1 /* 2 * Driver for Atmel AT32 and AT91 SPI Controllers 3 * 4 * Copyright (C) 2006 Atmel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/clk.h> 14 #include <linux/module.h> 15 #include <linux/platform_device.h> 16 #include <linux/delay.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/err.h> 19 #include <linux/interrupt.h> 20 #include <linux/spi/spi.h> 21 #include <linux/slab.h> 22 #include <linux/platform_data/atmel.h> 23 #include <linux/of.h> 24 25 #include <asm/io.h> 26 #include <asm/gpio.h> 27 #include <mach/cpu.h> 28 29 /* SPI register offsets */ 30 #define SPI_CR 0x0000 31 #define SPI_MR 0x0004 32 #define SPI_RDR 0x0008 33 #define SPI_TDR 0x000c 34 #define SPI_SR 0x0010 35 #define SPI_IER 0x0014 36 #define SPI_IDR 0x0018 37 #define SPI_IMR 0x001c 38 #define SPI_CSR0 0x0030 39 #define SPI_CSR1 0x0034 40 #define SPI_CSR2 0x0038 41 #define SPI_CSR3 0x003c 42 #define SPI_RPR 0x0100 43 #define SPI_RCR 0x0104 44 #define SPI_TPR 0x0108 45 #define SPI_TCR 0x010c 46 #define SPI_RNPR 0x0110 47 #define SPI_RNCR 0x0114 48 #define SPI_TNPR 0x0118 49 #define SPI_TNCR 0x011c 50 #define SPI_PTCR 0x0120 51 #define SPI_PTSR 0x0124 52 53 /* Bitfields in CR */ 54 #define SPI_SPIEN_OFFSET 0 55 #define SPI_SPIEN_SIZE 1 56 #define SPI_SPIDIS_OFFSET 1 57 #define SPI_SPIDIS_SIZE 1 58 #define SPI_SWRST_OFFSET 7 59 #define SPI_SWRST_SIZE 1 60 #define SPI_LASTXFER_OFFSET 24 61 #define SPI_LASTXFER_SIZE 1 62 63 /* Bitfields in MR */ 64 #define SPI_MSTR_OFFSET 0 65 #define SPI_MSTR_SIZE 1 66 #define SPI_PS_OFFSET 1 67 #define SPI_PS_SIZE 1 68 #define SPI_PCSDEC_OFFSET 2 69 #define SPI_PCSDEC_SIZE 1 70 #define SPI_FDIV_OFFSET 3 71 #define SPI_FDIV_SIZE 1 72 #define SPI_MODFDIS_OFFSET 4 73 #define SPI_MODFDIS_SIZE 1 74 #define SPI_LLB_OFFSET 7 75 #define SPI_LLB_SIZE 1 76 #define SPI_PCS_OFFSET 16 77 #define SPI_PCS_SIZE 4 78 #define SPI_DLYBCS_OFFSET 24 79 #define SPI_DLYBCS_SIZE 8 80 81 /* Bitfields in RDR */ 82 #define SPI_RD_OFFSET 0 83 #define SPI_RD_SIZE 16 84 85 /* Bitfields in TDR */ 86 #define SPI_TD_OFFSET 0 87 #define SPI_TD_SIZE 16 88 89 /* Bitfields in SR */ 90 #define SPI_RDRF_OFFSET 0 91 #define SPI_RDRF_SIZE 1 92 #define SPI_TDRE_OFFSET 1 93 #define SPI_TDRE_SIZE 1 94 #define SPI_MODF_OFFSET 2 95 #define SPI_MODF_SIZE 1 96 #define SPI_OVRES_OFFSET 3 97 #define SPI_OVRES_SIZE 1 98 #define SPI_ENDRX_OFFSET 4 99 #define SPI_ENDRX_SIZE 1 100 #define SPI_ENDTX_OFFSET 5 101 #define SPI_ENDTX_SIZE 1 102 #define SPI_RXBUFF_OFFSET 6 103 #define SPI_RXBUFF_SIZE 1 104 #define SPI_TXBUFE_OFFSET 7 105 #define SPI_TXBUFE_SIZE 1 106 #define SPI_NSSR_OFFSET 8 107 #define SPI_NSSR_SIZE 1 108 #define SPI_TXEMPTY_OFFSET 9 109 #define SPI_TXEMPTY_SIZE 1 110 #define SPI_SPIENS_OFFSET 16 111 #define SPI_SPIENS_SIZE 1 112 113 /* Bitfields in CSR0 */ 114 #define SPI_CPOL_OFFSET 0 115 #define SPI_CPOL_SIZE 1 116 #define SPI_NCPHA_OFFSET 1 117 #define SPI_NCPHA_SIZE 1 118 #define SPI_CSAAT_OFFSET 3 119 #define SPI_CSAAT_SIZE 1 120 #define SPI_BITS_OFFSET 4 121 #define SPI_BITS_SIZE 4 122 #define SPI_SCBR_OFFSET 8 123 #define SPI_SCBR_SIZE 8 124 #define SPI_DLYBS_OFFSET 16 125 #define SPI_DLYBS_SIZE 8 126 #define SPI_DLYBCT_OFFSET 24 127 #define SPI_DLYBCT_SIZE 8 128 129 /* Bitfields in RCR */ 130 #define SPI_RXCTR_OFFSET 0 131 #define SPI_RXCTR_SIZE 16 132 133 /* Bitfields in TCR */ 134 #define SPI_TXCTR_OFFSET 0 135 #define SPI_TXCTR_SIZE 16 136 137 /* Bitfields in RNCR */ 138 #define SPI_RXNCR_OFFSET 0 139 #define SPI_RXNCR_SIZE 16 140 141 /* Bitfields in TNCR */ 142 #define SPI_TXNCR_OFFSET 0 143 #define SPI_TXNCR_SIZE 16 144 145 /* Bitfields in PTCR */ 146 #define SPI_RXTEN_OFFSET 0 147 #define SPI_RXTEN_SIZE 1 148 #define SPI_RXTDIS_OFFSET 1 149 #define SPI_RXTDIS_SIZE 1 150 #define SPI_TXTEN_OFFSET 8 151 #define SPI_TXTEN_SIZE 1 152 #define SPI_TXTDIS_OFFSET 9 153 #define SPI_TXTDIS_SIZE 1 154 155 /* Constants for BITS */ 156 #define SPI_BITS_8_BPT 0 157 #define SPI_BITS_9_BPT 1 158 #define SPI_BITS_10_BPT 2 159 #define SPI_BITS_11_BPT 3 160 #define SPI_BITS_12_BPT 4 161 #define SPI_BITS_13_BPT 5 162 #define SPI_BITS_14_BPT 6 163 #define SPI_BITS_15_BPT 7 164 #define SPI_BITS_16_BPT 8 165 166 /* Bit manipulation macros */ 167 #define SPI_BIT(name) \ 168 (1 << SPI_##name##_OFFSET) 169 #define SPI_BF(name,value) \ 170 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET) 171 #define SPI_BFEXT(name,value) \ 172 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1)) 173 #define SPI_BFINS(name,value,old) \ 174 ( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \ 175 | SPI_BF(name,value)) 176 177 /* Register access macros */ 178 #define spi_readl(port,reg) \ 179 __raw_readl((port)->regs + SPI_##reg) 180 #define spi_writel(port,reg,value) \ 181 __raw_writel((value), (port)->regs + SPI_##reg) 182 183 184 /* 185 * The core SPI transfer engine just talks to a register bank to set up 186 * DMA transfers; transfer queue progress is driven by IRQs. The clock 187 * framework provides the base clock, subdivided for each spi_device. 188 */ 189 struct atmel_spi { 190 spinlock_t lock; 191 192 void __iomem *regs; 193 int irq; 194 struct clk *clk; 195 struct platform_device *pdev; 196 struct spi_device *stay; 197 198 u8 stopping; 199 struct list_head queue; 200 struct spi_transfer *current_transfer; 201 unsigned long current_remaining_bytes; 202 struct spi_transfer *next_transfer; 203 unsigned long next_remaining_bytes; 204 205 void *buffer; 206 dma_addr_t buffer_dma; 207 }; 208 209 /* Controller-specific per-slave state */ 210 struct atmel_spi_device { 211 unsigned int npcs_pin; 212 u32 csr; 213 }; 214 215 #define BUFFER_SIZE PAGE_SIZE 216 #define INVALID_DMA_ADDRESS 0xffffffff 217 218 /* 219 * Version 2 of the SPI controller has 220 * - CR.LASTXFER 221 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) 222 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) 223 * - SPI_CSRx.CSAAT 224 * - SPI_CSRx.SBCR allows faster clocking 225 * 226 * We can determine the controller version by reading the VERSION 227 * register, but I haven't checked that it exists on all chips, and 228 * this is cheaper anyway. 229 */ 230 static bool atmel_spi_is_v2(void) 231 { 232 return !cpu_is_at91rm9200(); 233 } 234 235 /* 236 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby 237 * they assume that spi slave device state will not change on deselect, so 238 * that automagic deselection is OK. ("NPCSx rises if no data is to be 239 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer 240 * controllers have CSAAT and friends. 241 * 242 * Since the CSAAT functionality is a bit weird on newer controllers as 243 * well, we use GPIO to control nCSx pins on all controllers, updating 244 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us 245 * support active-high chipselects despite the controller's belief that 246 * only active-low devices/systems exists. 247 * 248 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work 249 * right when driven with GPIO. ("Mode Fault does not allow more than one 250 * Master on Chip Select 0.") No workaround exists for that ... so for 251 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, 252 * and (c) will trigger that first erratum in some cases. 253 * 254 * TODO: Test if the atmel_spi_is_v2() branch below works on 255 * AT91RM9200 if we use some other register than CSR0. However, don't 256 * do this unconditionally since AP7000 has an errata where the BITS 257 * field in CSR0 overrides all other CSRs. 258 */ 259 260 static void cs_activate(struct atmel_spi *as, struct spi_device *spi) 261 { 262 struct atmel_spi_device *asd = spi->controller_state; 263 unsigned active = spi->mode & SPI_CS_HIGH; 264 u32 mr; 265 266 if (atmel_spi_is_v2()) { 267 /* 268 * Always use CSR0. This ensures that the clock 269 * switches to the correct idle polarity before we 270 * toggle the CS. 271 */ 272 spi_writel(as, CSR0, asd->csr); 273 spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS) 274 | SPI_BIT(MSTR)); 275 mr = spi_readl(as, MR); 276 gpio_set_value(asd->npcs_pin, active); 277 } else { 278 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; 279 int i; 280 u32 csr; 281 282 /* Make sure clock polarity is correct */ 283 for (i = 0; i < spi->master->num_chipselect; i++) { 284 csr = spi_readl(as, CSR0 + 4 * i); 285 if ((csr ^ cpol) & SPI_BIT(CPOL)) 286 spi_writel(as, CSR0 + 4 * i, 287 csr ^ SPI_BIT(CPOL)); 288 } 289 290 mr = spi_readl(as, MR); 291 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr); 292 if (spi->chip_select != 0) 293 gpio_set_value(asd->npcs_pin, active); 294 spi_writel(as, MR, mr); 295 } 296 297 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n", 298 asd->npcs_pin, active ? " (high)" : "", 299 mr); 300 } 301 302 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) 303 { 304 struct atmel_spi_device *asd = spi->controller_state; 305 unsigned active = spi->mode & SPI_CS_HIGH; 306 u32 mr; 307 308 /* only deactivate *this* device; sometimes transfers to 309 * another device may be active when this routine is called. 310 */ 311 mr = spi_readl(as, MR); 312 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) { 313 mr = SPI_BFINS(PCS, 0xf, mr); 314 spi_writel(as, MR, mr); 315 } 316 317 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n", 318 asd->npcs_pin, active ? " (low)" : "", 319 mr); 320 321 if (atmel_spi_is_v2() || spi->chip_select != 0) 322 gpio_set_value(asd->npcs_pin, !active); 323 } 324 325 static inline int atmel_spi_xfer_is_last(struct spi_message *msg, 326 struct spi_transfer *xfer) 327 { 328 return msg->transfers.prev == &xfer->transfer_list; 329 } 330 331 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer) 332 { 333 return xfer->delay_usecs == 0 && !xfer->cs_change; 334 } 335 336 static void atmel_spi_next_xfer_data(struct spi_master *master, 337 struct spi_transfer *xfer, 338 dma_addr_t *tx_dma, 339 dma_addr_t *rx_dma, 340 u32 *plen) 341 { 342 struct atmel_spi *as = spi_master_get_devdata(master); 343 u32 len = *plen; 344 345 /* use scratch buffer only when rx or tx data is unspecified */ 346 if (xfer->rx_buf) 347 *rx_dma = xfer->rx_dma + xfer->len - *plen; 348 else { 349 *rx_dma = as->buffer_dma; 350 if (len > BUFFER_SIZE) 351 len = BUFFER_SIZE; 352 } 353 if (xfer->tx_buf) 354 *tx_dma = xfer->tx_dma + xfer->len - *plen; 355 else { 356 *tx_dma = as->buffer_dma; 357 if (len > BUFFER_SIZE) 358 len = BUFFER_SIZE; 359 memset(as->buffer, 0, len); 360 dma_sync_single_for_device(&as->pdev->dev, 361 as->buffer_dma, len, DMA_TO_DEVICE); 362 } 363 364 *plen = len; 365 } 366 367 /* 368 * Submit next transfer for DMA. 369 * lock is held, spi irq is blocked 370 */ 371 static void atmel_spi_next_xfer(struct spi_master *master, 372 struct spi_message *msg) 373 { 374 struct atmel_spi *as = spi_master_get_devdata(master); 375 struct spi_transfer *xfer; 376 u32 len, remaining; 377 u32 ieval; 378 dma_addr_t tx_dma, rx_dma; 379 380 if (!as->current_transfer) 381 xfer = list_entry(msg->transfers.next, 382 struct spi_transfer, transfer_list); 383 else if (!as->next_transfer) 384 xfer = list_entry(as->current_transfer->transfer_list.next, 385 struct spi_transfer, transfer_list); 386 else 387 xfer = NULL; 388 389 if (xfer) { 390 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 391 392 len = xfer->len; 393 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 394 remaining = xfer->len - len; 395 396 spi_writel(as, RPR, rx_dma); 397 spi_writel(as, TPR, tx_dma); 398 399 if (msg->spi->bits_per_word > 8) 400 len >>= 1; 401 spi_writel(as, RCR, len); 402 spi_writel(as, TCR, len); 403 404 dev_dbg(&msg->spi->dev, 405 " start xfer %p: len %u tx %p/%08x rx %p/%08x\n", 406 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma, 407 xfer->rx_buf, xfer->rx_dma); 408 } else { 409 xfer = as->next_transfer; 410 remaining = as->next_remaining_bytes; 411 } 412 413 as->current_transfer = xfer; 414 as->current_remaining_bytes = remaining; 415 416 if (remaining > 0) 417 len = remaining; 418 else if (!atmel_spi_xfer_is_last(msg, xfer) 419 && atmel_spi_xfer_can_be_chained(xfer)) { 420 xfer = list_entry(xfer->transfer_list.next, 421 struct spi_transfer, transfer_list); 422 len = xfer->len; 423 } else 424 xfer = NULL; 425 426 as->next_transfer = xfer; 427 428 if (xfer) { 429 u32 total; 430 431 total = len; 432 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 433 as->next_remaining_bytes = total - len; 434 435 spi_writel(as, RNPR, rx_dma); 436 spi_writel(as, TNPR, tx_dma); 437 438 if (msg->spi->bits_per_word > 8) 439 len >>= 1; 440 spi_writel(as, RNCR, len); 441 spi_writel(as, TNCR, len); 442 443 dev_dbg(&msg->spi->dev, 444 " next xfer %p: len %u tx %p/%08x rx %p/%08x\n", 445 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma, 446 xfer->rx_buf, xfer->rx_dma); 447 ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES); 448 } else { 449 spi_writel(as, RNCR, 0); 450 spi_writel(as, TNCR, 0); 451 ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES); 452 } 453 454 /* REVISIT: We're waiting for ENDRX before we start the next 455 * transfer because we need to handle some difficult timing 456 * issues otherwise. If we wait for ENDTX in one transfer and 457 * then starts waiting for ENDRX in the next, it's difficult 458 * to tell the difference between the ENDRX interrupt we're 459 * actually waiting for and the ENDRX interrupt of the 460 * previous transfer. 461 * 462 * It should be doable, though. Just not now... 463 */ 464 spi_writel(as, IER, ieval); 465 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); 466 } 467 468 static void atmel_spi_next_message(struct spi_master *master) 469 { 470 struct atmel_spi *as = spi_master_get_devdata(master); 471 struct spi_message *msg; 472 struct spi_device *spi; 473 474 BUG_ON(as->current_transfer); 475 476 msg = list_entry(as->queue.next, struct spi_message, queue); 477 spi = msg->spi; 478 479 dev_dbg(master->dev.parent, "start message %p for %s\n", 480 msg, dev_name(&spi->dev)); 481 482 /* select chip if it's not still active */ 483 if (as->stay) { 484 if (as->stay != spi) { 485 cs_deactivate(as, as->stay); 486 cs_activate(as, spi); 487 } 488 as->stay = NULL; 489 } else 490 cs_activate(as, spi); 491 492 atmel_spi_next_xfer(master, msg); 493 } 494 495 /* 496 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: 497 * - The buffer is either valid for CPU access, else NULL 498 * - If the buffer is valid, so is its DMA address 499 * 500 * This driver manages the dma address unless message->is_dma_mapped. 501 */ 502 static int 503 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) 504 { 505 struct device *dev = &as->pdev->dev; 506 507 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; 508 if (xfer->tx_buf) { 509 /* tx_buf is a const void* where we need a void * for the dma 510 * mapping */ 511 void *nonconst_tx = (void *)xfer->tx_buf; 512 513 xfer->tx_dma = dma_map_single(dev, 514 nonconst_tx, xfer->len, 515 DMA_TO_DEVICE); 516 if (dma_mapping_error(dev, xfer->tx_dma)) 517 return -ENOMEM; 518 } 519 if (xfer->rx_buf) { 520 xfer->rx_dma = dma_map_single(dev, 521 xfer->rx_buf, xfer->len, 522 DMA_FROM_DEVICE); 523 if (dma_mapping_error(dev, xfer->rx_dma)) { 524 if (xfer->tx_buf) 525 dma_unmap_single(dev, 526 xfer->tx_dma, xfer->len, 527 DMA_TO_DEVICE); 528 return -ENOMEM; 529 } 530 } 531 return 0; 532 } 533 534 static void atmel_spi_dma_unmap_xfer(struct spi_master *master, 535 struct spi_transfer *xfer) 536 { 537 if (xfer->tx_dma != INVALID_DMA_ADDRESS) 538 dma_unmap_single(master->dev.parent, xfer->tx_dma, 539 xfer->len, DMA_TO_DEVICE); 540 if (xfer->rx_dma != INVALID_DMA_ADDRESS) 541 dma_unmap_single(master->dev.parent, xfer->rx_dma, 542 xfer->len, DMA_FROM_DEVICE); 543 } 544 545 static void 546 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as, 547 struct spi_message *msg, int status, int stay) 548 { 549 if (!stay || status < 0) 550 cs_deactivate(as, msg->spi); 551 else 552 as->stay = msg->spi; 553 554 list_del(&msg->queue); 555 msg->status = status; 556 557 dev_dbg(master->dev.parent, 558 "xfer complete: %u bytes transferred\n", 559 msg->actual_length); 560 561 spin_unlock(&as->lock); 562 msg->complete(msg->context); 563 spin_lock(&as->lock); 564 565 as->current_transfer = NULL; 566 as->next_transfer = NULL; 567 568 /* continue if needed */ 569 if (list_empty(&as->queue) || as->stopping) 570 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 571 else 572 atmel_spi_next_message(master); 573 } 574 575 static irqreturn_t 576 atmel_spi_interrupt(int irq, void *dev_id) 577 { 578 struct spi_master *master = dev_id; 579 struct atmel_spi *as = spi_master_get_devdata(master); 580 struct spi_message *msg; 581 struct spi_transfer *xfer; 582 u32 status, pending, imr; 583 int ret = IRQ_NONE; 584 585 spin_lock(&as->lock); 586 587 xfer = as->current_transfer; 588 msg = list_entry(as->queue.next, struct spi_message, queue); 589 590 imr = spi_readl(as, IMR); 591 status = spi_readl(as, SR); 592 pending = status & imr; 593 594 if (pending & SPI_BIT(OVRES)) { 595 int timeout; 596 597 ret = IRQ_HANDLED; 598 599 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) 600 | SPI_BIT(OVRES))); 601 602 /* 603 * When we get an overrun, we disregard the current 604 * transfer. Data will not be copied back from any 605 * bounce buffer and msg->actual_len will not be 606 * updated with the last xfer. 607 * 608 * We will also not process any remaning transfers in 609 * the message. 610 * 611 * First, stop the transfer and unmap the DMA buffers. 612 */ 613 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 614 if (!msg->is_dma_mapped) 615 atmel_spi_dma_unmap_xfer(master, xfer); 616 617 /* REVISIT: udelay in irq is unfriendly */ 618 if (xfer->delay_usecs) 619 udelay(xfer->delay_usecs); 620 621 dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n", 622 spi_readl(as, TCR), spi_readl(as, RCR)); 623 624 /* 625 * Clean up DMA registers and make sure the data 626 * registers are empty. 627 */ 628 spi_writel(as, RNCR, 0); 629 spi_writel(as, TNCR, 0); 630 spi_writel(as, RCR, 0); 631 spi_writel(as, TCR, 0); 632 for (timeout = 1000; timeout; timeout--) 633 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) 634 break; 635 if (!timeout) 636 dev_warn(master->dev.parent, 637 "timeout waiting for TXEMPTY"); 638 while (spi_readl(as, SR) & SPI_BIT(RDRF)) 639 spi_readl(as, RDR); 640 641 /* Clear any overrun happening while cleaning up */ 642 spi_readl(as, SR); 643 644 atmel_spi_msg_done(master, as, msg, -EIO, 0); 645 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { 646 ret = IRQ_HANDLED; 647 648 spi_writel(as, IDR, pending); 649 650 if (as->current_remaining_bytes == 0) { 651 msg->actual_length += xfer->len; 652 653 if (!msg->is_dma_mapped) 654 atmel_spi_dma_unmap_xfer(master, xfer); 655 656 /* REVISIT: udelay in irq is unfriendly */ 657 if (xfer->delay_usecs) 658 udelay(xfer->delay_usecs); 659 660 if (atmel_spi_xfer_is_last(msg, xfer)) { 661 /* report completed message */ 662 atmel_spi_msg_done(master, as, msg, 0, 663 xfer->cs_change); 664 } else { 665 if (xfer->cs_change) { 666 cs_deactivate(as, msg->spi); 667 udelay(1); 668 cs_activate(as, msg->spi); 669 } 670 671 /* 672 * Not done yet. Submit the next transfer. 673 * 674 * FIXME handle protocol options for xfer 675 */ 676 atmel_spi_next_xfer(master, msg); 677 } 678 } else { 679 /* 680 * Keep going, we still have data to send in 681 * the current transfer. 682 */ 683 atmel_spi_next_xfer(master, msg); 684 } 685 } 686 687 spin_unlock(&as->lock); 688 689 return ret; 690 } 691 692 static int atmel_spi_setup(struct spi_device *spi) 693 { 694 struct atmel_spi *as; 695 struct atmel_spi_device *asd; 696 u32 scbr, csr; 697 unsigned int bits = spi->bits_per_word; 698 unsigned long bus_hz; 699 unsigned int npcs_pin; 700 int ret; 701 702 as = spi_master_get_devdata(spi->master); 703 704 if (as->stopping) 705 return -ESHUTDOWN; 706 707 if (spi->chip_select > spi->master->num_chipselect) { 708 dev_dbg(&spi->dev, 709 "setup: invalid chipselect %u (%u defined)\n", 710 spi->chip_select, spi->master->num_chipselect); 711 return -EINVAL; 712 } 713 714 if (bits < 8 || bits > 16) { 715 dev_dbg(&spi->dev, 716 "setup: invalid bits_per_word %u (8 to 16)\n", 717 bits); 718 return -EINVAL; 719 } 720 721 /* see notes above re chipselect */ 722 if (!atmel_spi_is_v2() 723 && spi->chip_select == 0 724 && (spi->mode & SPI_CS_HIGH)) { 725 dev_dbg(&spi->dev, "setup: can't be active-high\n"); 726 return -EINVAL; 727 } 728 729 /* v1 chips start out at half the peripheral bus speed. */ 730 bus_hz = clk_get_rate(as->clk); 731 if (!atmel_spi_is_v2()) 732 bus_hz /= 2; 733 734 if (spi->max_speed_hz) { 735 /* 736 * Calculate the lowest divider that satisfies the 737 * constraint, assuming div32/fdiv/mbz == 0. 738 */ 739 scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz); 740 741 /* 742 * If the resulting divider doesn't fit into the 743 * register bitfield, we can't satisfy the constraint. 744 */ 745 if (scbr >= (1 << SPI_SCBR_SIZE)) { 746 dev_dbg(&spi->dev, 747 "setup: %d Hz too slow, scbr %u; min %ld Hz\n", 748 spi->max_speed_hz, scbr, bus_hz/255); 749 return -EINVAL; 750 } 751 } else 752 /* speed zero means "as slow as possible" */ 753 scbr = 0xff; 754 755 csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8); 756 if (spi->mode & SPI_CPOL) 757 csr |= SPI_BIT(CPOL); 758 if (!(spi->mode & SPI_CPHA)) 759 csr |= SPI_BIT(NCPHA); 760 761 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs. 762 * 763 * DLYBCT would add delays between words, slowing down transfers. 764 * It could potentially be useful to cope with DMA bottlenecks, but 765 * in those cases it's probably best to just use a lower bitrate. 766 */ 767 csr |= SPI_BF(DLYBS, 0); 768 csr |= SPI_BF(DLYBCT, 0); 769 770 /* chipselect must have been muxed as GPIO (e.g. in board setup) */ 771 npcs_pin = (unsigned int)spi->controller_data; 772 773 if (gpio_is_valid(spi->cs_gpio)) 774 npcs_pin = spi->cs_gpio; 775 776 asd = spi->controller_state; 777 if (!asd) { 778 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); 779 if (!asd) 780 return -ENOMEM; 781 782 ret = gpio_request(npcs_pin, dev_name(&spi->dev)); 783 if (ret) { 784 kfree(asd); 785 return ret; 786 } 787 788 asd->npcs_pin = npcs_pin; 789 spi->controller_state = asd; 790 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH)); 791 } else { 792 unsigned long flags; 793 794 spin_lock_irqsave(&as->lock, flags); 795 if (as->stay == spi) 796 as->stay = NULL; 797 cs_deactivate(as, spi); 798 spin_unlock_irqrestore(&as->lock, flags); 799 } 800 801 asd->csr = csr; 802 803 dev_dbg(&spi->dev, 804 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n", 805 bus_hz / scbr, bits, spi->mode, spi->chip_select, csr); 806 807 if (!atmel_spi_is_v2()) 808 spi_writel(as, CSR0 + 4 * spi->chip_select, csr); 809 810 return 0; 811 } 812 813 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg) 814 { 815 struct atmel_spi *as; 816 struct spi_transfer *xfer; 817 unsigned long flags; 818 struct device *controller = spi->master->dev.parent; 819 u8 bits; 820 struct atmel_spi_device *asd; 821 822 as = spi_master_get_devdata(spi->master); 823 824 dev_dbg(controller, "new message %p submitted for %s\n", 825 msg, dev_name(&spi->dev)); 826 827 if (unlikely(list_empty(&msg->transfers))) 828 return -EINVAL; 829 830 if (as->stopping) 831 return -ESHUTDOWN; 832 833 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 834 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) { 835 dev_dbg(&spi->dev, "missing rx or tx buf\n"); 836 return -EINVAL; 837 } 838 839 if (xfer->bits_per_word) { 840 asd = spi->controller_state; 841 bits = (asd->csr >> 4) & 0xf; 842 if (bits != xfer->bits_per_word - 8) { 843 dev_dbg(&spi->dev, "you can't yet change " 844 "bits_per_word in transfers\n"); 845 return -ENOPROTOOPT; 846 } 847 } 848 849 /* FIXME implement these protocol options!! */ 850 if (xfer->speed_hz) { 851 dev_dbg(&spi->dev, "no protocol options yet\n"); 852 return -ENOPROTOOPT; 853 } 854 855 /* 856 * DMA map early, for performance (empties dcache ASAP) and 857 * better fault reporting. This is a DMA-only driver. 858 * 859 * NOTE that if dma_unmap_single() ever starts to do work on 860 * platforms supported by this driver, we would need to clean 861 * up mappings for previously-mapped transfers. 862 */ 863 if (!msg->is_dma_mapped) { 864 if (atmel_spi_dma_map_xfer(as, xfer) < 0) 865 return -ENOMEM; 866 } 867 } 868 869 #ifdef VERBOSE 870 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 871 dev_dbg(controller, 872 " xfer %p: len %u tx %p/%08x rx %p/%08x\n", 873 xfer, xfer->len, 874 xfer->tx_buf, xfer->tx_dma, 875 xfer->rx_buf, xfer->rx_dma); 876 } 877 #endif 878 879 msg->status = -EINPROGRESS; 880 msg->actual_length = 0; 881 882 spin_lock_irqsave(&as->lock, flags); 883 list_add_tail(&msg->queue, &as->queue); 884 if (!as->current_transfer) 885 atmel_spi_next_message(spi->master); 886 spin_unlock_irqrestore(&as->lock, flags); 887 888 return 0; 889 } 890 891 static void atmel_spi_cleanup(struct spi_device *spi) 892 { 893 struct atmel_spi *as = spi_master_get_devdata(spi->master); 894 struct atmel_spi_device *asd = spi->controller_state; 895 unsigned gpio = (unsigned) spi->controller_data; 896 unsigned long flags; 897 898 if (!asd) 899 return; 900 901 spin_lock_irqsave(&as->lock, flags); 902 if (as->stay == spi) { 903 as->stay = NULL; 904 cs_deactivate(as, spi); 905 } 906 spin_unlock_irqrestore(&as->lock, flags); 907 908 spi->controller_state = NULL; 909 gpio_free(gpio); 910 kfree(asd); 911 } 912 913 /*-------------------------------------------------------------------------*/ 914 915 static int atmel_spi_probe(struct platform_device *pdev) 916 { 917 struct resource *regs; 918 int irq; 919 struct clk *clk; 920 int ret; 921 struct spi_master *master; 922 struct atmel_spi *as; 923 924 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 925 if (!regs) 926 return -ENXIO; 927 928 irq = platform_get_irq(pdev, 0); 929 if (irq < 0) 930 return irq; 931 932 clk = clk_get(&pdev->dev, "spi_clk"); 933 if (IS_ERR(clk)) 934 return PTR_ERR(clk); 935 936 /* setup spi core then atmel-specific driver state */ 937 ret = -ENOMEM; 938 master = spi_alloc_master(&pdev->dev, sizeof *as); 939 if (!master) 940 goto out_free; 941 942 /* the spi->mode bits understood by this driver: */ 943 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 944 945 master->dev.of_node = pdev->dev.of_node; 946 master->bus_num = pdev->id; 947 master->num_chipselect = master->dev.of_node ? 0 : 4; 948 master->setup = atmel_spi_setup; 949 master->transfer = atmel_spi_transfer; 950 master->cleanup = atmel_spi_cleanup; 951 platform_set_drvdata(pdev, master); 952 953 as = spi_master_get_devdata(master); 954 955 /* 956 * Scratch buffer is used for throwaway rx and tx data. 957 * It's coherent to minimize dcache pollution. 958 */ 959 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE, 960 &as->buffer_dma, GFP_KERNEL); 961 if (!as->buffer) 962 goto out_free; 963 964 spin_lock_init(&as->lock); 965 INIT_LIST_HEAD(&as->queue); 966 as->pdev = pdev; 967 as->regs = ioremap(regs->start, resource_size(regs)); 968 if (!as->regs) 969 goto out_free_buffer; 970 as->irq = irq; 971 as->clk = clk; 972 973 ret = request_irq(irq, atmel_spi_interrupt, 0, 974 dev_name(&pdev->dev), master); 975 if (ret) 976 goto out_unmap_regs; 977 978 /* Initialize the hardware */ 979 clk_enable(clk); 980 spi_writel(as, CR, SPI_BIT(SWRST)); 981 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 982 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); 983 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 984 spi_writel(as, CR, SPI_BIT(SPIEN)); 985 986 /* go! */ 987 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n", 988 (unsigned long)regs->start, irq); 989 990 ret = spi_register_master(master); 991 if (ret) 992 goto out_reset_hw; 993 994 return 0; 995 996 out_reset_hw: 997 spi_writel(as, CR, SPI_BIT(SWRST)); 998 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 999 clk_disable(clk); 1000 free_irq(irq, master); 1001 out_unmap_regs: 1002 iounmap(as->regs); 1003 out_free_buffer: 1004 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, 1005 as->buffer_dma); 1006 out_free: 1007 clk_put(clk); 1008 spi_master_put(master); 1009 return ret; 1010 } 1011 1012 static int atmel_spi_remove(struct platform_device *pdev) 1013 { 1014 struct spi_master *master = platform_get_drvdata(pdev); 1015 struct atmel_spi *as = spi_master_get_devdata(master); 1016 struct spi_message *msg; 1017 1018 /* reset the hardware and block queue progress */ 1019 spin_lock_irq(&as->lock); 1020 as->stopping = 1; 1021 spi_writel(as, CR, SPI_BIT(SWRST)); 1022 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1023 spi_readl(as, SR); 1024 spin_unlock_irq(&as->lock); 1025 1026 /* Terminate remaining queued transfers */ 1027 list_for_each_entry(msg, &as->queue, queue) { 1028 /* REVISIT unmapping the dma is a NOP on ARM and AVR32 1029 * but we shouldn't depend on that... 1030 */ 1031 msg->status = -ESHUTDOWN; 1032 msg->complete(msg->context); 1033 } 1034 1035 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer, 1036 as->buffer_dma); 1037 1038 clk_disable(as->clk); 1039 clk_put(as->clk); 1040 free_irq(as->irq, master); 1041 iounmap(as->regs); 1042 1043 spi_unregister_master(master); 1044 1045 return 0; 1046 } 1047 1048 #ifdef CONFIG_PM 1049 1050 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg) 1051 { 1052 struct spi_master *master = platform_get_drvdata(pdev); 1053 struct atmel_spi *as = spi_master_get_devdata(master); 1054 1055 clk_disable(as->clk); 1056 return 0; 1057 } 1058 1059 static int atmel_spi_resume(struct platform_device *pdev) 1060 { 1061 struct spi_master *master = platform_get_drvdata(pdev); 1062 struct atmel_spi *as = spi_master_get_devdata(master); 1063 1064 clk_enable(as->clk); 1065 return 0; 1066 } 1067 1068 #else 1069 #define atmel_spi_suspend NULL 1070 #define atmel_spi_resume NULL 1071 #endif 1072 1073 #if defined(CONFIG_OF) 1074 static const struct of_device_id atmel_spi_dt_ids[] = { 1075 { .compatible = "atmel,at91rm9200-spi" }, 1076 { /* sentinel */ } 1077 }; 1078 1079 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids); 1080 #endif 1081 1082 static struct platform_driver atmel_spi_driver = { 1083 .driver = { 1084 .name = "atmel_spi", 1085 .owner = THIS_MODULE, 1086 .of_match_table = of_match_ptr(atmel_spi_dt_ids), 1087 }, 1088 .suspend = atmel_spi_suspend, 1089 .resume = atmel_spi_resume, 1090 .probe = atmel_spi_probe, 1091 .remove = __exit_p(atmel_spi_remove), 1092 }; 1093 module_platform_driver(atmel_spi_driver); 1094 1095 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); 1096 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 1097 MODULE_LICENSE("GPL"); 1098 MODULE_ALIAS("platform:atmel_spi"); 1099