
491 	 * So we'd rather write only one data at the time. Hence the transmit
492 	 * path works the same whether FIFOs are available (and enabled) or not.
493 	 */
494 	slave_config->direction = DMA_MEM_TO_DEV;
495 	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
496 		dev_err(&as->pdev->dev,
497 			"failed to configure tx dma channel\n");
498 		err = -EINVAL;
499 	}
500 
501 	/*
502 	 * This driver configures the spi controller for master mode (MSTR bit
503 	 * set to '1' in the Mode Register).
504 	 * So according to the datasheet, when FIFOs are available (and
505 	 * enabled), the Receive FIFO operates in Single Data Mode.
506 	 * So the receive path works the same whether FIFOs are available (and
507 	 * enabled) or not.
508 	 */
509 	slave_config->direction = DMA_DEV_TO_MEM;
510 	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
511 		dev_err(&as->pdev->dev,
512 			"failed to configure rx dma channel\n");
513 		err = -EINVAL;
514 	}
515 
516 	return err;
517 }
518 
519 static int atmel_spi_configure_dma(struct spi_master *master,
520 				   struct atmel_spi *as)
521 {
522 	struct dma_slave_config	slave_config;
523 	struct device *dev = &as->pdev->dev;
524 	int err;
525 
526 	dma_cap_mask_t mask;
527 	dma_cap_zero(mask);
528 	dma_cap_set(DMA_SLAVE, mask);
529 
530 	master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
531 	if (IS_ERR(master->dma_tx)) {
532 		err = PTR_ERR(master->dma_tx);
533 		if (err == -EPROBE_DEFER) {
534 			dev_warn(dev, "no DMA channel available at the moment\n");
535 			goto error_clear;
536 		}
537 		dev_err(dev,
538 			"DMA TX channel not available, SPI unable to use DMA\n");
539 		err = -EBUSY;
540 		goto error_clear;
541 	}
542 
543 	/*
544 	 * No reason to check EPROBE_DEFER here since we have already requested
545 	 * tx channel. If it fails here, it's for another reason.
546 	 */
547 	master->dma_rx = dma_request_slave_channel(dev, "rx");
548 
549 	if (!master->dma_rx) {
550 		dev_err(dev,
551 			"DMA RX channel not available, SPI unable to use DMA\n");
552 		err = -EBUSY;
553 		goto error;
554 	}
555 
556 	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
557 	if (err)
558 		goto error;
559 
560 	dev_info(&as->pdev->dev,
561 			"Using %s (tx) and %s (rx) for DMA transfers\n",
562 			dma_chan_name(master->dma_tx),
563 			dma_chan_name(master->dma_rx));
564 
565 	return 0;
566 error:
567 	if (master->dma_rx)
568 		dma_release_channel(master->dma_rx);
569 	if (!IS_ERR(master->dma_tx))
570 		dma_release_channel(master->dma_tx);
571 error_clear:
572 	master->dma_tx = master->dma_rx = NULL;
573 	return err;
574 }
575 
576 static void atmel_spi_stop_dma(struct spi_master *master)
577 {
578 	if (master->dma_rx)
579 		dmaengine_terminate_all(master->dma_rx);
580 	if (master->dma_tx)
581 		dmaengine_terminate_all(master->dma_tx);
582 }
583 
584 static void atmel_spi_release_dma(struct spi_master *master)
585 {
586 	if (master->dma_rx) {
587 		dma_release_channel(master->dma_rx);
588 		master->dma_rx = NULL;
589 	}
590 	if (master->dma_tx) {
591 		dma_release_channel(master->dma_tx);
592 		master->dma_tx = NULL;
593 	}
594 }
595 
596 /* This function is called by the DMA driver from tasklet context */
597 static void dma_callback(void *data)
598 {
599 	struct spi_master	*master = data;
600 	struct atmel_spi	*as = spi_master_get_devdata(master);
601 
602 	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
603 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
604 		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
605 		       as->current_transfer->len);
606 	}
607 	complete(&as->xfer_completion);
608 }
609 
610 /*
611  * Next transfer using PIO without FIFO.
612  */
613 static void atmel_spi_next_xfer_single(struct spi_master *master,
614 				       struct spi_transfer *xfer)
615 {
616 	struct atmel_spi	*as = spi_master_get_devdata(master);
617 	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
618 
619 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
620 
621 	/* Make sure data is not remaining in RDR */
622 	spi_readl(as, RDR);
623 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
624 		spi_readl(as, RDR);
625 		cpu_relax();
626 	}
627 
628 	if (xfer->bits_per_word > 8)
629 		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
630 	else
631 		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
632 
633 	dev_dbg(master->dev.parent,
634 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
635 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
636 		xfer->bits_per_word);
637 
638 	/* Enable relevant interrupts */
639 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
640 }
641 
642 /*
643  * Next transfer using PIO with FIFO.
644  */
645 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
646 				     struct spi_transfer *xfer)
647 {
648 	struct atmel_spi *as = spi_master_get_devdata(master);
649 	u32 current_remaining_data, num_data;
650 	u32 offset = xfer->len - as->current_remaining_bytes;
651 	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
652 	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
653 	u16 td0, td1;
654 	u32 fifomr;
655 
656 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
657 
658 	/* Compute the number of data to transfer in the current iteration */
659 	current_remaining_data = ((xfer->bits_per_word > 8) ?
660 				  ((u32)as->current_remaining_bytes >> 1) :
661 				  (u32)as->current_remaining_bytes);
662 	num_data = min(current_remaining_data, as->fifo_size);
663 
664 	/* Flush RX and TX FIFOs */
665 	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
666 	while (spi_readl(as, FLR))
667 		cpu_relax();
668 
669 	/* Set RX FIFO Threshold to the number of data to transfer */
670 	fifomr = spi_readl(as, FMR);
671 	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
672 
673 	/* Clear FIFO flags in the Status Register, especially RXFTHF */
674 	(void)spi_readl(as, SR);
675 
676 	/* Fill TX FIFO */
677 	while (num_data >= 2) {
678 		if (xfer->bits_per_word > 8) {
679 			td0 = *words++;
680 			td1 = *words++;
681 		} else {
682 			td0 = *bytes++;
683 			td1 = *bytes++;
684 		}
685 
686 		spi_writel(as, TDR, (td1 << 16) | td0);
687 		num_data -= 2;
688 	}
689 
690 	if (num_data) {
691 		if (xfer->bits_per_word > 8)
692 			td0 = *words++;
693 		else
694 			td0 = *bytes++;
695 
696 		spi_writew(as, TDR, td0);
697 		num_data--;
698 	}
699 
700 	dev_dbg(master->dev.parent,
701 		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
702 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
703 		xfer->bits_per_word);
704 
705 	/*
706 	 * Enable RX FIFO Threshold Flag interrupt to be notified about
707 	 * transfer completion.
708 	 */
709 	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
710 }
711 
712 /*
713  * Next transfer using PIO.
714  */
715 static void atmel_spi_next_xfer_pio(struct spi_master *master,
716 				    struct spi_transfer *xfer)
717 {
718 	struct atmel_spi *as = spi_master_get_devdata(master);
719 
720 	if (as->fifo_size)
721 		atmel_spi_next_xfer_fifo(master, xfer);
722 	else
723 		atmel_spi_next_xfer_single(master, xfer);
724 }
725 
726 /*
727  * Submit next transfer for DMA.
728  */
729 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
730 				struct spi_transfer *xfer,
731 				u32 *plen)
732 {
733 	struct atmel_spi	*as = spi_master_get_devdata(master);
734 	struct dma_chan		*rxchan = master->dma_rx;
735 	struct dma_chan		*txchan = master->dma_tx;
736 	struct dma_async_tx_descriptor *rxdesc;
737 	struct dma_async_tx_descriptor *txdesc;
738 	struct dma_slave_config	slave_config;
739 	dma_cookie_t		cookie;
740 
741 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
742 
743 	/* Check that the channels are available */
744 	if (!rxchan || !txchan)
745 		return -ENODEV;
746 
747 	/* release lock for DMA operations */
748 	atmel_spi_unlock(as);
749 
750 	*plen = xfer->len;
751 
752 	if (atmel_spi_dma_slave_config(as, &slave_config,
753 				       xfer->bits_per_word))
754 		goto err_exit;
755 
756 	/* Send both scatterlists */
757 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
758 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
759 		rxdesc = dmaengine_prep_slave_single(rxchan,
760 						     as->dma_addr_rx_bbuf,
761 						     xfer->len,
762 						     DMA_DEV_TO_MEM,
763 						     DMA_PREP_INTERRUPT |
764 						     DMA_CTRL_ACK);
765 	} else {
766 		rxdesc = dmaengine_prep_slave_sg(rxchan,
767 						 xfer->rx_sg.sgl,
768 						 xfer->rx_sg.nents,
769 						 DMA_DEV_TO_MEM,
770 						 DMA_PREP_INTERRUPT |
771 						 DMA_CTRL_ACK);
772 	}
773 	if (!rxdesc)
774 		goto err_dma;
775 
776 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
777 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
778 		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
779 		txdesc = dmaengine_prep_slave_single(txchan,
780 						     as->dma_addr_tx_bbuf,
781 						     xfer->len, DMA_MEM_TO_DEV,
782 						     DMA_PREP_INTERRUPT |
783 						     DMA_CTRL_ACK);
784 	} else {
785 		txdesc = dmaengine_prep_slave_sg(txchan,
786 						 xfer->tx_sg.sgl,
787 						 xfer->tx_sg.nents,
788 						 DMA_MEM_TO_DEV,
789 						 DMA_PREP_INTERRUPT |
790 						 DMA_CTRL_ACK);
791 	}
792 	if (!txdesc)
793 		goto err_dma;
794 
795 	dev_dbg(master->dev.parent,
796 		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
797 		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
798 		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
799 
800 	/* Enable relevant interrupts */
801 	spi_writel(as, IER, SPI_BIT(OVRES));
802 
803 	/* Put the callback on the RX transfer only, that should finish last */
804 	rxdesc->callback = dma_callback;
805 	rxdesc->callback_param = master;
806 
807 	/* Submit and fire RX and TX with TX last so we're ready to read! */
808 	cookie = rxdesc->tx_submit(rxdesc);
809 	if (dma_submit_error(cookie))
810 		goto err_dma;
811 	cookie = txdesc->tx_submit(txdesc);
812 	if (dma_submit_error(cookie))
813 		goto err_dma;
814 	rxchan->device->device_issue_pending(rxchan);
815 	txchan->device->device_issue_pending(txchan);
816 
817 	/* take back lock */
818 	atmel_spi_lock(as);
819 	return 0;
820 
821 err_dma:
822 	spi_writel(as, IDR, SPI_BIT(OVRES));
823 	atmel_spi_stop_dma(master);
824 err_exit:
825 	atmel_spi_lock(as);
826 	return -ENOMEM;
827 }
828 
829 static void atmel_spi_next_xfer_data(struct spi_master *master,
830 				struct spi_transfer *xfer,
831 				dma_addr_t *tx_dma,
832 				dma_addr_t *rx_dma,
833 				u32 *plen)
834 {
835 	*rx_dma = xfer->rx_dma + xfer->len - *plen;
836 	*tx_dma = xfer->tx_dma + xfer->len - *plen;
837 	if (*plen > master->max_dma_len)
838 		*plen = master->max_dma_len;
839 }
840 
841 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
842 				    struct spi_device *spi,
843 				    struct spi_transfer *xfer)
844 {
845 	u32			scbr, csr;
846 	unsigned long		bus_hz;
847 
848 	/* v1 chips start out at half the peripheral bus speed. */
849 	bus_hz = as->spi_clk;
850 	if (!atmel_spi_is_v2(as))
851 		bus_hz /= 2;
852 
853 	/*
854 	 * Calculate the lowest divider that satisfies the
855 	 * constraint, assuming div32/fdiv/mbz == 0.
856 	 */
857 	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
858 
859 	/*
860 	 * If the resulting divider doesn't fit into the
861 	 * register bitfield, we can't satisfy the constraint.
862 	 */
863 	if (scbr >= (1 << SPI_SCBR_SIZE)) {
864 		dev_err(&spi->dev,
865 			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
866 			xfer->speed_hz, scbr, bus_hz/255);
867 		return -EINVAL;
868 	}
869 	if (scbr == 0) {
870 		dev_err(&spi->dev,
871 			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
872 			xfer->speed_hz, scbr, bus_hz);
873 		return -EINVAL;
874 	}
875 	csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
876 	csr = SPI_BFINS(SCBR, scbr, csr);
877 	spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
878 
879 	return 0;
880 }
881 
882 /*
883  * Submit next transfer for PDC.
884  * lock is held, spi irq is blocked
885  */
886 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
887 					struct spi_message *msg,
888 					struct spi_transfer *xfer)
889 {
890 	struct atmel_spi	*as = spi_master_get_devdata(master);
891 	u32			len;
892 	dma_addr_t		tx_dma, rx_dma;
893 
894 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
895 
896 	len = as->current_remaining_bytes;
897 	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
898 	as->current_remaining_bytes -= len;
899 
900 	spi_writel(as, RPR, rx_dma);
901 	spi_writel(as, TPR, tx_dma);
902 
903 	if (msg->spi->bits_per_word > 8)
904 		len >>= 1;
905 	spi_writel(as, RCR, len);
906 	spi_writel(as, TCR, len);
907 
908 	dev_dbg(&msg->spi->dev,
909 		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
910 		xfer, xfer->len, xfer->tx_buf,
911 		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
912 		(unsigned long long)xfer->rx_dma);
913 
914 	if (as->current_remaining_bytes) {
915 		len = as->current_remaining_bytes;
916 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
917 		as->current_remaining_bytes -= len;
918 
919 		spi_writel(as, RNPR, rx_dma);
920 		spi_writel(as, TNPR, tx_dma);
921 
922 		if (msg->spi->bits_per_word > 8)
923 			len >>= 1;
924 		spi_writel(as, RNCR, len);
925 		spi_writel(as, TNCR, len);
926 
927 		dev_dbg(&msg->spi->dev,
928 			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
929 			xfer, xfer->len, xfer->tx_buf,
930 			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
931 			(unsigned long long)xfer->rx_dma);
932 	}
933 
934 	/* REVISIT: We're waiting for RXBUFF before we start the next
935 	 * transfer because we need to handle some difficult timing
936 	 * issues otherwise. If we wait for TXBUFE in one transfer and
937 	 * then starts waiting for RXBUFF in the next, it's difficult
938 	 * to tell the difference between the RXBUFF interrupt we're
939 	 * actually waiting for and the RXBUFF interrupt of the
940 	 * previous transfer.
941 	 *
942 	 * It should be doable, though. Just not now...
943 	 */
944 	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
945 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
946 }
947 
948 /*
949  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
950  *  - The buffer is either valid for CPU access, else NULL
951  *  - If the buffer is valid, so is its DMA address
952  *
953  * This driver manages the dma address unless message->is_dma_mapped.
954  */
955 static int
956 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
957 {
958 	struct device	*dev = &as->pdev->dev;
959 
960 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
961 	if (xfer->tx_buf) {
962 		/* tx_buf is a const void* where we need a void * for the dma
963 		 * mapping */
964 		void *nonconst_tx = (void *)xfer->tx_buf;
965 
966 		xfer->tx_dma = dma_map_single(dev,
967 				nonconst_tx, xfer->len,
968 				DMA_TO_DEVICE);
969 		if (dma_mapping_error(dev, xfer->tx_dma))
970 			return -ENOMEM;
971 	}
972 	if (xfer->rx_buf) {
973 		xfer->rx_dma = dma_map_single(dev,
974 				xfer->rx_buf, xfer->len,
975 				DMA_FROM_DEVICE);
976 		if (dma_mapping_error(dev, xfer->rx_dma)) {
977 			if (xfer->tx_buf)
978 				dma_unmap_single(dev,
979 						xfer->tx_dma, xfer->len,
980 						DMA_TO_DEVICE);
981 			return -ENOMEM;
982 		}
983 	}
984 	return 0;
985 }
986 
987 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
988 				     struct spi_transfer *xfer)
989 {
990 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
991 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
992 				 xfer->len, DMA_TO_DEVICE);
993 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
994 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
995 				 xfer->len, DMA_FROM_DEVICE);
996 }
997 
998 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
999 {
1000 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1001 }
1002 
1003 static void
1004 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1005 {
1006 	u8		*rxp;
1007 	u16		*rxp16;
1008 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
1009 
1010 	if (xfer->bits_per_word > 8) {
1011 		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1012 		*rxp16 = spi_readl(as, RDR);
1013 	} else {
1014 		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1015 		*rxp = spi_readl(as, RDR);
1016 	}
1017 	if (xfer->bits_per_word > 8) {
1018 		if (as->current_remaining_bytes > 2)
1019 			as->current_remaining_bytes -= 2;
1020 		else
1021 			as->current_remaining_bytes = 0;
1022 	} else {
1023 		as->current_remaining_bytes--;
1024 	}
1025 }
1026 
1027 static void
1028 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1029 {
1030 	u32 fifolr = spi_readl(as, FLR);
1031 	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1032 	u32 offset = xfer->len - as->current_remaining_bytes;
1033 	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1034 	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1035 	u16 rd; /* RD field is the lowest 16 bits of RDR */
1036 
1037 	/* Update the number of remaining bytes to transfer */
1038 	num_bytes = ((xfer->bits_per_word > 8) ?
1039 		     (num_data << 1) :
1040 		     num_data);
1041 
1042 	if (as->current_remaining_bytes > num_bytes)
1043 		as->current_remaining_bytes -= num_bytes;
1044 	else
1045 		as->current_remaining_bytes = 0;
1046 
1047 	/* Handle odd number of bytes when data are more than 8bit width */
1048 	if (xfer->bits_per_word > 8)
1049 		as->current_remaining_bytes &= ~0x1;
1050 
1051 	/* Read data */
1052 	while (num_data) {
1053 		rd = spi_readl(as, RDR);
1054 		if (xfer->bits_per_word > 8)
1055 			*words++ = rd;
1056 		else
1057 			*bytes++ = rd;
1058 		num_data--;
1059 	}
1060 }
1061 
1062 /* Called from IRQ
1063  *
1064  * Must update "current_remaining_bytes" to keep track of data
1065  * to transfer.
1066  */
1067 static void
1068 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1069 {
1070 	if (as->fifo_size)
1071 		atmel_spi_pump_fifo_data(as, xfer);
1072 	else
1073 		atmel_spi_pump_single_data(as, xfer);
1074 }
1075 
1076 /* Interrupt
1077  *
1078  * No need for locking in this Interrupt handler: done_status is the
1079  * only information modified.
1080  */
1081 static irqreturn_t
1082 atmel_spi_pio_interrupt(int irq, void *dev_id)
1083 {
1084 	struct spi_master	*master = dev_id;
1085 	struct atmel_spi	*as = spi_master_get_devdata(master);
1086 	u32			status, pending, imr;
1087 	struct spi_transfer	*xfer;
1088 	int			ret = IRQ_NONE;
1089 
1090 	imr = spi_readl(as, IMR);
1091 	status = spi_readl(as, SR);
1092 	pending = status & imr;
1093 
1094 	if (pending & SPI_BIT(OVRES)) {
1095 		ret = IRQ_HANDLED;
1096 		spi_writel(as, IDR, SPI_BIT(OVRES));
1097 		dev_warn(master->dev.parent, "overrun\n");
1098 
1099 		/*
1100 		 * When we get an overrun, we disregard the current
1101 		 * transfer. Data will not be copied back from any
1102 		 * bounce buffer and msg->actual_len will not be
1103 		 * updated with the last xfer.
1104 		 *
1105 		 * We will also not process any remaning transfers in
1106 		 * the message.
1107 		 */
1108 		as->done_status = -EIO;
1109 		smp_wmb();
1110 
1111 		/* Clear any overrun happening while cleaning up */
1112 		spi_readl(as, SR);
1113 
1114 		complete(&as->xfer_completion);
1115 
1116 	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1117 		atmel_spi_lock(as);
1118 
1119 		if (as->current_remaining_bytes) {
1120 			ret = IRQ_HANDLED;
1121 			xfer = as->current_transfer;
1122 			atmel_spi_pump_pio_data(as, xfer);
1123 			if (!as->current_remaining_bytes)
1124 				spi_writel(as, IDR, pending);
1125 
1126 			complete(&as->xfer_completion);
1127 		}
1128 
1129 		atmel_spi_unlock(as);
1130 	} else {
1131 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1132 		ret = IRQ_HANDLED;
1133 		spi_writel(as, IDR, pending);
1134 	}
1135 
1136 	return ret;
1137 }
1138 
1139 static irqreturn_t
1140 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1141 {
1142 	struct spi_master	*master = dev_id;
1143 	struct atmel_spi	*as = spi_master_get_devdata(master);
1144 	u32			status, pending, imr;
1145 	int			ret = IRQ_NONE;
1146 
1147 	imr = spi_readl(as, IMR);
1148 	status = spi_readl(as, SR);
1149 	pending = status & imr;
1150 
1151 	if (pending & SPI_BIT(OVRES)) {
1152 
1153 		ret = IRQ_HANDLED;
1154 
1155 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1156 				     | SPI_BIT(OVRES)));
1157 
1158 		/* Clear any overrun happening while cleaning up */
1159 		spi_readl(as, SR);
1160 
1161 		as->done_status = -EIO;
1162 
1163 		complete(&as->xfer_completion);
1164 
1165 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1166 		ret = IRQ_HANDLED;
1167 
1168 		spi_writel(as, IDR, pending);
1169 
1170 		complete(&as->xfer_completion);
1171 	}
1172 
1173 	return ret;
1174 }
1175 
1176 static int atmel_spi_setup(struct spi_device *spi)
1177 {
1178 	struct atmel_spi	*as;
1179 	struct atmel_spi_device	*asd;
1180 	u32			csr;
1181 	unsigned int		bits = spi->bits_per_word;
1182 
1183 	as = spi_master_get_devdata(spi->master);
1184 
1185 	/* see notes above re chipselect */
1186 	if (!atmel_spi_is_v2(as)
1187 			&& spi->chip_select == 0
1188 			&& (spi->mode & SPI_CS_HIGH)) {
1189 		dev_dbg(&spi->dev, "setup: can't be active-high\n");
1190 		return -EINVAL;
1191 	}
1192 
1193 	csr = SPI_BF(BITS, bits - 8);
1194 	if (spi->mode & SPI_CPOL)
1195 		csr |= SPI_BIT(CPOL);
1196 	if (!(spi->mode & SPI_CPHA))
1197 		csr |= SPI_BIT(NCPHA);
1198 	if (!as->use_cs_gpios)
1199 		csr |= SPI_BIT(CSAAT);
1200 
1201 	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1202 	 */
1203 	csr |= SPI_BF(DLYBS, 0);
1204 
1205 	/* DLYBCT adds delays between words.  This is useful for slow devices
1206 	 * that need a bit of time to setup the next transfer.
1207 	 */
1208 	csr |= SPI_BF(DLYBCT,
1209 			(as->spi_clk / 1000000 * spi->word_delay_usecs) >> 5);
1210 
1211 	asd = spi->controller_state;
1212 	if (!asd) {
1213 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1214 		if (!asd)
1215 			return -ENOMEM;
1216 
1217 		/*
1218 		 * If use_cs_gpios is true this means that we have "cs-gpios"
1219 		 * defined in the device tree node so we should have
1220 		 * gotten the GPIO lines from the device tree inside the
1221 		 * SPI core. Warn if this is not the case but continue since
1222 		 * CS GPIOs are after all optional.
1223 		 */
1224 		if (as->use_cs_gpios) {
1225 			if (!spi->cs_gpiod) {
1226 				dev_err(&spi->dev,
1227 					"host claims to use CS GPIOs but no CS found in DT by the SPI core\n");
1228 			}
1229 			asd->npcs_pin = spi->cs_gpiod;
1230 		}
1231 
1232 		spi->controller_state = asd;
1233 	}
1234 
1235 	asd->csr = csr;
1236 
1237 	dev_dbg(&spi->dev,
1238 		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1239 		bits, spi->mode, spi->chip_select, csr);
1240 
1241 	if (!atmel_spi_is_v2(as))
1242 		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1243 
1244 	return 0;
1245 }
1246 
1247 static int atmel_spi_one_transfer(struct spi_master *master,
1248 					struct spi_message *msg,
1249 					struct spi_transfer *xfer)
1250 {
1251 	struct atmel_spi	*as;
1252 	struct spi_device	*spi = msg->spi;
1253 	u8			bits;
1254 	u32			len;
1255 	struct atmel_spi_device	*asd;
1256 	int			timeout;
1257 	int			ret;
1258 	unsigned long		dma_timeout;
1259 
1260 	as = spi_master_get_devdata(master);
1261 
1262 	if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1263 		dev_dbg(&spi->dev, "missing rx or tx buf\n");
1264 		return -EINVAL;
1265 	}
1266 
1267 	asd = spi->controller_state;
1268 	bits = (asd->csr >> 4) & 0xf;
1269 	if (bits != xfer->bits_per_word - 8) {
1270 		dev_dbg(&spi->dev,
1271 			"you can't yet change bits_per_word in transfers\n");
1272 		return -ENOPROTOOPT;
1273 	}
1274 
1275 	/*
1276 	 * DMA map early, for performance (empties dcache ASAP) and
1277 	 * better fault reporting.
1278 	 */
1279 	if ((!msg->is_dma_mapped)
1280 		&& as->use_pdc) {
1281 		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1282 			return -ENOMEM;
1283 	}
1284 
1285 	atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1286 
1287 	as->done_status = 0;
1288 	as->current_transfer = xfer;
1289 	as->current_remaining_bytes = xfer->len;
1290 	while (as->current_remaining_bytes) {
1291 		reinit_completion(&as->xfer_completion);
1292 
1293 		if (as->use_pdc) {
1294 			atmel_spi_pdc_next_xfer(master, msg, xfer);
1295 		} else if (atmel_spi_use_dma(as, xfer)) {
1296 			len = as->current_remaining_bytes;
1297 			ret = atmel_spi_next_xfer_dma_submit(master,
1298 								xfer, &len);
1299 			if (ret) {
1300 				dev_err(&spi->dev,
1301 					"unable to use DMA, fallback to PIO\n");
1302 				atmel_spi_next_xfer_pio(master, xfer);
1303 			} else {
1304 				as->current_remaining_bytes -= len;
1305 				if (as->current_remaining_bytes < 0)
1306 					as->current_remaining_bytes = 0;
1307 			}
1308 		} else {
1309 			atmel_spi_next_xfer_pio(master, xfer);
1310 		}
1311 
1312 		/* interrupts are disabled, so free the lock for schedule */
1313 		atmel_spi_unlock(as);
1314 		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1315 							  SPI_DMA_TIMEOUT);
1316 		atmel_spi_lock(as);
1317 		if (WARN_ON(dma_timeout == 0)) {
1318 			dev_err(&spi->dev, "spi transfer timeout\n");
1319 			as->done_status = -EIO;
1320 		}
1321 
1322 		if (as->done_status)
1323 			break;
1324 	}
1325 
1326 	if (as->done_status) {
1327 		if (as->use_pdc) {
1328 			dev_warn(master->dev.parent,
1329 				"overrun (%u/%u remaining)\n",
1330 				spi_readl(as, TCR), spi_readl(as, RCR));
1331 
1332 			/*
1333 			 * Clean up DMA registers and make sure the data
1334 			 * registers are empty.
1335 			 */
1336 			spi_writel(as, RNCR, 0);
1337 			spi_writel(as, TNCR, 0);
1338 			spi_writel(as, RCR, 0);
1339 			spi_writel(as, TCR, 0);
1340 			for (timeout = 1000; timeout; timeout--)
1341 				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1342 					break;
1343 			if (!timeout)
1344 				dev_warn(master->dev.parent,
1345 					 "timeout waiting for TXEMPTY");
1346 			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1347 				spi_readl(as, RDR);
1348 
1349 			/* Clear any overrun happening while cleaning up */
1350 			spi_readl(as, SR);
1351 
1352 		} else if (atmel_spi_use_dma(as, xfer)) {
1353 			atmel_spi_stop_dma(master);
1354 		}
1355 
1356 		if (!msg->is_dma_mapped
1357 			&& as->use_pdc)
1358 			atmel_spi_dma_unmap_xfer(master, xfer);
1359 
1360 		return 0;
1361 
1362 	} else {
1363 		/* only update length if no error */
1364 		msg->actual_length += xfer->len;
1365 	}
1366 
1367 	if (!msg->is_dma_mapped
1368 		&& as->use_pdc)
1369 		atmel_spi_dma_unmap_xfer(master, xfer);
1370 
1371 	if (xfer->delay_usecs)
1372 		udelay(xfer->delay_usecs);
1373 
1374 	if (xfer->cs_change) {
1375 		if (list_is_last(&xfer->transfer_list,
1376 				 &msg->transfers)) {
1377 			as->keep_cs = true;
1378 		} else {
1379 			as->cs_active = !as->cs_active;
1380 			if (as->cs_active)
1381 				cs_activate(as, msg->spi);
1382 			else
1383 				cs_deactivate(as, msg->spi);
1384 		}
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 static int atmel_spi_transfer_one_message(struct spi_master *master,
1391 						struct spi_message *msg)
1392 {
1393 	struct atmel_spi *as;
1394 	struct spi_transfer *xfer;
1395 	struct spi_device *spi = msg->spi;
1396 	int ret = 0;
1397 
1398 	as = spi_master_get_devdata(master);
1399 
1400 	dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1401 					msg, dev_name(&spi->dev));
1402 
1403 	atmel_spi_lock(as);
1404 	cs_activate(as, spi);
1405 
1406 	as->cs_active = true;
1407 	as->keep_cs = false;
1408 
1409 	msg->status = 0;
1410 	msg->actual_length = 0;
1411 
1412 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1413 		trace_spi_transfer_start(msg, xfer);
1414 
1415 		ret = atmel_spi_one_transfer(master, msg, xfer);
1416 		if (ret)
1417 			goto msg_done;
1418 
1419 		trace_spi_transfer_stop(msg, xfer);
1420 	}
1421 
1422 	if (as->use_pdc)
1423 		atmel_spi_disable_pdc_transfer(as);
1424 
1425 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1426 		dev_dbg(&spi->dev,
1427 			"  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1428 			xfer, xfer->len,
1429 			xfer->tx_buf, &xfer->tx_dma,
1430 			xfer->rx_buf, &xfer->rx_dma);
1431 	}
1432 
1433 msg_done:
1434 	if (!as->keep_cs)
1435 		cs_deactivate(as, msg->spi);
1436 
1437 	atmel_spi_unlock(as);
1438 
1439 	msg->status = as->done_status;
1440 	spi_finalize_current_message(spi->master);
1441 
1442 	return ret;
1443 }
1444 
1445 static void atmel_spi_cleanup(struct spi_device *spi)
1446 {
1447 	struct atmel_spi_device	*asd = spi->controller_state;
1448 
1449 	if (!asd)
1450 		return;
1451 
1452 	spi->controller_state = NULL;
1453 	kfree(asd);
1454 }
1455 
1456 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1457 {
1458 	return spi_readl(as, VERSION) & 0x00000fff;
1459 }
1460 
1461 static void atmel_get_caps(struct atmel_spi *as)
1462 {
1463 	unsigned int version;
1464 
1465 	version = atmel_get_version(as);
1466 
1467 	as->caps.is_spi2 = version > 0x121;
1468 	as->caps.has_wdrbt = version >= 0x210;
1469 	as->caps.has_dma_support = version >= 0x212;
1470 	as->caps.has_pdc_support = version < 0x212;
1471 }
1472 
1473 static void atmel_spi_init(struct atmel_spi *as)
1474 {
1475 	spi_writel(as, CR, SPI_BIT(SWRST));
1476 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1477 
1478 	/* It is recommended to enable FIFOs first thing after reset */
1479 	if (as->fifo_size)
1480 		spi_writel(as, CR, SPI_BIT(FIFOEN));
1481 
1482 	if (as->caps.has_wdrbt) {
1483 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1484 				| SPI_BIT(MSTR));
1485 	} else {
1486 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1487 	}
1488 
1489 	if (as->use_pdc)
1490 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1491 	spi_writel(as, CR, SPI_BIT(SPIEN));
1492 }
1493 
1494 static int atmel_spi_probe(struct platform_device *pdev)
1495 {
1496 	struct resource		*regs;
1497 	int			irq;
1498 	struct clk		*clk;
1499 	int			ret;
1500 	struct spi_master	*master;
1501 	struct atmel_spi	*as;
1502 
1503 	/* Select default pin state */
1504 	pinctrl_pm_select_default_state(&pdev->dev);
1505 
1506 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1507 	if (!regs)
1508 		return -ENXIO;
1509 
1510 	irq = platform_get_irq(pdev, 0);
1511 	if (irq < 0)
1512 		return irq;
1513 
1514 	clk = devm_clk_get(&pdev->dev, "spi_clk");
1515 	if (IS_ERR(clk))
1516 		return PTR_ERR(clk);
1517 
1518 	/* setup spi core then atmel-specific driver state */
1519 	ret = -ENOMEM;
1520 	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1521 	if (!master)
1522 		goto out_free;
1523 
1524 	/* the spi->mode bits understood by this driver: */
1525 	master->use_gpio_descriptors = true;
1526 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1527 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1528 	master->dev.of_node = pdev->dev.of_node;
1529 	master->bus_num = pdev->id;
1530 	master->num_chipselect = master->dev.of_node ? 0 : 4;
1531 	master->setup = atmel_spi_setup;
1532 	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1533 	master->transfer_one_message = atmel_spi_transfer_one_message;
1534 	master->cleanup = atmel_spi_cleanup;
1535 	master->auto_runtime_pm = true;
1536 	master->max_dma_len = SPI_MAX_DMA_XFER;
1537 	master->can_dma = atmel_spi_can_dma;
1538 	platform_set_drvdata(pdev, master);
1539 
1540 	as = spi_master_get_devdata(master);
1541 
1542 	spin_lock_init(&as->lock);
1543 
1544 	as->pdev = pdev;
1545 	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1546 	if (IS_ERR(as->regs)) {
1547 		ret = PTR_ERR(as->regs);
1548 		goto out_unmap_regs;
1549 	}
1550 	as->phybase = regs->start;
1551 	as->irq = irq;
1552 	as->clk = clk;
1553 
1554 	init_completion(&as->xfer_completion);
1555 
1556 	atmel_get_caps(as);
1557 
1558 	/*
1559 	 * If there are chip selects in the device tree, those will be
1560 	 * discovered by the SPI core when registering the SPI master
1561 	 * and assigned to each SPI device.
1562 	 */
1563 	as->use_cs_gpios = true;
1564 	if (atmel_spi_is_v2(as) &&
1565 	    pdev->dev.of_node &&
1566 	    !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1567 		as->use_cs_gpios = false;
1568 		master->num_chipselect = 4;
1569 	}
1570 
1571 	as->use_dma = false;
1572 	as->use_pdc = false;
1573 	if (as->caps.has_dma_support) {
1574 		ret = atmel_spi_configure_dma(master, as);
1575 		if (ret == 0) {
1576 			as->use_dma = true;
1577 		} else if (ret == -EPROBE_DEFER) {
1578 			return ret;
1579 		}
1580 	} else if (as->caps.has_pdc_support) {
1581 		as->use_pdc = true;
1582 	}
1583 
1584 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1585 		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1586 						      SPI_MAX_DMA_XFER,
1587 						      &as->dma_addr_rx_bbuf,
1588 						      GFP_KERNEL | GFP_DMA);
1589 		if (!as->addr_rx_bbuf) {
1590 			as->use_dma = false;
1591 		} else {
1592 			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1593 					SPI_MAX_DMA_XFER,
1594 					&as->dma_addr_tx_bbuf,
1595 					GFP_KERNEL | GFP_DMA);
1596 			if (!as->addr_tx_bbuf) {
1597 				as->use_dma = false;
1598 				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1599 						  as->addr_rx_bbuf,
1600 						  as->dma_addr_rx_bbuf);
1601 			}
1602 		}
1603 		if (!as->use_dma)
1604 			dev_info(master->dev.parent,
1605 				 "  can not allocate dma coherent memory\n");
1606 	}
1607 
1608 	if (as->caps.has_dma_support && !as->use_dma)
1609 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1610 
1611 	if (as->use_pdc) {
1612 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1613 					0, dev_name(&pdev->dev), master);
1614 	} else {
1615 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1616 					0, dev_name(&pdev->dev), master);
1617 	}
1618 	if (ret)
1619 		goto out_unmap_regs;
1620 
1621 	/* Initialize the hardware */
1622 	ret = clk_prepare_enable(clk);
1623 	if (ret)
1624 		goto out_free_irq;
1625 
1626 	as->spi_clk = clk_get_rate(clk);
1627 
1628 	as->fifo_size = 0;
1629 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1630 				  &as->fifo_size)) {
1631 		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1632 	}
1633 
1634 	atmel_spi_init(as);
1635 
1636 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1637 	pm_runtime_use_autosuspend(&pdev->dev);
1638 	pm_runtime_set_active(&pdev->dev);
1639 	pm_runtime_enable(&pdev->dev);
1640 
1641 	ret = devm_spi_register_master(&pdev->dev, master);
1642 	if (ret)
1643 		goto out_free_dma;
1644 
1645 	/* go! */
1646 	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1647 			atmel_get_version(as), (unsigned long)regs->start,
1648 			irq);
1649 
1650 	return 0;
1651 
1652 out_free_dma:
1653 	pm_runtime_disable(&pdev->dev);
1654 	pm_runtime_set_suspended(&pdev->dev);
1655 
1656 	if (as->use_dma)
1657 		atmel_spi_release_dma(master);
1658 
1659 	spi_writel(as, CR, SPI_BIT(SWRST));
1660 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1661 	clk_disable_unprepare(clk);
1662 out_free_irq:
1663 out_unmap_regs:
1664 out_free:
1665 	spi_master_put(master);
1666 	return ret;
1667 }
1668 
1669 static int atmel_spi_remove(struct platform_device *pdev)
1670 {
1671 	struct spi_master	*master = platform_get_drvdata(pdev);
1672 	struct atmel_spi	*as = spi_master_get_devdata(master);
1673 
1674 	pm_runtime_get_sync(&pdev->dev);
1675 
1676 	/* reset the hardware and block queue progress */
1677 	if (as->use_dma) {
1678 		atmel_spi_stop_dma(master);
1679 		atmel_spi_release_dma(master);
1680 		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1681 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1682 					  as->addr_tx_bbuf,
1683 					  as->dma_addr_tx_bbuf);
1684 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1685 					  as->addr_rx_bbuf,
1686 					  as->dma_addr_rx_bbuf);
1687 		}
1688 	}
1689 
1690 	spin_lock_irq(&as->lock);
1691 	spi_writel(as, CR, SPI_BIT(SWRST));
1692 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1693 	spi_readl(as, SR);
1694 	spin_unlock_irq(&as->lock);
1695 
1696 	clk_disable_unprepare(as->clk);
1697 
1698 	pm_runtime_put_noidle(&pdev->dev);
1699 	pm_runtime_disable(&pdev->dev);
1700 
1701 	return 0;
1702 }
1703 
1704 #ifdef CONFIG_PM
1705 static int atmel_spi_runtime_suspend(struct device *dev)
1706 {
1707 	struct spi_master *master = dev_get_drvdata(dev);
1708 	struct atmel_spi *as = spi_master_get_devdata(master);
1709 
1710 	clk_disable_unprepare(as->clk);
1711 	pinctrl_pm_select_sleep_state(dev);
1712 
1713 	return 0;
1714 }
1715 
1716 static int atmel_spi_runtime_resume(struct device *dev)
1717 {
1718 	struct spi_master *master = dev_get_drvdata(dev);
1719 	struct atmel_spi *as = spi_master_get_devdata(master);
1720 
1721 	pinctrl_pm_select_default_state(dev);
1722 
1723 	return clk_prepare_enable(as->clk);
1724 }
1725 
1726 #ifdef CONFIG_PM_SLEEP
1727 static int atmel_spi_suspend(struct device *dev)
1728 {
1729 	struct spi_master *master = dev_get_drvdata(dev);
1730 	int ret;
1731 
1732 	/* Stop the queue running */
1733 	ret = spi_master_suspend(master);
1734 	if (ret)
1735 		return ret;
1736 
1737 	if (!pm_runtime_suspended(dev))
1738 		atmel_spi_runtime_suspend(dev);
1739 
1740 	return 0;
1741 }
1742 
1743 static int atmel_spi_resume(struct device *dev)
1744 {
1745 	struct spi_master *master = dev_get_drvdata(dev);
1746 	struct atmel_spi *as = spi_master_get_devdata(master);
1747 	int ret;
1748 
1749 	ret = clk_prepare_enable(as->clk);
1750 	if (ret)
1751 		return ret;
1752 
1753 	atmel_spi_init(as);
1754 
1755 	clk_disable_unprepare(as->clk);
1756 
1757 	if (!pm_runtime_suspended(dev)) {
1758 		ret = atmel_spi_runtime_resume(dev);
1759 		if (ret)
1760 			return ret;
1761 	}
1762 
1763 	/* Start the queue running */
1764 	return spi_master_resume(master);
1765 }
1766 #endif
1767 
1768 static const struct dev_pm_ops atmel_spi_pm_ops = {
1769 	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1770 	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1771 			   atmel_spi_runtime_resume, NULL)
1772 };
1773 #define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1774 #else
1775 #define ATMEL_SPI_PM_OPS	NULL
1776 #endif
1777 
1778 #if defined(CONFIG_OF)
1779 static const struct of_device_id atmel_spi_dt_ids[] = {
1780 	{ .compatible = "atmel,at91rm9200-spi" },
1781 	{ /* sentinel */ }
1782 };
1783 
1784 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1785 #endif
1786 
1787 static struct platform_driver atmel_spi_driver = {
1788 	.driver		= {
1789 		.name	= "atmel_spi",
1790 		.pm	= ATMEL_SPI_PM_OPS,
1791 		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1792 	},
1793 	.probe		= atmel_spi_probe,
1794 	.remove		= atmel_spi_remove,
1795 };
1796 module_platform_driver(atmel_spi_driver);
1797 
1798 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1799 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1800 MODULE_LICENSE("GPL");
1801 MODULE_ALIAS("platform:atmel_spi");
1802