1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Atmel AT32 and AT91 SPI Controllers 4 * 5 * Copyright (C) 2006 Atmel Corporation 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/clk.h> 10 #include <linux/module.h> 11 #include <linux/platform_device.h> 12 #include <linux/delay.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/dmaengine.h> 15 #include <linux/err.h> 16 #include <linux/interrupt.h> 17 #include <linux/spi/spi.h> 18 #include <linux/slab.h> 19 #include <linux/of.h> 20 21 #include <linux/io.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pinctrl/consumer.h> 24 #include <linux/pm_runtime.h> 25 #include <trace/events/spi.h> 26 27 /* SPI register offsets */ 28 #define SPI_CR 0x0000 29 #define SPI_MR 0x0004 30 #define SPI_RDR 0x0008 31 #define SPI_TDR 0x000c 32 #define SPI_SR 0x0010 33 #define SPI_IER 0x0014 34 #define SPI_IDR 0x0018 35 #define SPI_IMR 0x001c 36 #define SPI_CSR0 0x0030 37 #define SPI_CSR1 0x0034 38 #define SPI_CSR2 0x0038 39 #define SPI_CSR3 0x003c 40 #define SPI_FMR 0x0040 41 #define SPI_FLR 0x0044 42 #define SPI_VERSION 0x00fc 43 #define SPI_RPR 0x0100 44 #define SPI_RCR 0x0104 45 #define SPI_TPR 0x0108 46 #define SPI_TCR 0x010c 47 #define SPI_RNPR 0x0110 48 #define SPI_RNCR 0x0114 49 #define SPI_TNPR 0x0118 50 #define SPI_TNCR 0x011c 51 #define SPI_PTCR 0x0120 52 #define SPI_PTSR 0x0124 53 54 /* Bitfields in CR */ 55 #define SPI_SPIEN_OFFSET 0 56 #define SPI_SPIEN_SIZE 1 57 #define SPI_SPIDIS_OFFSET 1 58 #define SPI_SPIDIS_SIZE 1 59 #define SPI_SWRST_OFFSET 7 60 #define SPI_SWRST_SIZE 1 61 #define SPI_LASTXFER_OFFSET 24 62 #define SPI_LASTXFER_SIZE 1 63 #define SPI_TXFCLR_OFFSET 16 64 #define SPI_TXFCLR_SIZE 1 65 #define SPI_RXFCLR_OFFSET 17 66 #define SPI_RXFCLR_SIZE 1 67 #define SPI_FIFOEN_OFFSET 30 68 #define SPI_FIFOEN_SIZE 1 69 #define SPI_FIFODIS_OFFSET 31 70 #define SPI_FIFODIS_SIZE 1 71 72 /* Bitfields in MR */ 73 #define SPI_MSTR_OFFSET 0 74 #define SPI_MSTR_SIZE 1 75 #define SPI_PS_OFFSET 1 76 #define SPI_PS_SIZE 1 77 #define SPI_PCSDEC_OFFSET 2 78 #define SPI_PCSDEC_SIZE 1 79 #define SPI_FDIV_OFFSET 3 80 #define SPI_FDIV_SIZE 1 81 #define SPI_MODFDIS_OFFSET 4 82 #define SPI_MODFDIS_SIZE 1 83 #define SPI_WDRBT_OFFSET 5 84 #define SPI_WDRBT_SIZE 1 85 #define SPI_LLB_OFFSET 7 86 #define SPI_LLB_SIZE 1 87 #define SPI_PCS_OFFSET 16 88 #define SPI_PCS_SIZE 4 89 #define SPI_DLYBCS_OFFSET 24 90 #define SPI_DLYBCS_SIZE 8 91 92 /* Bitfields in RDR */ 93 #define SPI_RD_OFFSET 0 94 #define SPI_RD_SIZE 16 95 96 /* Bitfields in TDR */ 97 #define SPI_TD_OFFSET 0 98 #define SPI_TD_SIZE 16 99 100 /* Bitfields in SR */ 101 #define SPI_RDRF_OFFSET 0 102 #define SPI_RDRF_SIZE 1 103 #define SPI_TDRE_OFFSET 1 104 #define SPI_TDRE_SIZE 1 105 #define SPI_MODF_OFFSET 2 106 #define SPI_MODF_SIZE 1 107 #define SPI_OVRES_OFFSET 3 108 #define SPI_OVRES_SIZE 1 109 #define SPI_ENDRX_OFFSET 4 110 #define SPI_ENDRX_SIZE 1 111 #define SPI_ENDTX_OFFSET 5 112 #define SPI_ENDTX_SIZE 1 113 #define SPI_RXBUFF_OFFSET 6 114 #define SPI_RXBUFF_SIZE 1 115 #define SPI_TXBUFE_OFFSET 7 116 #define SPI_TXBUFE_SIZE 1 117 #define SPI_NSSR_OFFSET 8 118 #define SPI_NSSR_SIZE 1 119 #define SPI_TXEMPTY_OFFSET 9 120 #define SPI_TXEMPTY_SIZE 1 121 #define SPI_SPIENS_OFFSET 16 122 #define SPI_SPIENS_SIZE 1 123 #define SPI_TXFEF_OFFSET 24 124 #define SPI_TXFEF_SIZE 1 125 #define SPI_TXFFF_OFFSET 25 126 #define SPI_TXFFF_SIZE 1 127 #define SPI_TXFTHF_OFFSET 26 128 #define SPI_TXFTHF_SIZE 1 129 #define SPI_RXFEF_OFFSET 27 130 #define SPI_RXFEF_SIZE 1 131 #define SPI_RXFFF_OFFSET 28 132 #define SPI_RXFFF_SIZE 1 133 #define SPI_RXFTHF_OFFSET 29 134 #define SPI_RXFTHF_SIZE 1 135 #define SPI_TXFPTEF_OFFSET 30 136 #define SPI_TXFPTEF_SIZE 1 137 #define SPI_RXFPTEF_OFFSET 31 138 #define SPI_RXFPTEF_SIZE 1 139 140 /* Bitfields in CSR0 */ 141 #define SPI_CPOL_OFFSET 0 142 #define SPI_CPOL_SIZE 1 143 #define SPI_NCPHA_OFFSET 1 144 #define SPI_NCPHA_SIZE 1 145 #define SPI_CSAAT_OFFSET 3 146 #define SPI_CSAAT_SIZE 1 147 #define SPI_BITS_OFFSET 4 148 #define SPI_BITS_SIZE 4 149 #define SPI_SCBR_OFFSET 8 150 #define SPI_SCBR_SIZE 8 151 #define SPI_DLYBS_OFFSET 16 152 #define SPI_DLYBS_SIZE 8 153 #define SPI_DLYBCT_OFFSET 24 154 #define SPI_DLYBCT_SIZE 8 155 156 /* Bitfields in RCR */ 157 #define SPI_RXCTR_OFFSET 0 158 #define SPI_RXCTR_SIZE 16 159 160 /* Bitfields in TCR */ 161 #define SPI_TXCTR_OFFSET 0 162 #define SPI_TXCTR_SIZE 16 163 164 /* Bitfields in RNCR */ 165 #define SPI_RXNCR_OFFSET 0 166 #define SPI_RXNCR_SIZE 16 167 168 /* Bitfields in TNCR */ 169 #define SPI_TXNCR_OFFSET 0 170 #define SPI_TXNCR_SIZE 16 171 172 /* Bitfields in PTCR */ 173 #define SPI_RXTEN_OFFSET 0 174 #define SPI_RXTEN_SIZE 1 175 #define SPI_RXTDIS_OFFSET 1 176 #define SPI_RXTDIS_SIZE 1 177 #define SPI_TXTEN_OFFSET 8 178 #define SPI_TXTEN_SIZE 1 179 #define SPI_TXTDIS_OFFSET 9 180 #define SPI_TXTDIS_SIZE 1 181 182 /* Bitfields in FMR */ 183 #define SPI_TXRDYM_OFFSET 0 184 #define SPI_TXRDYM_SIZE 2 185 #define SPI_RXRDYM_OFFSET 4 186 #define SPI_RXRDYM_SIZE 2 187 #define SPI_TXFTHRES_OFFSET 16 188 #define SPI_TXFTHRES_SIZE 6 189 #define SPI_RXFTHRES_OFFSET 24 190 #define SPI_RXFTHRES_SIZE 6 191 192 /* Bitfields in FLR */ 193 #define SPI_TXFL_OFFSET 0 194 #define SPI_TXFL_SIZE 6 195 #define SPI_RXFL_OFFSET 16 196 #define SPI_RXFL_SIZE 6 197 198 /* Constants for BITS */ 199 #define SPI_BITS_8_BPT 0 200 #define SPI_BITS_9_BPT 1 201 #define SPI_BITS_10_BPT 2 202 #define SPI_BITS_11_BPT 3 203 #define SPI_BITS_12_BPT 4 204 #define SPI_BITS_13_BPT 5 205 #define SPI_BITS_14_BPT 6 206 #define SPI_BITS_15_BPT 7 207 #define SPI_BITS_16_BPT 8 208 #define SPI_ONE_DATA 0 209 #define SPI_TWO_DATA 1 210 #define SPI_FOUR_DATA 2 211 212 /* Bit manipulation macros */ 213 #define SPI_BIT(name) \ 214 (1 << SPI_##name##_OFFSET) 215 #define SPI_BF(name, value) \ 216 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET) 217 #define SPI_BFEXT(name, value) \ 218 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1)) 219 #define SPI_BFINS(name, value, old) \ 220 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \ 221 | SPI_BF(name, value)) 222 223 /* Register access macros */ 224 #define spi_readl(port, reg) \ 225 readl_relaxed((port)->regs + SPI_##reg) 226 #define spi_writel(port, reg, value) \ 227 writel_relaxed((value), (port)->regs + SPI_##reg) 228 #define spi_writew(port, reg, value) \ 229 writew_relaxed((value), (port)->regs + SPI_##reg) 230 231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 232 * cache operations; better heuristics consider wordsize and bitrate. 233 */ 234 #define DMA_MIN_BYTES 16 235 236 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) 237 238 #define AUTOSUSPEND_TIMEOUT 2000 239 240 struct atmel_spi_caps { 241 bool is_spi2; 242 bool has_wdrbt; 243 bool has_dma_support; 244 bool has_pdc_support; 245 }; 246 247 /* 248 * The core SPI transfer engine just talks to a register bank to set up 249 * DMA transfers; transfer queue progress is driven by IRQs. The clock 250 * framework provides the base clock, subdivided for each spi_device. 251 */ 252 struct atmel_spi { 253 spinlock_t lock; 254 unsigned long flags; 255 256 phys_addr_t phybase; 257 void __iomem *regs; 258 int irq; 259 struct clk *clk; 260 struct platform_device *pdev; 261 unsigned long spi_clk; 262 263 struct spi_transfer *current_transfer; 264 int current_remaining_bytes; 265 int done_status; 266 dma_addr_t dma_addr_rx_bbuf; 267 dma_addr_t dma_addr_tx_bbuf; 268 void *addr_rx_bbuf; 269 void *addr_tx_bbuf; 270 271 struct completion xfer_completion; 272 273 struct atmel_spi_caps caps; 274 275 bool use_dma; 276 bool use_pdc; 277 278 bool keep_cs; 279 280 u32 fifo_size; 281 u8 native_cs_free; 282 u8 native_cs_for_gpio; 283 }; 284 285 /* Controller-specific per-slave state */ 286 struct atmel_spi_device { 287 u32 csr; 288 }; 289 290 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */ 291 #define INVALID_DMA_ADDRESS 0xffffffff 292 293 /* 294 * Version 2 of the SPI controller has 295 * - CR.LASTXFER 296 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) 297 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) 298 * - SPI_CSRx.CSAAT 299 * - SPI_CSRx.SBCR allows faster clocking 300 */ 301 static bool atmel_spi_is_v2(struct atmel_spi *as) 302 { 303 return as->caps.is_spi2; 304 } 305 306 /* 307 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby 308 * they assume that spi slave device state will not change on deselect, so 309 * that automagic deselection is OK. ("NPCSx rises if no data is to be 310 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer 311 * controllers have CSAAT and friends. 312 * 313 * Even controller newer than ar91rm9200, using GPIOs can make sens as 314 * it lets us support active-high chipselects despite the controller's 315 * belief that only active-low devices/systems exists. 316 * 317 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work 318 * right when driven with GPIO. ("Mode Fault does not allow more than one 319 * Master on Chip Select 0.") No workaround exists for that ... so for 320 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, 321 * and (c) will trigger that first erratum in some cases. 322 */ 323 324 static void cs_activate(struct atmel_spi *as, struct spi_device *spi) 325 { 326 struct atmel_spi_device *asd = spi->controller_state; 327 int chip_select; 328 u32 mr; 329 330 if (spi->cs_gpiod) 331 chip_select = as->native_cs_for_gpio; 332 else 333 chip_select = spi->chip_select; 334 335 if (atmel_spi_is_v2(as)) { 336 spi_writel(as, CSR0 + 4 * chip_select, asd->csr); 337 /* For the low SPI version, there is a issue that PDC transfer 338 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS 339 */ 340 spi_writel(as, CSR0, asd->csr); 341 if (as->caps.has_wdrbt) { 342 spi_writel(as, MR, 343 SPI_BF(PCS, ~(0x01 << chip_select)) 344 | SPI_BIT(WDRBT) 345 | SPI_BIT(MODFDIS) 346 | SPI_BIT(MSTR)); 347 } else { 348 spi_writel(as, MR, 349 SPI_BF(PCS, ~(0x01 << chip_select)) 350 | SPI_BIT(MODFDIS) 351 | SPI_BIT(MSTR)); 352 } 353 354 mr = spi_readl(as, MR); 355 if (spi->cs_gpiod) 356 gpiod_set_value(spi->cs_gpiod, 1); 357 } else { 358 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; 359 int i; 360 u32 csr; 361 362 /* Make sure clock polarity is correct */ 363 for (i = 0; i < spi->master->num_chipselect; i++) { 364 csr = spi_readl(as, CSR0 + 4 * i); 365 if ((csr ^ cpol) & SPI_BIT(CPOL)) 366 spi_writel(as, CSR0 + 4 * i, 367 csr ^ SPI_BIT(CPOL)); 368 } 369 370 mr = spi_readl(as, MR); 371 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr); 372 if (spi->cs_gpiod) 373 gpiod_set_value(spi->cs_gpiod, 1); 374 spi_writel(as, MR, mr); 375 } 376 377 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr); 378 } 379 380 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) 381 { 382 int chip_select; 383 u32 mr; 384 385 if (spi->cs_gpiod) 386 chip_select = as->native_cs_for_gpio; 387 else 388 chip_select = spi->chip_select; 389 390 /* only deactivate *this* device; sometimes transfers to 391 * another device may be active when this routine is called. 392 */ 393 mr = spi_readl(as, MR); 394 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) { 395 mr = SPI_BFINS(PCS, 0xf, mr); 396 spi_writel(as, MR, mr); 397 } 398 399 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr); 400 401 if (!spi->cs_gpiod) 402 spi_writel(as, CR, SPI_BIT(LASTXFER)); 403 else 404 gpiod_set_value(spi->cs_gpiod, 0); 405 } 406 407 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock) 408 { 409 spin_lock_irqsave(&as->lock, as->flags); 410 } 411 412 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock) 413 { 414 spin_unlock_irqrestore(&as->lock, as->flags); 415 } 416 417 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer) 418 { 419 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf); 420 } 421 422 static inline bool atmel_spi_use_dma(struct atmel_spi *as, 423 struct spi_transfer *xfer) 424 { 425 return as->use_dma && xfer->len >= DMA_MIN_BYTES; 426 } 427 428 static bool atmel_spi_can_dma(struct spi_master *master, 429 struct spi_device *spi, 430 struct spi_transfer *xfer) 431 { 432 struct atmel_spi *as = spi_master_get_devdata(master); 433 434 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) 435 return atmel_spi_use_dma(as, xfer) && 436 !atmel_spi_is_vmalloc_xfer(xfer); 437 else 438 return atmel_spi_use_dma(as, xfer); 439 440 } 441 442 static int atmel_spi_dma_slave_config(struct atmel_spi *as, 443 struct dma_slave_config *slave_config, 444 u8 bits_per_word) 445 { 446 struct spi_master *master = platform_get_drvdata(as->pdev); 447 int err = 0; 448 449 if (bits_per_word > 8) { 450 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 451 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 452 } else { 453 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 454 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 455 } 456 457 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR; 458 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR; 459 slave_config->src_maxburst = 1; 460 slave_config->dst_maxburst = 1; 461 slave_config->device_fc = false; 462 463 /* 464 * This driver uses fixed peripheral select mode (PS bit set to '0' in 465 * the Mode Register). 466 * So according to the datasheet, when FIFOs are available (and 467 * enabled), the Transmit FIFO operates in Multiple Data Mode. 468 * In this mode, up to 2 data, not 4, can be written into the Transmit 469 * Data Register in a single access. 470 * However, the first data has to be written into the lowest 16 bits and 471 * the second data into the highest 16 bits of the Transmit 472 * Data Register. For 8bit data (the most frequent case), it would 473 * require to rework tx_buf so each data would actualy fit 16 bits. 474 * So we'd rather write only one data at the time. Hence the transmit 475 * path works the same whether FIFOs are available (and enabled) or not. 476 */ 477 slave_config->direction = DMA_MEM_TO_DEV; 478 if (dmaengine_slave_config(master->dma_tx, slave_config)) { 479 dev_err(&as->pdev->dev, 480 "failed to configure tx dma channel\n"); 481 err = -EINVAL; 482 } 483 484 /* 485 * This driver configures the spi controller for master mode (MSTR bit 486 * set to '1' in the Mode Register). 487 * So according to the datasheet, when FIFOs are available (and 488 * enabled), the Receive FIFO operates in Single Data Mode. 489 * So the receive path works the same whether FIFOs are available (and 490 * enabled) or not. 491 */ 492 slave_config->direction = DMA_DEV_TO_MEM; 493 if (dmaengine_slave_config(master->dma_rx, slave_config)) { 494 dev_err(&as->pdev->dev, 495 "failed to configure rx dma channel\n"); 496 err = -EINVAL; 497 } 498 499 return err; 500 } 501 502 static int atmel_spi_configure_dma(struct spi_master *master, 503 struct atmel_spi *as) 504 { 505 struct dma_slave_config slave_config; 506 struct device *dev = &as->pdev->dev; 507 int err; 508 509 master->dma_tx = dma_request_chan(dev, "tx"); 510 if (IS_ERR(master->dma_tx)) { 511 err = PTR_ERR(master->dma_tx); 512 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n"); 513 goto error_clear; 514 } 515 516 master->dma_rx = dma_request_chan(dev, "rx"); 517 if (IS_ERR(master->dma_rx)) { 518 err = PTR_ERR(master->dma_rx); 519 /* 520 * No reason to check EPROBE_DEFER here since we have already 521 * requested tx channel. 522 */ 523 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n"); 524 goto error; 525 } 526 527 err = atmel_spi_dma_slave_config(as, &slave_config, 8); 528 if (err) 529 goto error; 530 531 dev_info(&as->pdev->dev, 532 "Using %s (tx) and %s (rx) for DMA transfers\n", 533 dma_chan_name(master->dma_tx), 534 dma_chan_name(master->dma_rx)); 535 536 return 0; 537 error: 538 if (!IS_ERR(master->dma_rx)) 539 dma_release_channel(master->dma_rx); 540 if (!IS_ERR(master->dma_tx)) 541 dma_release_channel(master->dma_tx); 542 error_clear: 543 master->dma_tx = master->dma_rx = NULL; 544 return err; 545 } 546 547 static void atmel_spi_stop_dma(struct spi_master *master) 548 { 549 if (master->dma_rx) 550 dmaengine_terminate_all(master->dma_rx); 551 if (master->dma_tx) 552 dmaengine_terminate_all(master->dma_tx); 553 } 554 555 static void atmel_spi_release_dma(struct spi_master *master) 556 { 557 if (master->dma_rx) { 558 dma_release_channel(master->dma_rx); 559 master->dma_rx = NULL; 560 } 561 if (master->dma_tx) { 562 dma_release_channel(master->dma_tx); 563 master->dma_tx = NULL; 564 } 565 } 566 567 /* This function is called by the DMA driver from tasklet context */ 568 static void dma_callback(void *data) 569 { 570 struct spi_master *master = data; 571 struct atmel_spi *as = spi_master_get_devdata(master); 572 573 if (is_vmalloc_addr(as->current_transfer->rx_buf) && 574 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 575 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf, 576 as->current_transfer->len); 577 } 578 complete(&as->xfer_completion); 579 } 580 581 /* 582 * Next transfer using PIO without FIFO. 583 */ 584 static void atmel_spi_next_xfer_single(struct spi_master *master, 585 struct spi_transfer *xfer) 586 { 587 struct atmel_spi *as = spi_master_get_devdata(master); 588 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 589 590 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n"); 591 592 /* Make sure data is not remaining in RDR */ 593 spi_readl(as, RDR); 594 while (spi_readl(as, SR) & SPI_BIT(RDRF)) { 595 spi_readl(as, RDR); 596 cpu_relax(); 597 } 598 599 if (xfer->bits_per_word > 8) 600 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos)); 601 else 602 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos)); 603 604 dev_dbg(master->dev.parent, 605 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n", 606 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 607 xfer->bits_per_word); 608 609 /* Enable relevant interrupts */ 610 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES)); 611 } 612 613 /* 614 * Next transfer using PIO with FIFO. 615 */ 616 static void atmel_spi_next_xfer_fifo(struct spi_master *master, 617 struct spi_transfer *xfer) 618 { 619 struct atmel_spi *as = spi_master_get_devdata(master); 620 u32 current_remaining_data, num_data; 621 u32 offset = xfer->len - as->current_remaining_bytes; 622 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset); 623 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset); 624 u16 td0, td1; 625 u32 fifomr; 626 627 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n"); 628 629 /* Compute the number of data to transfer in the current iteration */ 630 current_remaining_data = ((xfer->bits_per_word > 8) ? 631 ((u32)as->current_remaining_bytes >> 1) : 632 (u32)as->current_remaining_bytes); 633 num_data = min(current_remaining_data, as->fifo_size); 634 635 /* Flush RX and TX FIFOs */ 636 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR)); 637 while (spi_readl(as, FLR)) 638 cpu_relax(); 639 640 /* Set RX FIFO Threshold to the number of data to transfer */ 641 fifomr = spi_readl(as, FMR); 642 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr)); 643 644 /* Clear FIFO flags in the Status Register, especially RXFTHF */ 645 (void)spi_readl(as, SR); 646 647 /* Fill TX FIFO */ 648 while (num_data >= 2) { 649 if (xfer->bits_per_word > 8) { 650 td0 = *words++; 651 td1 = *words++; 652 } else { 653 td0 = *bytes++; 654 td1 = *bytes++; 655 } 656 657 spi_writel(as, TDR, (td1 << 16) | td0); 658 num_data -= 2; 659 } 660 661 if (num_data) { 662 if (xfer->bits_per_word > 8) 663 td0 = *words++; 664 else 665 td0 = *bytes++; 666 667 spi_writew(as, TDR, td0); 668 num_data--; 669 } 670 671 dev_dbg(master->dev.parent, 672 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n", 673 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 674 xfer->bits_per_word); 675 676 /* 677 * Enable RX FIFO Threshold Flag interrupt to be notified about 678 * transfer completion. 679 */ 680 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES)); 681 } 682 683 /* 684 * Next transfer using PIO. 685 */ 686 static void atmel_spi_next_xfer_pio(struct spi_master *master, 687 struct spi_transfer *xfer) 688 { 689 struct atmel_spi *as = spi_master_get_devdata(master); 690 691 if (as->fifo_size) 692 atmel_spi_next_xfer_fifo(master, xfer); 693 else 694 atmel_spi_next_xfer_single(master, xfer); 695 } 696 697 /* 698 * Submit next transfer for DMA. 699 */ 700 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master, 701 struct spi_transfer *xfer, 702 u32 *plen) 703 { 704 struct atmel_spi *as = spi_master_get_devdata(master); 705 struct dma_chan *rxchan = master->dma_rx; 706 struct dma_chan *txchan = master->dma_tx; 707 struct dma_async_tx_descriptor *rxdesc; 708 struct dma_async_tx_descriptor *txdesc; 709 struct dma_slave_config slave_config; 710 dma_cookie_t cookie; 711 712 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n"); 713 714 /* Check that the channels are available */ 715 if (!rxchan || !txchan) 716 return -ENODEV; 717 718 719 *plen = xfer->len; 720 721 if (atmel_spi_dma_slave_config(as, &slave_config, 722 xfer->bits_per_word)) 723 goto err_exit; 724 725 /* Send both scatterlists */ 726 if (atmel_spi_is_vmalloc_xfer(xfer) && 727 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 728 rxdesc = dmaengine_prep_slave_single(rxchan, 729 as->dma_addr_rx_bbuf, 730 xfer->len, 731 DMA_DEV_TO_MEM, 732 DMA_PREP_INTERRUPT | 733 DMA_CTRL_ACK); 734 } else { 735 rxdesc = dmaengine_prep_slave_sg(rxchan, 736 xfer->rx_sg.sgl, 737 xfer->rx_sg.nents, 738 DMA_DEV_TO_MEM, 739 DMA_PREP_INTERRUPT | 740 DMA_CTRL_ACK); 741 } 742 if (!rxdesc) 743 goto err_dma; 744 745 if (atmel_spi_is_vmalloc_xfer(xfer) && 746 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 747 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len); 748 txdesc = dmaengine_prep_slave_single(txchan, 749 as->dma_addr_tx_bbuf, 750 xfer->len, DMA_MEM_TO_DEV, 751 DMA_PREP_INTERRUPT | 752 DMA_CTRL_ACK); 753 } else { 754 txdesc = dmaengine_prep_slave_sg(txchan, 755 xfer->tx_sg.sgl, 756 xfer->tx_sg.nents, 757 DMA_MEM_TO_DEV, 758 DMA_PREP_INTERRUPT | 759 DMA_CTRL_ACK); 760 } 761 if (!txdesc) 762 goto err_dma; 763 764 dev_dbg(master->dev.parent, 765 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 766 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma, 767 xfer->rx_buf, (unsigned long long)xfer->rx_dma); 768 769 /* Enable relevant interrupts */ 770 spi_writel(as, IER, SPI_BIT(OVRES)); 771 772 /* Put the callback on the RX transfer only, that should finish last */ 773 rxdesc->callback = dma_callback; 774 rxdesc->callback_param = master; 775 776 /* Submit and fire RX and TX with TX last so we're ready to read! */ 777 cookie = rxdesc->tx_submit(rxdesc); 778 if (dma_submit_error(cookie)) 779 goto err_dma; 780 cookie = txdesc->tx_submit(txdesc); 781 if (dma_submit_error(cookie)) 782 goto err_dma; 783 rxchan->device->device_issue_pending(rxchan); 784 txchan->device->device_issue_pending(txchan); 785 786 return 0; 787 788 err_dma: 789 spi_writel(as, IDR, SPI_BIT(OVRES)); 790 atmel_spi_stop_dma(master); 791 err_exit: 792 return -ENOMEM; 793 } 794 795 static void atmel_spi_next_xfer_data(struct spi_master *master, 796 struct spi_transfer *xfer, 797 dma_addr_t *tx_dma, 798 dma_addr_t *rx_dma, 799 u32 *plen) 800 { 801 *rx_dma = xfer->rx_dma + xfer->len - *plen; 802 *tx_dma = xfer->tx_dma + xfer->len - *plen; 803 if (*plen > master->max_dma_len) 804 *plen = master->max_dma_len; 805 } 806 807 static int atmel_spi_set_xfer_speed(struct atmel_spi *as, 808 struct spi_device *spi, 809 struct spi_transfer *xfer) 810 { 811 u32 scbr, csr; 812 unsigned long bus_hz; 813 int chip_select; 814 815 if (spi->cs_gpiod) 816 chip_select = as->native_cs_for_gpio; 817 else 818 chip_select = spi->chip_select; 819 820 /* v1 chips start out at half the peripheral bus speed. */ 821 bus_hz = as->spi_clk; 822 if (!atmel_spi_is_v2(as)) 823 bus_hz /= 2; 824 825 /* 826 * Calculate the lowest divider that satisfies the 827 * constraint, assuming div32/fdiv/mbz == 0. 828 */ 829 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz); 830 831 /* 832 * If the resulting divider doesn't fit into the 833 * register bitfield, we can't satisfy the constraint. 834 */ 835 if (scbr >= (1 << SPI_SCBR_SIZE)) { 836 dev_err(&spi->dev, 837 "setup: %d Hz too slow, scbr %u; min %ld Hz\n", 838 xfer->speed_hz, scbr, bus_hz/255); 839 return -EINVAL; 840 } 841 if (scbr == 0) { 842 dev_err(&spi->dev, 843 "setup: %d Hz too high, scbr %u; max %ld Hz\n", 844 xfer->speed_hz, scbr, bus_hz); 845 return -EINVAL; 846 } 847 csr = spi_readl(as, CSR0 + 4 * chip_select); 848 csr = SPI_BFINS(SCBR, scbr, csr); 849 spi_writel(as, CSR0 + 4 * chip_select, csr); 850 xfer->effective_speed_hz = bus_hz / scbr; 851 852 return 0; 853 } 854 855 /* 856 * Submit next transfer for PDC. 857 * lock is held, spi irq is blocked 858 */ 859 static void atmel_spi_pdc_next_xfer(struct spi_master *master, 860 struct spi_transfer *xfer) 861 { 862 struct atmel_spi *as = spi_master_get_devdata(master); 863 u32 len; 864 dma_addr_t tx_dma, rx_dma; 865 866 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 867 868 len = as->current_remaining_bytes; 869 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 870 as->current_remaining_bytes -= len; 871 872 spi_writel(as, RPR, rx_dma); 873 spi_writel(as, TPR, tx_dma); 874 875 if (xfer->bits_per_word > 8) 876 len >>= 1; 877 spi_writel(as, RCR, len); 878 spi_writel(as, TCR, len); 879 880 dev_dbg(&master->dev, 881 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 882 xfer, xfer->len, xfer->tx_buf, 883 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 884 (unsigned long long)xfer->rx_dma); 885 886 if (as->current_remaining_bytes) { 887 len = as->current_remaining_bytes; 888 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len); 889 as->current_remaining_bytes -= len; 890 891 spi_writel(as, RNPR, rx_dma); 892 spi_writel(as, TNPR, tx_dma); 893 894 if (xfer->bits_per_word > 8) 895 len >>= 1; 896 spi_writel(as, RNCR, len); 897 spi_writel(as, TNCR, len); 898 899 dev_dbg(&master->dev, 900 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 901 xfer, xfer->len, xfer->tx_buf, 902 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 903 (unsigned long long)xfer->rx_dma); 904 } 905 906 /* REVISIT: We're waiting for RXBUFF before we start the next 907 * transfer because we need to handle some difficult timing 908 * issues otherwise. If we wait for TXBUFE in one transfer and 909 * then starts waiting for RXBUFF in the next, it's difficult 910 * to tell the difference between the RXBUFF interrupt we're 911 * actually waiting for and the RXBUFF interrupt of the 912 * previous transfer. 913 * 914 * It should be doable, though. Just not now... 915 */ 916 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES)); 917 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); 918 } 919 920 /* 921 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: 922 * - The buffer is either valid for CPU access, else NULL 923 * - If the buffer is valid, so is its DMA address 924 * 925 * This driver manages the dma address unless message->is_dma_mapped. 926 */ 927 static int 928 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) 929 { 930 struct device *dev = &as->pdev->dev; 931 932 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; 933 if (xfer->tx_buf) { 934 /* tx_buf is a const void* where we need a void * for the dma 935 * mapping */ 936 void *nonconst_tx = (void *)xfer->tx_buf; 937 938 xfer->tx_dma = dma_map_single(dev, 939 nonconst_tx, xfer->len, 940 DMA_TO_DEVICE); 941 if (dma_mapping_error(dev, xfer->tx_dma)) 942 return -ENOMEM; 943 } 944 if (xfer->rx_buf) { 945 xfer->rx_dma = dma_map_single(dev, 946 xfer->rx_buf, xfer->len, 947 DMA_FROM_DEVICE); 948 if (dma_mapping_error(dev, xfer->rx_dma)) { 949 if (xfer->tx_buf) 950 dma_unmap_single(dev, 951 xfer->tx_dma, xfer->len, 952 DMA_TO_DEVICE); 953 return -ENOMEM; 954 } 955 } 956 return 0; 957 } 958 959 static void atmel_spi_dma_unmap_xfer(struct spi_master *master, 960 struct spi_transfer *xfer) 961 { 962 if (xfer->tx_dma != INVALID_DMA_ADDRESS) 963 dma_unmap_single(master->dev.parent, xfer->tx_dma, 964 xfer->len, DMA_TO_DEVICE); 965 if (xfer->rx_dma != INVALID_DMA_ADDRESS) 966 dma_unmap_single(master->dev.parent, xfer->rx_dma, 967 xfer->len, DMA_FROM_DEVICE); 968 } 969 970 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as) 971 { 972 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 973 } 974 975 static void 976 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer) 977 { 978 u8 *rxp; 979 u16 *rxp16; 980 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 981 982 if (xfer->bits_per_word > 8) { 983 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos); 984 *rxp16 = spi_readl(as, RDR); 985 } else { 986 rxp = ((u8 *)xfer->rx_buf) + xfer_pos; 987 *rxp = spi_readl(as, RDR); 988 } 989 if (xfer->bits_per_word > 8) { 990 if (as->current_remaining_bytes > 2) 991 as->current_remaining_bytes -= 2; 992 else 993 as->current_remaining_bytes = 0; 994 } else { 995 as->current_remaining_bytes--; 996 } 997 } 998 999 static void 1000 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer) 1001 { 1002 u32 fifolr = spi_readl(as, FLR); 1003 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr); 1004 u32 offset = xfer->len - as->current_remaining_bytes; 1005 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset); 1006 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset); 1007 u16 rd; /* RD field is the lowest 16 bits of RDR */ 1008 1009 /* Update the number of remaining bytes to transfer */ 1010 num_bytes = ((xfer->bits_per_word > 8) ? 1011 (num_data << 1) : 1012 num_data); 1013 1014 if (as->current_remaining_bytes > num_bytes) 1015 as->current_remaining_bytes -= num_bytes; 1016 else 1017 as->current_remaining_bytes = 0; 1018 1019 /* Handle odd number of bytes when data are more than 8bit width */ 1020 if (xfer->bits_per_word > 8) 1021 as->current_remaining_bytes &= ~0x1; 1022 1023 /* Read data */ 1024 while (num_data) { 1025 rd = spi_readl(as, RDR); 1026 if (xfer->bits_per_word > 8) 1027 *words++ = rd; 1028 else 1029 *bytes++ = rd; 1030 num_data--; 1031 } 1032 } 1033 1034 /* Called from IRQ 1035 * 1036 * Must update "current_remaining_bytes" to keep track of data 1037 * to transfer. 1038 */ 1039 static void 1040 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer) 1041 { 1042 if (as->fifo_size) 1043 atmel_spi_pump_fifo_data(as, xfer); 1044 else 1045 atmel_spi_pump_single_data(as, xfer); 1046 } 1047 1048 /* Interrupt 1049 * 1050 */ 1051 static irqreturn_t 1052 atmel_spi_pio_interrupt(int irq, void *dev_id) 1053 { 1054 struct spi_master *master = dev_id; 1055 struct atmel_spi *as = spi_master_get_devdata(master); 1056 u32 status, pending, imr; 1057 struct spi_transfer *xfer; 1058 int ret = IRQ_NONE; 1059 1060 imr = spi_readl(as, IMR); 1061 status = spi_readl(as, SR); 1062 pending = status & imr; 1063 1064 if (pending & SPI_BIT(OVRES)) { 1065 ret = IRQ_HANDLED; 1066 spi_writel(as, IDR, SPI_BIT(OVRES)); 1067 dev_warn(master->dev.parent, "overrun\n"); 1068 1069 /* 1070 * When we get an overrun, we disregard the current 1071 * transfer. Data will not be copied back from any 1072 * bounce buffer and msg->actual_len will not be 1073 * updated with the last xfer. 1074 * 1075 * We will also not process any remaning transfers in 1076 * the message. 1077 */ 1078 as->done_status = -EIO; 1079 smp_wmb(); 1080 1081 /* Clear any overrun happening while cleaning up */ 1082 spi_readl(as, SR); 1083 1084 complete(&as->xfer_completion); 1085 1086 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) { 1087 atmel_spi_lock(as); 1088 1089 if (as->current_remaining_bytes) { 1090 ret = IRQ_HANDLED; 1091 xfer = as->current_transfer; 1092 atmel_spi_pump_pio_data(as, xfer); 1093 if (!as->current_remaining_bytes) 1094 spi_writel(as, IDR, pending); 1095 1096 complete(&as->xfer_completion); 1097 } 1098 1099 atmel_spi_unlock(as); 1100 } else { 1101 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending); 1102 ret = IRQ_HANDLED; 1103 spi_writel(as, IDR, pending); 1104 } 1105 1106 return ret; 1107 } 1108 1109 static irqreturn_t 1110 atmel_spi_pdc_interrupt(int irq, void *dev_id) 1111 { 1112 struct spi_master *master = dev_id; 1113 struct atmel_spi *as = spi_master_get_devdata(master); 1114 u32 status, pending, imr; 1115 int ret = IRQ_NONE; 1116 1117 imr = spi_readl(as, IMR); 1118 status = spi_readl(as, SR); 1119 pending = status & imr; 1120 1121 if (pending & SPI_BIT(OVRES)) { 1122 1123 ret = IRQ_HANDLED; 1124 1125 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) 1126 | SPI_BIT(OVRES))); 1127 1128 /* Clear any overrun happening while cleaning up */ 1129 spi_readl(as, SR); 1130 1131 as->done_status = -EIO; 1132 1133 complete(&as->xfer_completion); 1134 1135 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { 1136 ret = IRQ_HANDLED; 1137 1138 spi_writel(as, IDR, pending); 1139 1140 complete(&as->xfer_completion); 1141 } 1142 1143 return ret; 1144 } 1145 1146 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as) 1147 { 1148 struct spi_delay *delay = &spi->word_delay; 1149 u32 value = delay->value; 1150 1151 switch (delay->unit) { 1152 case SPI_DELAY_UNIT_NSECS: 1153 value /= 1000; 1154 break; 1155 case SPI_DELAY_UNIT_USECS: 1156 break; 1157 default: 1158 return -EINVAL; 1159 } 1160 1161 return (as->spi_clk / 1000000 * value) >> 5; 1162 } 1163 1164 static void initialize_native_cs_for_gpio(struct atmel_spi *as) 1165 { 1166 int i; 1167 struct spi_master *master = platform_get_drvdata(as->pdev); 1168 1169 if (!as->native_cs_free) 1170 return; /* already initialized */ 1171 1172 if (!master->cs_gpiods) 1173 return; /* No CS GPIO */ 1174 1175 /* 1176 * On the first version of the controller (AT91RM9200), CS0 1177 * can't be used associated with GPIO 1178 */ 1179 if (atmel_spi_is_v2(as)) 1180 i = 0; 1181 else 1182 i = 1; 1183 1184 for (; i < 4; i++) 1185 if (master->cs_gpiods[i]) 1186 as->native_cs_free |= BIT(i); 1187 1188 if (as->native_cs_free) 1189 as->native_cs_for_gpio = ffs(as->native_cs_free); 1190 } 1191 1192 static int atmel_spi_setup(struct spi_device *spi) 1193 { 1194 struct atmel_spi *as; 1195 struct atmel_spi_device *asd; 1196 u32 csr; 1197 unsigned int bits = spi->bits_per_word; 1198 int chip_select; 1199 int word_delay_csr; 1200 1201 as = spi_master_get_devdata(spi->master); 1202 1203 /* see notes above re chipselect */ 1204 if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) { 1205 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n"); 1206 return -EINVAL; 1207 } 1208 1209 /* Setup() is called during spi_register_controller(aka 1210 * spi_register_master) but after all membmers of the cs_gpiod 1211 * array have been filled, so we can looked for which native 1212 * CS will be free for using with GPIO 1213 */ 1214 initialize_native_cs_for_gpio(as); 1215 1216 if (spi->cs_gpiod && as->native_cs_free) { 1217 dev_err(&spi->dev, 1218 "No native CS available to support this GPIO CS\n"); 1219 return -EBUSY; 1220 } 1221 1222 if (spi->cs_gpiod) 1223 chip_select = as->native_cs_for_gpio; 1224 else 1225 chip_select = spi->chip_select; 1226 1227 csr = SPI_BF(BITS, bits - 8); 1228 if (spi->mode & SPI_CPOL) 1229 csr |= SPI_BIT(CPOL); 1230 if (!(spi->mode & SPI_CPHA)) 1231 csr |= SPI_BIT(NCPHA); 1232 1233 if (!spi->cs_gpiod) 1234 csr |= SPI_BIT(CSAAT); 1235 csr |= SPI_BF(DLYBS, 0); 1236 1237 word_delay_csr = atmel_word_delay_csr(spi, as); 1238 if (word_delay_csr < 0) 1239 return word_delay_csr; 1240 1241 /* DLYBCT adds delays between words. This is useful for slow devices 1242 * that need a bit of time to setup the next transfer. 1243 */ 1244 csr |= SPI_BF(DLYBCT, word_delay_csr); 1245 1246 asd = spi->controller_state; 1247 if (!asd) { 1248 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); 1249 if (!asd) 1250 return -ENOMEM; 1251 1252 spi->controller_state = asd; 1253 } 1254 1255 asd->csr = csr; 1256 1257 dev_dbg(&spi->dev, 1258 "setup: bpw %u mode 0x%x -> csr%d %08x\n", 1259 bits, spi->mode, spi->chip_select, csr); 1260 1261 if (!atmel_spi_is_v2(as)) 1262 spi_writel(as, CSR0 + 4 * chip_select, csr); 1263 1264 return 0; 1265 } 1266 1267 static void atmel_spi_set_cs(struct spi_device *spi, bool enable) 1268 { 1269 struct atmel_spi *as = spi_master_get_devdata(spi->master); 1270 /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW 1271 * since we already have routines for activate/deactivate translate 1272 * high/low to active/inactive 1273 */ 1274 enable = (!!(spi->mode & SPI_CS_HIGH) == enable); 1275 1276 if (enable) { 1277 cs_activate(as, spi); 1278 } else { 1279 cs_deactivate(as, spi); 1280 } 1281 1282 } 1283 1284 static int atmel_spi_one_transfer(struct spi_master *master, 1285 struct spi_device *spi, 1286 struct spi_transfer *xfer) 1287 { 1288 struct atmel_spi *as; 1289 u8 bits; 1290 u32 len; 1291 struct atmel_spi_device *asd; 1292 int timeout; 1293 int ret; 1294 unsigned long dma_timeout; 1295 1296 as = spi_master_get_devdata(master); 1297 1298 asd = spi->controller_state; 1299 bits = (asd->csr >> 4) & 0xf; 1300 if (bits != xfer->bits_per_word - 8) { 1301 dev_dbg(&spi->dev, 1302 "you can't yet change bits_per_word in transfers\n"); 1303 return -ENOPROTOOPT; 1304 } 1305 1306 /* 1307 * DMA map early, for performance (empties dcache ASAP) and 1308 * better fault reporting. 1309 */ 1310 if ((!master->cur_msg_mapped) 1311 && as->use_pdc) { 1312 if (atmel_spi_dma_map_xfer(as, xfer) < 0) 1313 return -ENOMEM; 1314 } 1315 1316 atmel_spi_set_xfer_speed(as, spi, xfer); 1317 1318 as->done_status = 0; 1319 as->current_transfer = xfer; 1320 as->current_remaining_bytes = xfer->len; 1321 while (as->current_remaining_bytes) { 1322 reinit_completion(&as->xfer_completion); 1323 1324 if (as->use_pdc) { 1325 atmel_spi_lock(as); 1326 atmel_spi_pdc_next_xfer(master, xfer); 1327 atmel_spi_unlock(as); 1328 } else if (atmel_spi_use_dma(as, xfer)) { 1329 len = as->current_remaining_bytes; 1330 ret = atmel_spi_next_xfer_dma_submit(master, 1331 xfer, &len); 1332 if (ret) { 1333 dev_err(&spi->dev, 1334 "unable to use DMA, fallback to PIO\n"); 1335 as->done_status = ret; 1336 break; 1337 } else { 1338 as->current_remaining_bytes -= len; 1339 if (as->current_remaining_bytes < 0) 1340 as->current_remaining_bytes = 0; 1341 } 1342 } else { 1343 atmel_spi_lock(as); 1344 atmel_spi_next_xfer_pio(master, xfer); 1345 atmel_spi_unlock(as); 1346 } 1347 1348 dma_timeout = wait_for_completion_timeout(&as->xfer_completion, 1349 SPI_DMA_TIMEOUT); 1350 if (WARN_ON(dma_timeout == 0)) { 1351 dev_err(&spi->dev, "spi transfer timeout\n"); 1352 as->done_status = -EIO; 1353 } 1354 1355 if (as->done_status) 1356 break; 1357 } 1358 1359 if (as->done_status) { 1360 if (as->use_pdc) { 1361 dev_warn(master->dev.parent, 1362 "overrun (%u/%u remaining)\n", 1363 spi_readl(as, TCR), spi_readl(as, RCR)); 1364 1365 /* 1366 * Clean up DMA registers and make sure the data 1367 * registers are empty. 1368 */ 1369 spi_writel(as, RNCR, 0); 1370 spi_writel(as, TNCR, 0); 1371 spi_writel(as, RCR, 0); 1372 spi_writel(as, TCR, 0); 1373 for (timeout = 1000; timeout; timeout--) 1374 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) 1375 break; 1376 if (!timeout) 1377 dev_warn(master->dev.parent, 1378 "timeout waiting for TXEMPTY"); 1379 while (spi_readl(as, SR) & SPI_BIT(RDRF)) 1380 spi_readl(as, RDR); 1381 1382 /* Clear any overrun happening while cleaning up */ 1383 spi_readl(as, SR); 1384 1385 } else if (atmel_spi_use_dma(as, xfer)) { 1386 atmel_spi_stop_dma(master); 1387 } 1388 } 1389 1390 if (!master->cur_msg_mapped 1391 && as->use_pdc) 1392 atmel_spi_dma_unmap_xfer(master, xfer); 1393 1394 if (as->use_pdc) 1395 atmel_spi_disable_pdc_transfer(as); 1396 1397 return as->done_status; 1398 } 1399 1400 static void atmel_spi_cleanup(struct spi_device *spi) 1401 { 1402 struct atmel_spi_device *asd = spi->controller_state; 1403 1404 if (!asd) 1405 return; 1406 1407 spi->controller_state = NULL; 1408 kfree(asd); 1409 } 1410 1411 static inline unsigned int atmel_get_version(struct atmel_spi *as) 1412 { 1413 return spi_readl(as, VERSION) & 0x00000fff; 1414 } 1415 1416 static void atmel_get_caps(struct atmel_spi *as) 1417 { 1418 unsigned int version; 1419 1420 version = atmel_get_version(as); 1421 1422 as->caps.is_spi2 = version > 0x121; 1423 as->caps.has_wdrbt = version >= 0x210; 1424 as->caps.has_dma_support = version >= 0x212; 1425 as->caps.has_pdc_support = version < 0x212; 1426 } 1427 1428 static void atmel_spi_init(struct atmel_spi *as) 1429 { 1430 spi_writel(as, CR, SPI_BIT(SWRST)); 1431 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1432 1433 /* It is recommended to enable FIFOs first thing after reset */ 1434 if (as->fifo_size) 1435 spi_writel(as, CR, SPI_BIT(FIFOEN)); 1436 1437 if (as->caps.has_wdrbt) { 1438 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS) 1439 | SPI_BIT(MSTR)); 1440 } else { 1441 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); 1442 } 1443 1444 if (as->use_pdc) 1445 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1446 spi_writel(as, CR, SPI_BIT(SPIEN)); 1447 } 1448 1449 static int atmel_spi_probe(struct platform_device *pdev) 1450 { 1451 struct resource *regs; 1452 int irq; 1453 struct clk *clk; 1454 int ret; 1455 struct spi_master *master; 1456 struct atmel_spi *as; 1457 1458 /* Select default pin state */ 1459 pinctrl_pm_select_default_state(&pdev->dev); 1460 1461 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1462 if (!regs) 1463 return -ENXIO; 1464 1465 irq = platform_get_irq(pdev, 0); 1466 if (irq < 0) 1467 return irq; 1468 1469 clk = devm_clk_get(&pdev->dev, "spi_clk"); 1470 if (IS_ERR(clk)) 1471 return PTR_ERR(clk); 1472 1473 /* setup spi core then atmel-specific driver state */ 1474 master = spi_alloc_master(&pdev->dev, sizeof(*as)); 1475 if (!master) 1476 return -ENOMEM; 1477 1478 /* the spi->mode bits understood by this driver: */ 1479 master->use_gpio_descriptors = true; 1480 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1481 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16); 1482 master->dev.of_node = pdev->dev.of_node; 1483 master->bus_num = pdev->id; 1484 master->num_chipselect = 4; 1485 master->setup = atmel_spi_setup; 1486 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX); 1487 master->transfer_one = atmel_spi_one_transfer; 1488 master->set_cs = atmel_spi_set_cs; 1489 master->cleanup = atmel_spi_cleanup; 1490 master->auto_runtime_pm = true; 1491 master->max_dma_len = SPI_MAX_DMA_XFER; 1492 master->can_dma = atmel_spi_can_dma; 1493 platform_set_drvdata(pdev, master); 1494 1495 as = spi_master_get_devdata(master); 1496 1497 spin_lock_init(&as->lock); 1498 1499 as->pdev = pdev; 1500 as->regs = devm_ioremap_resource(&pdev->dev, regs); 1501 if (IS_ERR(as->regs)) { 1502 ret = PTR_ERR(as->regs); 1503 goto out_unmap_regs; 1504 } 1505 as->phybase = regs->start; 1506 as->irq = irq; 1507 as->clk = clk; 1508 1509 init_completion(&as->xfer_completion); 1510 1511 atmel_get_caps(as); 1512 1513 as->use_dma = false; 1514 as->use_pdc = false; 1515 if (as->caps.has_dma_support) { 1516 ret = atmel_spi_configure_dma(master, as); 1517 if (ret == 0) { 1518 as->use_dma = true; 1519 } else if (ret == -EPROBE_DEFER) { 1520 goto out_unmap_regs; 1521 } 1522 } else if (as->caps.has_pdc_support) { 1523 as->use_pdc = true; 1524 } 1525 1526 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 1527 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev, 1528 SPI_MAX_DMA_XFER, 1529 &as->dma_addr_rx_bbuf, 1530 GFP_KERNEL | GFP_DMA); 1531 if (!as->addr_rx_bbuf) { 1532 as->use_dma = false; 1533 } else { 1534 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev, 1535 SPI_MAX_DMA_XFER, 1536 &as->dma_addr_tx_bbuf, 1537 GFP_KERNEL | GFP_DMA); 1538 if (!as->addr_tx_bbuf) { 1539 as->use_dma = false; 1540 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1541 as->addr_rx_bbuf, 1542 as->dma_addr_rx_bbuf); 1543 } 1544 } 1545 if (!as->use_dma) 1546 dev_info(master->dev.parent, 1547 " can not allocate dma coherent memory\n"); 1548 } 1549 1550 if (as->caps.has_dma_support && !as->use_dma) 1551 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n"); 1552 1553 if (as->use_pdc) { 1554 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt, 1555 0, dev_name(&pdev->dev), master); 1556 } else { 1557 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt, 1558 0, dev_name(&pdev->dev), master); 1559 } 1560 if (ret) 1561 goto out_unmap_regs; 1562 1563 /* Initialize the hardware */ 1564 ret = clk_prepare_enable(clk); 1565 if (ret) 1566 goto out_free_irq; 1567 1568 as->spi_clk = clk_get_rate(clk); 1569 1570 as->fifo_size = 0; 1571 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size", 1572 &as->fifo_size)) { 1573 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size); 1574 } 1575 1576 atmel_spi_init(as); 1577 1578 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT); 1579 pm_runtime_use_autosuspend(&pdev->dev); 1580 pm_runtime_set_active(&pdev->dev); 1581 pm_runtime_enable(&pdev->dev); 1582 1583 ret = devm_spi_register_master(&pdev->dev, master); 1584 if (ret) 1585 goto out_free_dma; 1586 1587 /* go! */ 1588 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n", 1589 atmel_get_version(as), (unsigned long)regs->start, 1590 irq); 1591 1592 return 0; 1593 1594 out_free_dma: 1595 pm_runtime_disable(&pdev->dev); 1596 pm_runtime_set_suspended(&pdev->dev); 1597 1598 if (as->use_dma) 1599 atmel_spi_release_dma(master); 1600 1601 spi_writel(as, CR, SPI_BIT(SWRST)); 1602 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1603 clk_disable_unprepare(clk); 1604 out_free_irq: 1605 out_unmap_regs: 1606 spi_master_put(master); 1607 return ret; 1608 } 1609 1610 static int atmel_spi_remove(struct platform_device *pdev) 1611 { 1612 struct spi_master *master = platform_get_drvdata(pdev); 1613 struct atmel_spi *as = spi_master_get_devdata(master); 1614 1615 pm_runtime_get_sync(&pdev->dev); 1616 1617 /* reset the hardware and block queue progress */ 1618 if (as->use_dma) { 1619 atmel_spi_stop_dma(master); 1620 atmel_spi_release_dma(master); 1621 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 1622 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1623 as->addr_tx_bbuf, 1624 as->dma_addr_tx_bbuf); 1625 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1626 as->addr_rx_bbuf, 1627 as->dma_addr_rx_bbuf); 1628 } 1629 } 1630 1631 spin_lock_irq(&as->lock); 1632 spi_writel(as, CR, SPI_BIT(SWRST)); 1633 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1634 spi_readl(as, SR); 1635 spin_unlock_irq(&as->lock); 1636 1637 clk_disable_unprepare(as->clk); 1638 1639 pm_runtime_put_noidle(&pdev->dev); 1640 pm_runtime_disable(&pdev->dev); 1641 1642 return 0; 1643 } 1644 1645 #ifdef CONFIG_PM 1646 static int atmel_spi_runtime_suspend(struct device *dev) 1647 { 1648 struct spi_master *master = dev_get_drvdata(dev); 1649 struct atmel_spi *as = spi_master_get_devdata(master); 1650 1651 clk_disable_unprepare(as->clk); 1652 pinctrl_pm_select_sleep_state(dev); 1653 1654 return 0; 1655 } 1656 1657 static int atmel_spi_runtime_resume(struct device *dev) 1658 { 1659 struct spi_master *master = dev_get_drvdata(dev); 1660 struct atmel_spi *as = spi_master_get_devdata(master); 1661 1662 pinctrl_pm_select_default_state(dev); 1663 1664 return clk_prepare_enable(as->clk); 1665 } 1666 1667 #ifdef CONFIG_PM_SLEEP 1668 static int atmel_spi_suspend(struct device *dev) 1669 { 1670 struct spi_master *master = dev_get_drvdata(dev); 1671 int ret; 1672 1673 /* Stop the queue running */ 1674 ret = spi_master_suspend(master); 1675 if (ret) 1676 return ret; 1677 1678 if (!pm_runtime_suspended(dev)) 1679 atmel_spi_runtime_suspend(dev); 1680 1681 return 0; 1682 } 1683 1684 static int atmel_spi_resume(struct device *dev) 1685 { 1686 struct spi_master *master = dev_get_drvdata(dev); 1687 struct atmel_spi *as = spi_master_get_devdata(master); 1688 int ret; 1689 1690 ret = clk_prepare_enable(as->clk); 1691 if (ret) 1692 return ret; 1693 1694 atmel_spi_init(as); 1695 1696 clk_disable_unprepare(as->clk); 1697 1698 if (!pm_runtime_suspended(dev)) { 1699 ret = atmel_spi_runtime_resume(dev); 1700 if (ret) 1701 return ret; 1702 } 1703 1704 /* Start the queue running */ 1705 return spi_master_resume(master); 1706 } 1707 #endif 1708 1709 static const struct dev_pm_ops atmel_spi_pm_ops = { 1710 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume) 1711 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend, 1712 atmel_spi_runtime_resume, NULL) 1713 }; 1714 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops) 1715 #else 1716 #define ATMEL_SPI_PM_OPS NULL 1717 #endif 1718 1719 static const struct of_device_id atmel_spi_dt_ids[] = { 1720 { .compatible = "atmel,at91rm9200-spi" }, 1721 { /* sentinel */ } 1722 }; 1723 1724 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids); 1725 1726 static struct platform_driver atmel_spi_driver = { 1727 .driver = { 1728 .name = "atmel_spi", 1729 .pm = ATMEL_SPI_PM_OPS, 1730 .of_match_table = atmel_spi_dt_ids, 1731 }, 1732 .probe = atmel_spi_probe, 1733 .remove = atmel_spi_remove, 1734 }; 1735 module_platform_driver(atmel_spi_driver); 1736 1737 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); 1738 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 1739 MODULE_LICENSE("GPL"); 1740 MODULE_ALIAS("platform:atmel_spi"); 1741