xref: /openbmc/linux/drivers/spi/spi-atmel.c (revision 9d749629)
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/atmel.h>
23 #include <linux/of.h>
24 
25 #include <asm/io.h>
26 #include <asm/gpio.h>
27 #include <mach/cpu.h>
28 
29 /* SPI register offsets */
30 #define SPI_CR					0x0000
31 #define SPI_MR					0x0004
32 #define SPI_RDR					0x0008
33 #define SPI_TDR					0x000c
34 #define SPI_SR					0x0010
35 #define SPI_IER					0x0014
36 #define SPI_IDR					0x0018
37 #define SPI_IMR					0x001c
38 #define SPI_CSR0				0x0030
39 #define SPI_CSR1				0x0034
40 #define SPI_CSR2				0x0038
41 #define SPI_CSR3				0x003c
42 #define SPI_RPR					0x0100
43 #define SPI_RCR					0x0104
44 #define SPI_TPR					0x0108
45 #define SPI_TCR					0x010c
46 #define SPI_RNPR				0x0110
47 #define SPI_RNCR				0x0114
48 #define SPI_TNPR				0x0118
49 #define SPI_TNCR				0x011c
50 #define SPI_PTCR				0x0120
51 #define SPI_PTSR				0x0124
52 
53 /* Bitfields in CR */
54 #define SPI_SPIEN_OFFSET			0
55 #define SPI_SPIEN_SIZE				1
56 #define SPI_SPIDIS_OFFSET			1
57 #define SPI_SPIDIS_SIZE				1
58 #define SPI_SWRST_OFFSET			7
59 #define SPI_SWRST_SIZE				1
60 #define SPI_LASTXFER_OFFSET			24
61 #define SPI_LASTXFER_SIZE			1
62 
63 /* Bitfields in MR */
64 #define SPI_MSTR_OFFSET				0
65 #define SPI_MSTR_SIZE				1
66 #define SPI_PS_OFFSET				1
67 #define SPI_PS_SIZE				1
68 #define SPI_PCSDEC_OFFSET			2
69 #define SPI_PCSDEC_SIZE				1
70 #define SPI_FDIV_OFFSET				3
71 #define SPI_FDIV_SIZE				1
72 #define SPI_MODFDIS_OFFSET			4
73 #define SPI_MODFDIS_SIZE			1
74 #define SPI_LLB_OFFSET				7
75 #define SPI_LLB_SIZE				1
76 #define SPI_PCS_OFFSET				16
77 #define SPI_PCS_SIZE				4
78 #define SPI_DLYBCS_OFFSET			24
79 #define SPI_DLYBCS_SIZE				8
80 
81 /* Bitfields in RDR */
82 #define SPI_RD_OFFSET				0
83 #define SPI_RD_SIZE				16
84 
85 /* Bitfields in TDR */
86 #define SPI_TD_OFFSET				0
87 #define SPI_TD_SIZE				16
88 
89 /* Bitfields in SR */
90 #define SPI_RDRF_OFFSET				0
91 #define SPI_RDRF_SIZE				1
92 #define SPI_TDRE_OFFSET				1
93 #define SPI_TDRE_SIZE				1
94 #define SPI_MODF_OFFSET				2
95 #define SPI_MODF_SIZE				1
96 #define SPI_OVRES_OFFSET			3
97 #define SPI_OVRES_SIZE				1
98 #define SPI_ENDRX_OFFSET			4
99 #define SPI_ENDRX_SIZE				1
100 #define SPI_ENDTX_OFFSET			5
101 #define SPI_ENDTX_SIZE				1
102 #define SPI_RXBUFF_OFFSET			6
103 #define SPI_RXBUFF_SIZE				1
104 #define SPI_TXBUFE_OFFSET			7
105 #define SPI_TXBUFE_SIZE				1
106 #define SPI_NSSR_OFFSET				8
107 #define SPI_NSSR_SIZE				1
108 #define SPI_TXEMPTY_OFFSET			9
109 #define SPI_TXEMPTY_SIZE			1
110 #define SPI_SPIENS_OFFSET			16
111 #define SPI_SPIENS_SIZE				1
112 
113 /* Bitfields in CSR0 */
114 #define SPI_CPOL_OFFSET				0
115 #define SPI_CPOL_SIZE				1
116 #define SPI_NCPHA_OFFSET			1
117 #define SPI_NCPHA_SIZE				1
118 #define SPI_CSAAT_OFFSET			3
119 #define SPI_CSAAT_SIZE				1
120 #define SPI_BITS_OFFSET				4
121 #define SPI_BITS_SIZE				4
122 #define SPI_SCBR_OFFSET				8
123 #define SPI_SCBR_SIZE				8
124 #define SPI_DLYBS_OFFSET			16
125 #define SPI_DLYBS_SIZE				8
126 #define SPI_DLYBCT_OFFSET			24
127 #define SPI_DLYBCT_SIZE				8
128 
129 /* Bitfields in RCR */
130 #define SPI_RXCTR_OFFSET			0
131 #define SPI_RXCTR_SIZE				16
132 
133 /* Bitfields in TCR */
134 #define SPI_TXCTR_OFFSET			0
135 #define SPI_TXCTR_SIZE				16
136 
137 /* Bitfields in RNCR */
138 #define SPI_RXNCR_OFFSET			0
139 #define SPI_RXNCR_SIZE				16
140 
141 /* Bitfields in TNCR */
142 #define SPI_TXNCR_OFFSET			0
143 #define SPI_TXNCR_SIZE				16
144 
145 /* Bitfields in PTCR */
146 #define SPI_RXTEN_OFFSET			0
147 #define SPI_RXTEN_SIZE				1
148 #define SPI_RXTDIS_OFFSET			1
149 #define SPI_RXTDIS_SIZE				1
150 #define SPI_TXTEN_OFFSET			8
151 #define SPI_TXTEN_SIZE				1
152 #define SPI_TXTDIS_OFFSET			9
153 #define SPI_TXTDIS_SIZE				1
154 
155 /* Constants for BITS */
156 #define SPI_BITS_8_BPT				0
157 #define SPI_BITS_9_BPT				1
158 #define SPI_BITS_10_BPT				2
159 #define SPI_BITS_11_BPT				3
160 #define SPI_BITS_12_BPT				4
161 #define SPI_BITS_13_BPT				5
162 #define SPI_BITS_14_BPT				6
163 #define SPI_BITS_15_BPT				7
164 #define SPI_BITS_16_BPT				8
165 
166 /* Bit manipulation macros */
167 #define SPI_BIT(name) \
168 	(1 << SPI_##name##_OFFSET)
169 #define SPI_BF(name,value) \
170 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
171 #define SPI_BFEXT(name,value) \
172 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
173 #define SPI_BFINS(name,value,old) \
174 	( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
175 	  | SPI_BF(name,value))
176 
177 /* Register access macros */
178 #define spi_readl(port,reg) \
179 	__raw_readl((port)->regs + SPI_##reg)
180 #define spi_writel(port,reg,value) \
181 	__raw_writel((value), (port)->regs + SPI_##reg)
182 
183 
184 /*
185  * The core SPI transfer engine just talks to a register bank to set up
186  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
187  * framework provides the base clock, subdivided for each spi_device.
188  */
189 struct atmel_spi {
190 	spinlock_t		lock;
191 
192 	void __iomem		*regs;
193 	int			irq;
194 	struct clk		*clk;
195 	struct platform_device	*pdev;
196 	struct spi_device	*stay;
197 
198 	u8			stopping;
199 	struct list_head	queue;
200 	struct spi_transfer	*current_transfer;
201 	unsigned long		current_remaining_bytes;
202 	struct spi_transfer	*next_transfer;
203 	unsigned long		next_remaining_bytes;
204 
205 	void			*buffer;
206 	dma_addr_t		buffer_dma;
207 };
208 
209 /* Controller-specific per-slave state */
210 struct atmel_spi_device {
211 	unsigned int		npcs_pin;
212 	u32			csr;
213 };
214 
215 #define BUFFER_SIZE		PAGE_SIZE
216 #define INVALID_DMA_ADDRESS	0xffffffff
217 
218 /*
219  * Version 2 of the SPI controller has
220  *  - CR.LASTXFER
221  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
222  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
223  *  - SPI_CSRx.CSAAT
224  *  - SPI_CSRx.SBCR allows faster clocking
225  *
226  * We can determine the controller version by reading the VERSION
227  * register, but I haven't checked that it exists on all chips, and
228  * this is cheaper anyway.
229  */
230 static bool atmel_spi_is_v2(void)
231 {
232 	return !cpu_is_at91rm9200();
233 }
234 
235 /*
236  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
237  * they assume that spi slave device state will not change on deselect, so
238  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
239  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
240  * controllers have CSAAT and friends.
241  *
242  * Since the CSAAT functionality is a bit weird on newer controllers as
243  * well, we use GPIO to control nCSx pins on all controllers, updating
244  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
245  * support active-high chipselects despite the controller's belief that
246  * only active-low devices/systems exists.
247  *
248  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
249  * right when driven with GPIO.  ("Mode Fault does not allow more than one
250  * Master on Chip Select 0.")  No workaround exists for that ... so for
251  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
252  * and (c) will trigger that first erratum in some cases.
253  *
254  * TODO: Test if the atmel_spi_is_v2() branch below works on
255  * AT91RM9200 if we use some other register than CSR0. However, don't
256  * do this unconditionally since AP7000 has an errata where the BITS
257  * field in CSR0 overrides all other CSRs.
258  */
259 
260 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
261 {
262 	struct atmel_spi_device *asd = spi->controller_state;
263 	unsigned active = spi->mode & SPI_CS_HIGH;
264 	u32 mr;
265 
266 	if (atmel_spi_is_v2()) {
267 		/*
268 		 * Always use CSR0. This ensures that the clock
269 		 * switches to the correct idle polarity before we
270 		 * toggle the CS.
271 		 */
272 		spi_writel(as, CSR0, asd->csr);
273 		spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
274 				| SPI_BIT(MSTR));
275 		mr = spi_readl(as, MR);
276 		gpio_set_value(asd->npcs_pin, active);
277 	} else {
278 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
279 		int i;
280 		u32 csr;
281 
282 		/* Make sure clock polarity is correct */
283 		for (i = 0; i < spi->master->num_chipselect; i++) {
284 			csr = spi_readl(as, CSR0 + 4 * i);
285 			if ((csr ^ cpol) & SPI_BIT(CPOL))
286 				spi_writel(as, CSR0 + 4 * i,
287 						csr ^ SPI_BIT(CPOL));
288 		}
289 
290 		mr = spi_readl(as, MR);
291 		mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
292 		if (spi->chip_select != 0)
293 			gpio_set_value(asd->npcs_pin, active);
294 		spi_writel(as, MR, mr);
295 	}
296 
297 	dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
298 			asd->npcs_pin, active ? " (high)" : "",
299 			mr);
300 }
301 
302 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
303 {
304 	struct atmel_spi_device *asd = spi->controller_state;
305 	unsigned active = spi->mode & SPI_CS_HIGH;
306 	u32 mr;
307 
308 	/* only deactivate *this* device; sometimes transfers to
309 	 * another device may be active when this routine is called.
310 	 */
311 	mr = spi_readl(as, MR);
312 	if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
313 		mr = SPI_BFINS(PCS, 0xf, mr);
314 		spi_writel(as, MR, mr);
315 	}
316 
317 	dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
318 			asd->npcs_pin, active ? " (low)" : "",
319 			mr);
320 
321 	if (atmel_spi_is_v2() || spi->chip_select != 0)
322 		gpio_set_value(asd->npcs_pin, !active);
323 }
324 
325 static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
326 					struct spi_transfer *xfer)
327 {
328 	return msg->transfers.prev == &xfer->transfer_list;
329 }
330 
331 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
332 {
333 	return xfer->delay_usecs == 0 && !xfer->cs_change;
334 }
335 
336 static void atmel_spi_next_xfer_data(struct spi_master *master,
337 				struct spi_transfer *xfer,
338 				dma_addr_t *tx_dma,
339 				dma_addr_t *rx_dma,
340 				u32 *plen)
341 {
342 	struct atmel_spi	*as = spi_master_get_devdata(master);
343 	u32			len = *plen;
344 
345 	/* use scratch buffer only when rx or tx data is unspecified */
346 	if (xfer->rx_buf)
347 		*rx_dma = xfer->rx_dma + xfer->len - *plen;
348 	else {
349 		*rx_dma = as->buffer_dma;
350 		if (len > BUFFER_SIZE)
351 			len = BUFFER_SIZE;
352 	}
353 	if (xfer->tx_buf)
354 		*tx_dma = xfer->tx_dma + xfer->len - *plen;
355 	else {
356 		*tx_dma = as->buffer_dma;
357 		if (len > BUFFER_SIZE)
358 			len = BUFFER_SIZE;
359 		memset(as->buffer, 0, len);
360 		dma_sync_single_for_device(&as->pdev->dev,
361 				as->buffer_dma, len, DMA_TO_DEVICE);
362 	}
363 
364 	*plen = len;
365 }
366 
367 /*
368  * Submit next transfer for DMA.
369  * lock is held, spi irq is blocked
370  */
371 static void atmel_spi_next_xfer(struct spi_master *master,
372 				struct spi_message *msg)
373 {
374 	struct atmel_spi	*as = spi_master_get_devdata(master);
375 	struct spi_transfer	*xfer;
376 	u32			len, remaining;
377 	u32			ieval;
378 	dma_addr_t		tx_dma, rx_dma;
379 
380 	if (!as->current_transfer)
381 		xfer = list_entry(msg->transfers.next,
382 				struct spi_transfer, transfer_list);
383 	else if (!as->next_transfer)
384 		xfer = list_entry(as->current_transfer->transfer_list.next,
385 				struct spi_transfer, transfer_list);
386 	else
387 		xfer = NULL;
388 
389 	if (xfer) {
390 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
391 
392 		len = xfer->len;
393 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
394 		remaining = xfer->len - len;
395 
396 		spi_writel(as, RPR, rx_dma);
397 		spi_writel(as, TPR, tx_dma);
398 
399 		if (msg->spi->bits_per_word > 8)
400 			len >>= 1;
401 		spi_writel(as, RCR, len);
402 		spi_writel(as, TCR, len);
403 
404 		dev_dbg(&msg->spi->dev,
405 			"  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
406 			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
407 			xfer->rx_buf, xfer->rx_dma);
408 	} else {
409 		xfer = as->next_transfer;
410 		remaining = as->next_remaining_bytes;
411 	}
412 
413 	as->current_transfer = xfer;
414 	as->current_remaining_bytes = remaining;
415 
416 	if (remaining > 0)
417 		len = remaining;
418 	else if (!atmel_spi_xfer_is_last(msg, xfer)
419 			&& atmel_spi_xfer_can_be_chained(xfer)) {
420 		xfer = list_entry(xfer->transfer_list.next,
421 				struct spi_transfer, transfer_list);
422 		len = xfer->len;
423 	} else
424 		xfer = NULL;
425 
426 	as->next_transfer = xfer;
427 
428 	if (xfer) {
429 		u32	total;
430 
431 		total = len;
432 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
433 		as->next_remaining_bytes = total - len;
434 
435 		spi_writel(as, RNPR, rx_dma);
436 		spi_writel(as, TNPR, tx_dma);
437 
438 		if (msg->spi->bits_per_word > 8)
439 			len >>= 1;
440 		spi_writel(as, RNCR, len);
441 		spi_writel(as, TNCR, len);
442 
443 		dev_dbg(&msg->spi->dev,
444 			"  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
445 			xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
446 			xfer->rx_buf, xfer->rx_dma);
447 		ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
448 	} else {
449 		spi_writel(as, RNCR, 0);
450 		spi_writel(as, TNCR, 0);
451 		ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
452 	}
453 
454 	/* REVISIT: We're waiting for ENDRX before we start the next
455 	 * transfer because we need to handle some difficult timing
456 	 * issues otherwise. If we wait for ENDTX in one transfer and
457 	 * then starts waiting for ENDRX in the next, it's difficult
458 	 * to tell the difference between the ENDRX interrupt we're
459 	 * actually waiting for and the ENDRX interrupt of the
460 	 * previous transfer.
461 	 *
462 	 * It should be doable, though. Just not now...
463 	 */
464 	spi_writel(as, IER, ieval);
465 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
466 }
467 
468 static void atmel_spi_next_message(struct spi_master *master)
469 {
470 	struct atmel_spi	*as = spi_master_get_devdata(master);
471 	struct spi_message	*msg;
472 	struct spi_device	*spi;
473 
474 	BUG_ON(as->current_transfer);
475 
476 	msg = list_entry(as->queue.next, struct spi_message, queue);
477 	spi = msg->spi;
478 
479 	dev_dbg(master->dev.parent, "start message %p for %s\n",
480 			msg, dev_name(&spi->dev));
481 
482 	/* select chip if it's not still active */
483 	if (as->stay) {
484 		if (as->stay != spi) {
485 			cs_deactivate(as, as->stay);
486 			cs_activate(as, spi);
487 		}
488 		as->stay = NULL;
489 	} else
490 		cs_activate(as, spi);
491 
492 	atmel_spi_next_xfer(master, msg);
493 }
494 
495 /*
496  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
497  *  - The buffer is either valid for CPU access, else NULL
498  *  - If the buffer is valid, so is its DMA address
499  *
500  * This driver manages the dma address unless message->is_dma_mapped.
501  */
502 static int
503 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
504 {
505 	struct device	*dev = &as->pdev->dev;
506 
507 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
508 	if (xfer->tx_buf) {
509 		/* tx_buf is a const void* where we need a void * for the dma
510 		 * mapping */
511 		void *nonconst_tx = (void *)xfer->tx_buf;
512 
513 		xfer->tx_dma = dma_map_single(dev,
514 				nonconst_tx, xfer->len,
515 				DMA_TO_DEVICE);
516 		if (dma_mapping_error(dev, xfer->tx_dma))
517 			return -ENOMEM;
518 	}
519 	if (xfer->rx_buf) {
520 		xfer->rx_dma = dma_map_single(dev,
521 				xfer->rx_buf, xfer->len,
522 				DMA_FROM_DEVICE);
523 		if (dma_mapping_error(dev, xfer->rx_dma)) {
524 			if (xfer->tx_buf)
525 				dma_unmap_single(dev,
526 						xfer->tx_dma, xfer->len,
527 						DMA_TO_DEVICE);
528 			return -ENOMEM;
529 		}
530 	}
531 	return 0;
532 }
533 
534 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
535 				     struct spi_transfer *xfer)
536 {
537 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
538 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
539 				 xfer->len, DMA_TO_DEVICE);
540 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
541 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
542 				 xfer->len, DMA_FROM_DEVICE);
543 }
544 
545 static void
546 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
547 		struct spi_message *msg, int status, int stay)
548 {
549 	if (!stay || status < 0)
550 		cs_deactivate(as, msg->spi);
551 	else
552 		as->stay = msg->spi;
553 
554 	list_del(&msg->queue);
555 	msg->status = status;
556 
557 	dev_dbg(master->dev.parent,
558 		"xfer complete: %u bytes transferred\n",
559 		msg->actual_length);
560 
561 	spin_unlock(&as->lock);
562 	msg->complete(msg->context);
563 	spin_lock(&as->lock);
564 
565 	as->current_transfer = NULL;
566 	as->next_transfer = NULL;
567 
568 	/* continue if needed */
569 	if (list_empty(&as->queue) || as->stopping)
570 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
571 	else
572 		atmel_spi_next_message(master);
573 }
574 
575 static irqreturn_t
576 atmel_spi_interrupt(int irq, void *dev_id)
577 {
578 	struct spi_master	*master = dev_id;
579 	struct atmel_spi	*as = spi_master_get_devdata(master);
580 	struct spi_message	*msg;
581 	struct spi_transfer	*xfer;
582 	u32			status, pending, imr;
583 	int			ret = IRQ_NONE;
584 
585 	spin_lock(&as->lock);
586 
587 	xfer = as->current_transfer;
588 	msg = list_entry(as->queue.next, struct spi_message, queue);
589 
590 	imr = spi_readl(as, IMR);
591 	status = spi_readl(as, SR);
592 	pending = status & imr;
593 
594 	if (pending & SPI_BIT(OVRES)) {
595 		int timeout;
596 
597 		ret = IRQ_HANDLED;
598 
599 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
600 				     | SPI_BIT(OVRES)));
601 
602 		/*
603 		 * When we get an overrun, we disregard the current
604 		 * transfer. Data will not be copied back from any
605 		 * bounce buffer and msg->actual_len will not be
606 		 * updated with the last xfer.
607 		 *
608 		 * We will also not process any remaning transfers in
609 		 * the message.
610 		 *
611 		 * First, stop the transfer and unmap the DMA buffers.
612 		 */
613 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
614 		if (!msg->is_dma_mapped)
615 			atmel_spi_dma_unmap_xfer(master, xfer);
616 
617 		/* REVISIT: udelay in irq is unfriendly */
618 		if (xfer->delay_usecs)
619 			udelay(xfer->delay_usecs);
620 
621 		dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
622 			 spi_readl(as, TCR), spi_readl(as, RCR));
623 
624 		/*
625 		 * Clean up DMA registers and make sure the data
626 		 * registers are empty.
627 		 */
628 		spi_writel(as, RNCR, 0);
629 		spi_writel(as, TNCR, 0);
630 		spi_writel(as, RCR, 0);
631 		spi_writel(as, TCR, 0);
632 		for (timeout = 1000; timeout; timeout--)
633 			if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
634 				break;
635 		if (!timeout)
636 			dev_warn(master->dev.parent,
637 				 "timeout waiting for TXEMPTY");
638 		while (spi_readl(as, SR) & SPI_BIT(RDRF))
639 			spi_readl(as, RDR);
640 
641 		/* Clear any overrun happening while cleaning up */
642 		spi_readl(as, SR);
643 
644 		atmel_spi_msg_done(master, as, msg, -EIO, 0);
645 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
646 		ret = IRQ_HANDLED;
647 
648 		spi_writel(as, IDR, pending);
649 
650 		if (as->current_remaining_bytes == 0) {
651 			msg->actual_length += xfer->len;
652 
653 			if (!msg->is_dma_mapped)
654 				atmel_spi_dma_unmap_xfer(master, xfer);
655 
656 			/* REVISIT: udelay in irq is unfriendly */
657 			if (xfer->delay_usecs)
658 				udelay(xfer->delay_usecs);
659 
660 			if (atmel_spi_xfer_is_last(msg, xfer)) {
661 				/* report completed message */
662 				atmel_spi_msg_done(master, as, msg, 0,
663 						xfer->cs_change);
664 			} else {
665 				if (xfer->cs_change) {
666 					cs_deactivate(as, msg->spi);
667 					udelay(1);
668 					cs_activate(as, msg->spi);
669 				}
670 
671 				/*
672 				 * Not done yet. Submit the next transfer.
673 				 *
674 				 * FIXME handle protocol options for xfer
675 				 */
676 				atmel_spi_next_xfer(master, msg);
677 			}
678 		} else {
679 			/*
680 			 * Keep going, we still have data to send in
681 			 * the current transfer.
682 			 */
683 			atmel_spi_next_xfer(master, msg);
684 		}
685 	}
686 
687 	spin_unlock(&as->lock);
688 
689 	return ret;
690 }
691 
692 static int atmel_spi_setup(struct spi_device *spi)
693 {
694 	struct atmel_spi	*as;
695 	struct atmel_spi_device	*asd;
696 	u32			scbr, csr;
697 	unsigned int		bits = spi->bits_per_word;
698 	unsigned long		bus_hz;
699 	unsigned int		npcs_pin;
700 	int			ret;
701 
702 	as = spi_master_get_devdata(spi->master);
703 
704 	if (as->stopping)
705 		return -ESHUTDOWN;
706 
707 	if (spi->chip_select > spi->master->num_chipselect) {
708 		dev_dbg(&spi->dev,
709 				"setup: invalid chipselect %u (%u defined)\n",
710 				spi->chip_select, spi->master->num_chipselect);
711 		return -EINVAL;
712 	}
713 
714 	if (bits < 8 || bits > 16) {
715 		dev_dbg(&spi->dev,
716 				"setup: invalid bits_per_word %u (8 to 16)\n",
717 				bits);
718 		return -EINVAL;
719 	}
720 
721 	/* see notes above re chipselect */
722 	if (!atmel_spi_is_v2()
723 			&& spi->chip_select == 0
724 			&& (spi->mode & SPI_CS_HIGH)) {
725 		dev_dbg(&spi->dev, "setup: can't be active-high\n");
726 		return -EINVAL;
727 	}
728 
729 	/* v1 chips start out at half the peripheral bus speed. */
730 	bus_hz = clk_get_rate(as->clk);
731 	if (!atmel_spi_is_v2())
732 		bus_hz /= 2;
733 
734 	if (spi->max_speed_hz) {
735 		/*
736 		 * Calculate the lowest divider that satisfies the
737 		 * constraint, assuming div32/fdiv/mbz == 0.
738 		 */
739 		scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
740 
741 		/*
742 		 * If the resulting divider doesn't fit into the
743 		 * register bitfield, we can't satisfy the constraint.
744 		 */
745 		if (scbr >= (1 << SPI_SCBR_SIZE)) {
746 			dev_dbg(&spi->dev,
747 				"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
748 				spi->max_speed_hz, scbr, bus_hz/255);
749 			return -EINVAL;
750 		}
751 	} else
752 		/* speed zero means "as slow as possible" */
753 		scbr = 0xff;
754 
755 	csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
756 	if (spi->mode & SPI_CPOL)
757 		csr |= SPI_BIT(CPOL);
758 	if (!(spi->mode & SPI_CPHA))
759 		csr |= SPI_BIT(NCPHA);
760 
761 	/* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
762 	 *
763 	 * DLYBCT would add delays between words, slowing down transfers.
764 	 * It could potentially be useful to cope with DMA bottlenecks, but
765 	 * in those cases it's probably best to just use a lower bitrate.
766 	 */
767 	csr |= SPI_BF(DLYBS, 0);
768 	csr |= SPI_BF(DLYBCT, 0);
769 
770 	/* chipselect must have been muxed as GPIO (e.g. in board setup) */
771 	npcs_pin = (unsigned int)spi->controller_data;
772 
773 	if (gpio_is_valid(spi->cs_gpio))
774 		npcs_pin = spi->cs_gpio;
775 
776 	asd = spi->controller_state;
777 	if (!asd) {
778 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
779 		if (!asd)
780 			return -ENOMEM;
781 
782 		ret = gpio_request(npcs_pin, dev_name(&spi->dev));
783 		if (ret) {
784 			kfree(asd);
785 			return ret;
786 		}
787 
788 		asd->npcs_pin = npcs_pin;
789 		spi->controller_state = asd;
790 		gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
791 	} else {
792 		unsigned long		flags;
793 
794 		spin_lock_irqsave(&as->lock, flags);
795 		if (as->stay == spi)
796 			as->stay = NULL;
797 		cs_deactivate(as, spi);
798 		spin_unlock_irqrestore(&as->lock, flags);
799 	}
800 
801 	asd->csr = csr;
802 
803 	dev_dbg(&spi->dev,
804 		"setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
805 		bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
806 
807 	if (!atmel_spi_is_v2())
808 		spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
809 
810 	return 0;
811 }
812 
813 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
814 {
815 	struct atmel_spi	*as;
816 	struct spi_transfer	*xfer;
817 	unsigned long		flags;
818 	struct device		*controller = spi->master->dev.parent;
819 	u8			bits;
820 	struct atmel_spi_device	*asd;
821 
822 	as = spi_master_get_devdata(spi->master);
823 
824 	dev_dbg(controller, "new message %p submitted for %s\n",
825 			msg, dev_name(&spi->dev));
826 
827 	if (unlikely(list_empty(&msg->transfers)))
828 		return -EINVAL;
829 
830 	if (as->stopping)
831 		return -ESHUTDOWN;
832 
833 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
834 		if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
835 			dev_dbg(&spi->dev, "missing rx or tx buf\n");
836 			return -EINVAL;
837 		}
838 
839 		if (xfer->bits_per_word) {
840 			asd = spi->controller_state;
841 			bits = (asd->csr >> 4) & 0xf;
842 			if (bits != xfer->bits_per_word - 8) {
843 				dev_dbg(&spi->dev, "you can't yet change "
844 					 "bits_per_word in transfers\n");
845 				return -ENOPROTOOPT;
846 			}
847 		}
848 
849 		/* FIXME implement these protocol options!! */
850 		if (xfer->speed_hz) {
851 			dev_dbg(&spi->dev, "no protocol options yet\n");
852 			return -ENOPROTOOPT;
853 		}
854 
855 		/*
856 		 * DMA map early, for performance (empties dcache ASAP) and
857 		 * better fault reporting.  This is a DMA-only driver.
858 		 *
859 		 * NOTE that if dma_unmap_single() ever starts to do work on
860 		 * platforms supported by this driver, we would need to clean
861 		 * up mappings for previously-mapped transfers.
862 		 */
863 		if (!msg->is_dma_mapped) {
864 			if (atmel_spi_dma_map_xfer(as, xfer) < 0)
865 				return -ENOMEM;
866 		}
867 	}
868 
869 #ifdef VERBOSE
870 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
871 		dev_dbg(controller,
872 			"  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
873 			xfer, xfer->len,
874 			xfer->tx_buf, xfer->tx_dma,
875 			xfer->rx_buf, xfer->rx_dma);
876 	}
877 #endif
878 
879 	msg->status = -EINPROGRESS;
880 	msg->actual_length = 0;
881 
882 	spin_lock_irqsave(&as->lock, flags);
883 	list_add_tail(&msg->queue, &as->queue);
884 	if (!as->current_transfer)
885 		atmel_spi_next_message(spi->master);
886 	spin_unlock_irqrestore(&as->lock, flags);
887 
888 	return 0;
889 }
890 
891 static void atmel_spi_cleanup(struct spi_device *spi)
892 {
893 	struct atmel_spi	*as = spi_master_get_devdata(spi->master);
894 	struct atmel_spi_device	*asd = spi->controller_state;
895 	unsigned		gpio = (unsigned) spi->controller_data;
896 	unsigned long		flags;
897 
898 	if (!asd)
899 		return;
900 
901 	spin_lock_irqsave(&as->lock, flags);
902 	if (as->stay == spi) {
903 		as->stay = NULL;
904 		cs_deactivate(as, spi);
905 	}
906 	spin_unlock_irqrestore(&as->lock, flags);
907 
908 	spi->controller_state = NULL;
909 	gpio_free(gpio);
910 	kfree(asd);
911 }
912 
913 /*-------------------------------------------------------------------------*/
914 
915 static int atmel_spi_probe(struct platform_device *pdev)
916 {
917 	struct resource		*regs;
918 	int			irq;
919 	struct clk		*clk;
920 	int			ret;
921 	struct spi_master	*master;
922 	struct atmel_spi	*as;
923 
924 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
925 	if (!regs)
926 		return -ENXIO;
927 
928 	irq = platform_get_irq(pdev, 0);
929 	if (irq < 0)
930 		return irq;
931 
932 	clk = clk_get(&pdev->dev, "spi_clk");
933 	if (IS_ERR(clk))
934 		return PTR_ERR(clk);
935 
936 	/* setup spi core then atmel-specific driver state */
937 	ret = -ENOMEM;
938 	master = spi_alloc_master(&pdev->dev, sizeof *as);
939 	if (!master)
940 		goto out_free;
941 
942 	/* the spi->mode bits understood by this driver: */
943 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
944 
945 	master->dev.of_node = pdev->dev.of_node;
946 	master->bus_num = pdev->id;
947 	master->num_chipselect = master->dev.of_node ? 0 : 4;
948 	master->setup = atmel_spi_setup;
949 	master->transfer = atmel_spi_transfer;
950 	master->cleanup = atmel_spi_cleanup;
951 	platform_set_drvdata(pdev, master);
952 
953 	as = spi_master_get_devdata(master);
954 
955 	/*
956 	 * Scratch buffer is used for throwaway rx and tx data.
957 	 * It's coherent to minimize dcache pollution.
958 	 */
959 	as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
960 					&as->buffer_dma, GFP_KERNEL);
961 	if (!as->buffer)
962 		goto out_free;
963 
964 	spin_lock_init(&as->lock);
965 	INIT_LIST_HEAD(&as->queue);
966 	as->pdev = pdev;
967 	as->regs = ioremap(regs->start, resource_size(regs));
968 	if (!as->regs)
969 		goto out_free_buffer;
970 	as->irq = irq;
971 	as->clk = clk;
972 
973 	ret = request_irq(irq, atmel_spi_interrupt, 0,
974 			dev_name(&pdev->dev), master);
975 	if (ret)
976 		goto out_unmap_regs;
977 
978 	/* Initialize the hardware */
979 	clk_enable(clk);
980 	spi_writel(as, CR, SPI_BIT(SWRST));
981 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
982 	spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
983 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
984 	spi_writel(as, CR, SPI_BIT(SPIEN));
985 
986 	/* go! */
987 	dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
988 			(unsigned long)regs->start, irq);
989 
990 	ret = spi_register_master(master);
991 	if (ret)
992 		goto out_reset_hw;
993 
994 	return 0;
995 
996 out_reset_hw:
997 	spi_writel(as, CR, SPI_BIT(SWRST));
998 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
999 	clk_disable(clk);
1000 	free_irq(irq, master);
1001 out_unmap_regs:
1002 	iounmap(as->regs);
1003 out_free_buffer:
1004 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1005 			as->buffer_dma);
1006 out_free:
1007 	clk_put(clk);
1008 	spi_master_put(master);
1009 	return ret;
1010 }
1011 
1012 static int atmel_spi_remove(struct platform_device *pdev)
1013 {
1014 	struct spi_master	*master = platform_get_drvdata(pdev);
1015 	struct atmel_spi	*as = spi_master_get_devdata(master);
1016 	struct spi_message	*msg;
1017 
1018 	/* reset the hardware and block queue progress */
1019 	spin_lock_irq(&as->lock);
1020 	as->stopping = 1;
1021 	spi_writel(as, CR, SPI_BIT(SWRST));
1022 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1023 	spi_readl(as, SR);
1024 	spin_unlock_irq(&as->lock);
1025 
1026 	/* Terminate remaining queued transfers */
1027 	list_for_each_entry(msg, &as->queue, queue) {
1028 		/* REVISIT unmapping the dma is a NOP on ARM and AVR32
1029 		 * but we shouldn't depend on that...
1030 		 */
1031 		msg->status = -ESHUTDOWN;
1032 		msg->complete(msg->context);
1033 	}
1034 
1035 	dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1036 			as->buffer_dma);
1037 
1038 	clk_disable(as->clk);
1039 	clk_put(as->clk);
1040 	free_irq(as->irq, master);
1041 	iounmap(as->regs);
1042 
1043 	spi_unregister_master(master);
1044 
1045 	return 0;
1046 }
1047 
1048 #ifdef	CONFIG_PM
1049 
1050 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
1051 {
1052 	struct spi_master	*master = platform_get_drvdata(pdev);
1053 	struct atmel_spi	*as = spi_master_get_devdata(master);
1054 
1055 	clk_disable(as->clk);
1056 	return 0;
1057 }
1058 
1059 static int atmel_spi_resume(struct platform_device *pdev)
1060 {
1061 	struct spi_master	*master = platform_get_drvdata(pdev);
1062 	struct atmel_spi	*as = spi_master_get_devdata(master);
1063 
1064 	clk_enable(as->clk);
1065 	return 0;
1066 }
1067 
1068 #else
1069 #define	atmel_spi_suspend	NULL
1070 #define	atmel_spi_resume	NULL
1071 #endif
1072 
1073 #if defined(CONFIG_OF)
1074 static const struct of_device_id atmel_spi_dt_ids[] = {
1075 	{ .compatible = "atmel,at91rm9200-spi" },
1076 	{ /* sentinel */ }
1077 };
1078 
1079 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1080 #endif
1081 
1082 static struct platform_driver atmel_spi_driver = {
1083 	.driver		= {
1084 		.name	= "atmel_spi",
1085 		.owner	= THIS_MODULE,
1086 		.of_match_table	= of_match_ptr(atmel_spi_dt_ids),
1087 	},
1088 	.suspend	= atmel_spi_suspend,
1089 	.resume		= atmel_spi_resume,
1090 	.probe		= atmel_spi_probe,
1091 	.remove		= atmel_spi_remove,
1092 };
1093 module_platform_driver(atmel_spi_driver);
1094 
1095 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1096 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1097 MODULE_LICENSE("GPL");
1098 MODULE_ALIAS("platform:atmel_spi");
1099