1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Atmel AT32 and AT91 SPI Controllers 4 * 5 * Copyright (C) 2006 Atmel Corporation 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/clk.h> 10 #include <linux/module.h> 11 #include <linux/platform_device.h> 12 #include <linux/delay.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/dmaengine.h> 15 #include <linux/err.h> 16 #include <linux/interrupt.h> 17 #include <linux/spi/spi.h> 18 #include <linux/slab.h> 19 #include <linux/of.h> 20 21 #include <linux/io.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pinctrl/consumer.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/iopoll.h> 26 #include <trace/events/spi.h> 27 28 /* SPI register offsets */ 29 #define SPI_CR 0x0000 30 #define SPI_MR 0x0004 31 #define SPI_RDR 0x0008 32 #define SPI_TDR 0x000c 33 #define SPI_SR 0x0010 34 #define SPI_IER 0x0014 35 #define SPI_IDR 0x0018 36 #define SPI_IMR 0x001c 37 #define SPI_CSR0 0x0030 38 #define SPI_CSR1 0x0034 39 #define SPI_CSR2 0x0038 40 #define SPI_CSR3 0x003c 41 #define SPI_FMR 0x0040 42 #define SPI_FLR 0x0044 43 #define SPI_VERSION 0x00fc 44 #define SPI_RPR 0x0100 45 #define SPI_RCR 0x0104 46 #define SPI_TPR 0x0108 47 #define SPI_TCR 0x010c 48 #define SPI_RNPR 0x0110 49 #define SPI_RNCR 0x0114 50 #define SPI_TNPR 0x0118 51 #define SPI_TNCR 0x011c 52 #define SPI_PTCR 0x0120 53 #define SPI_PTSR 0x0124 54 55 /* Bitfields in CR */ 56 #define SPI_SPIEN_OFFSET 0 57 #define SPI_SPIEN_SIZE 1 58 #define SPI_SPIDIS_OFFSET 1 59 #define SPI_SPIDIS_SIZE 1 60 #define SPI_SWRST_OFFSET 7 61 #define SPI_SWRST_SIZE 1 62 #define SPI_LASTXFER_OFFSET 24 63 #define SPI_LASTXFER_SIZE 1 64 #define SPI_TXFCLR_OFFSET 16 65 #define SPI_TXFCLR_SIZE 1 66 #define SPI_RXFCLR_OFFSET 17 67 #define SPI_RXFCLR_SIZE 1 68 #define SPI_FIFOEN_OFFSET 30 69 #define SPI_FIFOEN_SIZE 1 70 #define SPI_FIFODIS_OFFSET 31 71 #define SPI_FIFODIS_SIZE 1 72 73 /* Bitfields in MR */ 74 #define SPI_MSTR_OFFSET 0 75 #define SPI_MSTR_SIZE 1 76 #define SPI_PS_OFFSET 1 77 #define SPI_PS_SIZE 1 78 #define SPI_PCSDEC_OFFSET 2 79 #define SPI_PCSDEC_SIZE 1 80 #define SPI_FDIV_OFFSET 3 81 #define SPI_FDIV_SIZE 1 82 #define SPI_MODFDIS_OFFSET 4 83 #define SPI_MODFDIS_SIZE 1 84 #define SPI_WDRBT_OFFSET 5 85 #define SPI_WDRBT_SIZE 1 86 #define SPI_LLB_OFFSET 7 87 #define SPI_LLB_SIZE 1 88 #define SPI_PCS_OFFSET 16 89 #define SPI_PCS_SIZE 4 90 #define SPI_DLYBCS_OFFSET 24 91 #define SPI_DLYBCS_SIZE 8 92 93 /* Bitfields in RDR */ 94 #define SPI_RD_OFFSET 0 95 #define SPI_RD_SIZE 16 96 97 /* Bitfields in TDR */ 98 #define SPI_TD_OFFSET 0 99 #define SPI_TD_SIZE 16 100 101 /* Bitfields in SR */ 102 #define SPI_RDRF_OFFSET 0 103 #define SPI_RDRF_SIZE 1 104 #define SPI_TDRE_OFFSET 1 105 #define SPI_TDRE_SIZE 1 106 #define SPI_MODF_OFFSET 2 107 #define SPI_MODF_SIZE 1 108 #define SPI_OVRES_OFFSET 3 109 #define SPI_OVRES_SIZE 1 110 #define SPI_ENDRX_OFFSET 4 111 #define SPI_ENDRX_SIZE 1 112 #define SPI_ENDTX_OFFSET 5 113 #define SPI_ENDTX_SIZE 1 114 #define SPI_RXBUFF_OFFSET 6 115 #define SPI_RXBUFF_SIZE 1 116 #define SPI_TXBUFE_OFFSET 7 117 #define SPI_TXBUFE_SIZE 1 118 #define SPI_NSSR_OFFSET 8 119 #define SPI_NSSR_SIZE 1 120 #define SPI_TXEMPTY_OFFSET 9 121 #define SPI_TXEMPTY_SIZE 1 122 #define SPI_SPIENS_OFFSET 16 123 #define SPI_SPIENS_SIZE 1 124 #define SPI_TXFEF_OFFSET 24 125 #define SPI_TXFEF_SIZE 1 126 #define SPI_TXFFF_OFFSET 25 127 #define SPI_TXFFF_SIZE 1 128 #define SPI_TXFTHF_OFFSET 26 129 #define SPI_TXFTHF_SIZE 1 130 #define SPI_RXFEF_OFFSET 27 131 #define SPI_RXFEF_SIZE 1 132 #define SPI_RXFFF_OFFSET 28 133 #define SPI_RXFFF_SIZE 1 134 #define SPI_RXFTHF_OFFSET 29 135 #define SPI_RXFTHF_SIZE 1 136 #define SPI_TXFPTEF_OFFSET 30 137 #define SPI_TXFPTEF_SIZE 1 138 #define SPI_RXFPTEF_OFFSET 31 139 #define SPI_RXFPTEF_SIZE 1 140 141 /* Bitfields in CSR0 */ 142 #define SPI_CPOL_OFFSET 0 143 #define SPI_CPOL_SIZE 1 144 #define SPI_NCPHA_OFFSET 1 145 #define SPI_NCPHA_SIZE 1 146 #define SPI_CSAAT_OFFSET 3 147 #define SPI_CSAAT_SIZE 1 148 #define SPI_BITS_OFFSET 4 149 #define SPI_BITS_SIZE 4 150 #define SPI_SCBR_OFFSET 8 151 #define SPI_SCBR_SIZE 8 152 #define SPI_DLYBS_OFFSET 16 153 #define SPI_DLYBS_SIZE 8 154 #define SPI_DLYBCT_OFFSET 24 155 #define SPI_DLYBCT_SIZE 8 156 157 /* Bitfields in RCR */ 158 #define SPI_RXCTR_OFFSET 0 159 #define SPI_RXCTR_SIZE 16 160 161 /* Bitfields in TCR */ 162 #define SPI_TXCTR_OFFSET 0 163 #define SPI_TXCTR_SIZE 16 164 165 /* Bitfields in RNCR */ 166 #define SPI_RXNCR_OFFSET 0 167 #define SPI_RXNCR_SIZE 16 168 169 /* Bitfields in TNCR */ 170 #define SPI_TXNCR_OFFSET 0 171 #define SPI_TXNCR_SIZE 16 172 173 /* Bitfields in PTCR */ 174 #define SPI_RXTEN_OFFSET 0 175 #define SPI_RXTEN_SIZE 1 176 #define SPI_RXTDIS_OFFSET 1 177 #define SPI_RXTDIS_SIZE 1 178 #define SPI_TXTEN_OFFSET 8 179 #define SPI_TXTEN_SIZE 1 180 #define SPI_TXTDIS_OFFSET 9 181 #define SPI_TXTDIS_SIZE 1 182 183 /* Bitfields in FMR */ 184 #define SPI_TXRDYM_OFFSET 0 185 #define SPI_TXRDYM_SIZE 2 186 #define SPI_RXRDYM_OFFSET 4 187 #define SPI_RXRDYM_SIZE 2 188 #define SPI_TXFTHRES_OFFSET 16 189 #define SPI_TXFTHRES_SIZE 6 190 #define SPI_RXFTHRES_OFFSET 24 191 #define SPI_RXFTHRES_SIZE 6 192 193 /* Bitfields in FLR */ 194 #define SPI_TXFL_OFFSET 0 195 #define SPI_TXFL_SIZE 6 196 #define SPI_RXFL_OFFSET 16 197 #define SPI_RXFL_SIZE 6 198 199 /* Constants for BITS */ 200 #define SPI_BITS_8_BPT 0 201 #define SPI_BITS_9_BPT 1 202 #define SPI_BITS_10_BPT 2 203 #define SPI_BITS_11_BPT 3 204 #define SPI_BITS_12_BPT 4 205 #define SPI_BITS_13_BPT 5 206 #define SPI_BITS_14_BPT 6 207 #define SPI_BITS_15_BPT 7 208 #define SPI_BITS_16_BPT 8 209 #define SPI_ONE_DATA 0 210 #define SPI_TWO_DATA 1 211 #define SPI_FOUR_DATA 2 212 213 /* Bit manipulation macros */ 214 #define SPI_BIT(name) \ 215 (1 << SPI_##name##_OFFSET) 216 #define SPI_BF(name, value) \ 217 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET) 218 #define SPI_BFEXT(name, value) \ 219 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1)) 220 #define SPI_BFINS(name, value, old) \ 221 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \ 222 | SPI_BF(name, value)) 223 224 /* Register access macros */ 225 #define spi_readl(port, reg) \ 226 readl_relaxed((port)->regs + SPI_##reg) 227 #define spi_writel(port, reg, value) \ 228 writel_relaxed((value), (port)->regs + SPI_##reg) 229 #define spi_writew(port, reg, value) \ 230 writew_relaxed((value), (port)->regs + SPI_##reg) 231 232 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 233 * cache operations; better heuristics consider wordsize and bitrate. 234 */ 235 #define DMA_MIN_BYTES 16 236 237 #define SPI_DMA_MIN_TIMEOUT (msecs_to_jiffies(1000)) 238 #define SPI_DMA_TIMEOUT_PER_10K (msecs_to_jiffies(4)) 239 240 #define AUTOSUSPEND_TIMEOUT 2000 241 242 struct atmel_spi_caps { 243 bool is_spi2; 244 bool has_wdrbt; 245 bool has_dma_support; 246 bool has_pdc_support; 247 }; 248 249 /* 250 * The core SPI transfer engine just talks to a register bank to set up 251 * DMA transfers; transfer queue progress is driven by IRQs. The clock 252 * framework provides the base clock, subdivided for each spi_device. 253 */ 254 struct atmel_spi { 255 spinlock_t lock; 256 unsigned long flags; 257 258 phys_addr_t phybase; 259 void __iomem *regs; 260 int irq; 261 struct clk *clk; 262 struct platform_device *pdev; 263 unsigned long spi_clk; 264 265 struct spi_transfer *current_transfer; 266 int current_remaining_bytes; 267 int done_status; 268 dma_addr_t dma_addr_rx_bbuf; 269 dma_addr_t dma_addr_tx_bbuf; 270 void *addr_rx_bbuf; 271 void *addr_tx_bbuf; 272 273 struct completion xfer_completion; 274 275 struct atmel_spi_caps caps; 276 277 bool use_dma; 278 bool use_pdc; 279 280 bool keep_cs; 281 282 u32 fifo_size; 283 bool last_polarity; 284 u8 native_cs_free; 285 u8 native_cs_for_gpio; 286 }; 287 288 /* Controller-specific per-slave state */ 289 struct atmel_spi_device { 290 u32 csr; 291 }; 292 293 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */ 294 #define INVALID_DMA_ADDRESS 0xffffffff 295 296 /* 297 * This frequency can be anything supported by the controller, but to avoid 298 * unnecessary delay, the highest possible frequency is chosen. 299 * 300 * This frequency is the highest possible which is not interfering with other 301 * chip select registers (see Note for Serial Clock Bit Rate configuration in 302 * Atmel-11121F-ATARM-SAMA5D3-Series-Datasheet_02-Feb-16, page 1283) 303 */ 304 #define DUMMY_MSG_FREQUENCY 0x02 305 /* 306 * 8 bits is the minimum data the controller is capable of sending. 307 * 308 * This message can be anything as it should not be treated by any SPI device. 309 */ 310 #define DUMMY_MSG 0xAA 311 312 /* 313 * Version 2 of the SPI controller has 314 * - CR.LASTXFER 315 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero) 316 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs) 317 * - SPI_CSRx.CSAAT 318 * - SPI_CSRx.SBCR allows faster clocking 319 */ 320 static bool atmel_spi_is_v2(struct atmel_spi *as) 321 { 322 return as->caps.is_spi2; 323 } 324 325 /* 326 * Send a dummy message. 327 * 328 * This is sometimes needed when using a CS GPIO to force clock transition when 329 * switching between devices with different polarities. 330 */ 331 static void atmel_spi_send_dummy(struct atmel_spi *as, struct spi_device *spi, int chip_select) 332 { 333 u32 status; 334 u32 csr; 335 336 /* 337 * Set a clock frequency to allow sending message on SPI bus. 338 * The frequency here can be anything, but is needed for 339 * the controller to send the data. 340 */ 341 csr = spi_readl(as, CSR0 + 4 * chip_select); 342 csr = SPI_BFINS(SCBR, DUMMY_MSG_FREQUENCY, csr); 343 spi_writel(as, CSR0 + 4 * chip_select, csr); 344 345 /* 346 * Read all data coming from SPI bus, needed to be able to send 347 * the message. 348 */ 349 spi_readl(as, RDR); 350 while (spi_readl(as, SR) & SPI_BIT(RDRF)) { 351 spi_readl(as, RDR); 352 cpu_relax(); 353 } 354 355 spi_writel(as, TDR, DUMMY_MSG); 356 357 readl_poll_timeout_atomic(as->regs + SPI_SR, status, 358 (status & SPI_BIT(TXEMPTY)), 1, 1000); 359 } 360 361 362 /* 363 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby 364 * they assume that spi slave device state will not change on deselect, so 365 * that automagic deselection is OK. ("NPCSx rises if no data is to be 366 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer 367 * controllers have CSAAT and friends. 368 * 369 * Even controller newer than ar91rm9200, using GPIOs can make sens as 370 * it lets us support active-high chipselects despite the controller's 371 * belief that only active-low devices/systems exists. 372 * 373 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work 374 * right when driven with GPIO. ("Mode Fault does not allow more than one 375 * Master on Chip Select 0.") No workaround exists for that ... so for 376 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH, 377 * and (c) will trigger that first erratum in some cases. 378 * 379 * When changing the clock polarity, the SPI controller waits for the next 380 * transmission to enforce the default clock state. This may be an issue when 381 * using a GPIO as Chip Select: the clock level is applied only when the first 382 * packet is sent, once the CS has already been asserted. The workaround is to 383 * avoid this by sending a first (dummy) message before toggling the CS state. 384 */ 385 static void cs_activate(struct atmel_spi *as, struct spi_device *spi) 386 { 387 struct atmel_spi_device *asd = spi->controller_state; 388 bool new_polarity; 389 int chip_select; 390 u32 mr; 391 392 if (spi_get_csgpiod(spi, 0)) 393 chip_select = as->native_cs_for_gpio; 394 else 395 chip_select = spi_get_chipselect(spi, 0); 396 397 if (atmel_spi_is_v2(as)) { 398 spi_writel(as, CSR0 + 4 * chip_select, asd->csr); 399 /* For the low SPI version, there is a issue that PDC transfer 400 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS 401 */ 402 spi_writel(as, CSR0, asd->csr); 403 if (as->caps.has_wdrbt) { 404 spi_writel(as, MR, 405 SPI_BF(PCS, ~(0x01 << chip_select)) 406 | SPI_BIT(WDRBT) 407 | SPI_BIT(MODFDIS) 408 | SPI_BIT(MSTR)); 409 } else { 410 spi_writel(as, MR, 411 SPI_BF(PCS, ~(0x01 << chip_select)) 412 | SPI_BIT(MODFDIS) 413 | SPI_BIT(MSTR)); 414 } 415 416 mr = spi_readl(as, MR); 417 418 /* 419 * Ensures the clock polarity is valid before we actually 420 * assert the CS to avoid spurious clock edges to be 421 * processed by the spi devices. 422 */ 423 if (spi_get_csgpiod(spi, 0)) { 424 new_polarity = (asd->csr & SPI_BIT(CPOL)) != 0; 425 if (new_polarity != as->last_polarity) { 426 /* 427 * Need to disable the GPIO before sending the dummy 428 * message because it is already set by the spi core. 429 */ 430 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 0); 431 atmel_spi_send_dummy(as, spi, chip_select); 432 as->last_polarity = new_polarity; 433 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 1); 434 } 435 } 436 } else { 437 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0; 438 int i; 439 u32 csr; 440 441 /* Make sure clock polarity is correct */ 442 for (i = 0; i < spi->controller->num_chipselect; i++) { 443 csr = spi_readl(as, CSR0 + 4 * i); 444 if ((csr ^ cpol) & SPI_BIT(CPOL)) 445 spi_writel(as, CSR0 + 4 * i, 446 csr ^ SPI_BIT(CPOL)); 447 } 448 449 mr = spi_readl(as, MR); 450 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr); 451 spi_writel(as, MR, mr); 452 } 453 454 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr); 455 } 456 457 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi) 458 { 459 int chip_select; 460 u32 mr; 461 462 if (spi_get_csgpiod(spi, 0)) 463 chip_select = as->native_cs_for_gpio; 464 else 465 chip_select = spi_get_chipselect(spi, 0); 466 467 /* only deactivate *this* device; sometimes transfers to 468 * another device may be active when this routine is called. 469 */ 470 mr = spi_readl(as, MR); 471 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) { 472 mr = SPI_BFINS(PCS, 0xf, mr); 473 spi_writel(as, MR, mr); 474 } 475 476 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr); 477 478 if (!spi_get_csgpiod(spi, 0)) 479 spi_writel(as, CR, SPI_BIT(LASTXFER)); 480 } 481 482 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock) 483 { 484 spin_lock_irqsave(&as->lock, as->flags); 485 } 486 487 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock) 488 { 489 spin_unlock_irqrestore(&as->lock, as->flags); 490 } 491 492 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer) 493 { 494 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf); 495 } 496 497 static inline bool atmel_spi_use_dma(struct atmel_spi *as, 498 struct spi_transfer *xfer) 499 { 500 return as->use_dma && xfer->len >= DMA_MIN_BYTES; 501 } 502 503 static bool atmel_spi_can_dma(struct spi_controller *host, 504 struct spi_device *spi, 505 struct spi_transfer *xfer) 506 { 507 struct atmel_spi *as = spi_controller_get_devdata(host); 508 509 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) 510 return atmel_spi_use_dma(as, xfer) && 511 !atmel_spi_is_vmalloc_xfer(xfer); 512 else 513 return atmel_spi_use_dma(as, xfer); 514 515 } 516 517 static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word) 518 { 519 struct spi_controller *host = platform_get_drvdata(as->pdev); 520 struct dma_slave_config slave_config; 521 int err = 0; 522 523 if (bits_per_word > 8) { 524 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 525 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 526 } else { 527 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 528 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 529 } 530 531 slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR; 532 slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR; 533 slave_config.src_maxburst = 1; 534 slave_config.dst_maxburst = 1; 535 slave_config.device_fc = false; 536 537 /* 538 * This driver uses fixed peripheral select mode (PS bit set to '0' in 539 * the Mode Register). 540 * So according to the datasheet, when FIFOs are available (and 541 * enabled), the Transmit FIFO operates in Multiple Data Mode. 542 * In this mode, up to 2 data, not 4, can be written into the Transmit 543 * Data Register in a single access. 544 * However, the first data has to be written into the lowest 16 bits and 545 * the second data into the highest 16 bits of the Transmit 546 * Data Register. For 8bit data (the most frequent case), it would 547 * require to rework tx_buf so each data would actually fit 16 bits. 548 * So we'd rather write only one data at the time. Hence the transmit 549 * path works the same whether FIFOs are available (and enabled) or not. 550 */ 551 if (dmaengine_slave_config(host->dma_tx, &slave_config)) { 552 dev_err(&as->pdev->dev, 553 "failed to configure tx dma channel\n"); 554 err = -EINVAL; 555 } 556 557 /* 558 * This driver configures the spi controller for host mode (MSTR bit 559 * set to '1' in the Mode Register). 560 * So according to the datasheet, when FIFOs are available (and 561 * enabled), the Receive FIFO operates in Single Data Mode. 562 * So the receive path works the same whether FIFOs are available (and 563 * enabled) or not. 564 */ 565 if (dmaengine_slave_config(host->dma_rx, &slave_config)) { 566 dev_err(&as->pdev->dev, 567 "failed to configure rx dma channel\n"); 568 err = -EINVAL; 569 } 570 571 return err; 572 } 573 574 static int atmel_spi_configure_dma(struct spi_controller *host, 575 struct atmel_spi *as) 576 { 577 struct device *dev = &as->pdev->dev; 578 int err; 579 580 host->dma_tx = dma_request_chan(dev, "tx"); 581 if (IS_ERR(host->dma_tx)) { 582 err = PTR_ERR(host->dma_tx); 583 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n"); 584 goto error_clear; 585 } 586 587 host->dma_rx = dma_request_chan(dev, "rx"); 588 if (IS_ERR(host->dma_rx)) { 589 err = PTR_ERR(host->dma_rx); 590 /* 591 * No reason to check EPROBE_DEFER here since we have already 592 * requested tx channel. 593 */ 594 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n"); 595 goto error; 596 } 597 598 err = atmel_spi_dma_slave_config(as, 8); 599 if (err) 600 goto error; 601 602 dev_info(&as->pdev->dev, 603 "Using %s (tx) and %s (rx) for DMA transfers\n", 604 dma_chan_name(host->dma_tx), 605 dma_chan_name(host->dma_rx)); 606 607 return 0; 608 error: 609 if (!IS_ERR(host->dma_rx)) 610 dma_release_channel(host->dma_rx); 611 if (!IS_ERR(host->dma_tx)) 612 dma_release_channel(host->dma_tx); 613 error_clear: 614 host->dma_tx = host->dma_rx = NULL; 615 return err; 616 } 617 618 static void atmel_spi_stop_dma(struct spi_controller *host) 619 { 620 if (host->dma_rx) 621 dmaengine_terminate_all(host->dma_rx); 622 if (host->dma_tx) 623 dmaengine_terminate_all(host->dma_tx); 624 } 625 626 static void atmel_spi_release_dma(struct spi_controller *host) 627 { 628 if (host->dma_rx) { 629 dma_release_channel(host->dma_rx); 630 host->dma_rx = NULL; 631 } 632 if (host->dma_tx) { 633 dma_release_channel(host->dma_tx); 634 host->dma_tx = NULL; 635 } 636 } 637 638 /* This function is called by the DMA driver from tasklet context */ 639 static void dma_callback(void *data) 640 { 641 struct spi_controller *host = data; 642 struct atmel_spi *as = spi_controller_get_devdata(host); 643 644 if (is_vmalloc_addr(as->current_transfer->rx_buf) && 645 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 646 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf, 647 as->current_transfer->len); 648 } 649 complete(&as->xfer_completion); 650 } 651 652 /* 653 * Next transfer using PIO without FIFO. 654 */ 655 static void atmel_spi_next_xfer_single(struct spi_controller *host, 656 struct spi_transfer *xfer) 657 { 658 struct atmel_spi *as = spi_controller_get_devdata(host); 659 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 660 661 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_pio\n"); 662 663 /* Make sure data is not remaining in RDR */ 664 spi_readl(as, RDR); 665 while (spi_readl(as, SR) & SPI_BIT(RDRF)) { 666 spi_readl(as, RDR); 667 cpu_relax(); 668 } 669 670 if (xfer->bits_per_word > 8) 671 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos)); 672 else 673 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos)); 674 675 dev_dbg(host->dev.parent, 676 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n", 677 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 678 xfer->bits_per_word); 679 680 /* Enable relevant interrupts */ 681 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES)); 682 } 683 684 /* 685 * Next transfer using PIO with FIFO. 686 */ 687 static void atmel_spi_next_xfer_fifo(struct spi_controller *host, 688 struct spi_transfer *xfer) 689 { 690 struct atmel_spi *as = spi_controller_get_devdata(host); 691 u32 current_remaining_data, num_data; 692 u32 offset = xfer->len - as->current_remaining_bytes; 693 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset); 694 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset); 695 u16 td0, td1; 696 u32 fifomr; 697 698 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_fifo\n"); 699 700 /* Compute the number of data to transfer in the current iteration */ 701 current_remaining_data = ((xfer->bits_per_word > 8) ? 702 ((u32)as->current_remaining_bytes >> 1) : 703 (u32)as->current_remaining_bytes); 704 num_data = min(current_remaining_data, as->fifo_size); 705 706 /* Flush RX and TX FIFOs */ 707 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR)); 708 while (spi_readl(as, FLR)) 709 cpu_relax(); 710 711 /* Set RX FIFO Threshold to the number of data to transfer */ 712 fifomr = spi_readl(as, FMR); 713 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr)); 714 715 /* Clear FIFO flags in the Status Register, especially RXFTHF */ 716 (void)spi_readl(as, SR); 717 718 /* Fill TX FIFO */ 719 while (num_data >= 2) { 720 if (xfer->bits_per_word > 8) { 721 td0 = *words++; 722 td1 = *words++; 723 } else { 724 td0 = *bytes++; 725 td1 = *bytes++; 726 } 727 728 spi_writel(as, TDR, (td1 << 16) | td0); 729 num_data -= 2; 730 } 731 732 if (num_data) { 733 if (xfer->bits_per_word > 8) 734 td0 = *words++; 735 else 736 td0 = *bytes++; 737 738 spi_writew(as, TDR, td0); 739 num_data--; 740 } 741 742 dev_dbg(host->dev.parent, 743 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n", 744 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf, 745 xfer->bits_per_word); 746 747 /* 748 * Enable RX FIFO Threshold Flag interrupt to be notified about 749 * transfer completion. 750 */ 751 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES)); 752 } 753 754 /* 755 * Next transfer using PIO. 756 */ 757 static void atmel_spi_next_xfer_pio(struct spi_controller *host, 758 struct spi_transfer *xfer) 759 { 760 struct atmel_spi *as = spi_controller_get_devdata(host); 761 762 if (as->fifo_size) 763 atmel_spi_next_xfer_fifo(host, xfer); 764 else 765 atmel_spi_next_xfer_single(host, xfer); 766 } 767 768 /* 769 * Submit next transfer for DMA. 770 */ 771 static int atmel_spi_next_xfer_dma_submit(struct spi_controller *host, 772 struct spi_transfer *xfer, 773 u32 *plen) 774 { 775 struct atmel_spi *as = spi_controller_get_devdata(host); 776 struct dma_chan *rxchan = host->dma_rx; 777 struct dma_chan *txchan = host->dma_tx; 778 struct dma_async_tx_descriptor *rxdesc; 779 struct dma_async_tx_descriptor *txdesc; 780 dma_cookie_t cookie; 781 782 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_dma_submit\n"); 783 784 /* Check that the channels are available */ 785 if (!rxchan || !txchan) 786 return -ENODEV; 787 788 789 *plen = xfer->len; 790 791 if (atmel_spi_dma_slave_config(as, xfer->bits_per_word)) 792 goto err_exit; 793 794 /* Send both scatterlists */ 795 if (atmel_spi_is_vmalloc_xfer(xfer) && 796 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 797 rxdesc = dmaengine_prep_slave_single(rxchan, 798 as->dma_addr_rx_bbuf, 799 xfer->len, 800 DMA_DEV_TO_MEM, 801 DMA_PREP_INTERRUPT | 802 DMA_CTRL_ACK); 803 } else { 804 rxdesc = dmaengine_prep_slave_sg(rxchan, 805 xfer->rx_sg.sgl, 806 xfer->rx_sg.nents, 807 DMA_DEV_TO_MEM, 808 DMA_PREP_INTERRUPT | 809 DMA_CTRL_ACK); 810 } 811 if (!rxdesc) 812 goto err_dma; 813 814 if (atmel_spi_is_vmalloc_xfer(xfer) && 815 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 816 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len); 817 txdesc = dmaengine_prep_slave_single(txchan, 818 as->dma_addr_tx_bbuf, 819 xfer->len, DMA_MEM_TO_DEV, 820 DMA_PREP_INTERRUPT | 821 DMA_CTRL_ACK); 822 } else { 823 txdesc = dmaengine_prep_slave_sg(txchan, 824 xfer->tx_sg.sgl, 825 xfer->tx_sg.nents, 826 DMA_MEM_TO_DEV, 827 DMA_PREP_INTERRUPT | 828 DMA_CTRL_ACK); 829 } 830 if (!txdesc) 831 goto err_dma; 832 833 dev_dbg(host->dev.parent, 834 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 835 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma, 836 xfer->rx_buf, (unsigned long long)xfer->rx_dma); 837 838 /* Enable relevant interrupts */ 839 spi_writel(as, IER, SPI_BIT(OVRES)); 840 841 /* Put the callback on the RX transfer only, that should finish last */ 842 rxdesc->callback = dma_callback; 843 rxdesc->callback_param = host; 844 845 /* Submit and fire RX and TX with TX last so we're ready to read! */ 846 cookie = rxdesc->tx_submit(rxdesc); 847 if (dma_submit_error(cookie)) 848 goto err_dma; 849 cookie = txdesc->tx_submit(txdesc); 850 if (dma_submit_error(cookie)) 851 goto err_dma; 852 rxchan->device->device_issue_pending(rxchan); 853 txchan->device->device_issue_pending(txchan); 854 855 return 0; 856 857 err_dma: 858 spi_writel(as, IDR, SPI_BIT(OVRES)); 859 atmel_spi_stop_dma(host); 860 err_exit: 861 return -ENOMEM; 862 } 863 864 static void atmel_spi_next_xfer_data(struct spi_controller *host, 865 struct spi_transfer *xfer, 866 dma_addr_t *tx_dma, 867 dma_addr_t *rx_dma, 868 u32 *plen) 869 { 870 *rx_dma = xfer->rx_dma + xfer->len - *plen; 871 *tx_dma = xfer->tx_dma + xfer->len - *plen; 872 if (*plen > host->max_dma_len) 873 *plen = host->max_dma_len; 874 } 875 876 static int atmel_spi_set_xfer_speed(struct atmel_spi *as, 877 struct spi_device *spi, 878 struct spi_transfer *xfer) 879 { 880 u32 scbr, csr; 881 unsigned long bus_hz; 882 int chip_select; 883 884 if (spi_get_csgpiod(spi, 0)) 885 chip_select = as->native_cs_for_gpio; 886 else 887 chip_select = spi_get_chipselect(spi, 0); 888 889 /* v1 chips start out at half the peripheral bus speed. */ 890 bus_hz = as->spi_clk; 891 if (!atmel_spi_is_v2(as)) 892 bus_hz /= 2; 893 894 /* 895 * Calculate the lowest divider that satisfies the 896 * constraint, assuming div32/fdiv/mbz == 0. 897 */ 898 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz); 899 900 /* 901 * If the resulting divider doesn't fit into the 902 * register bitfield, we can't satisfy the constraint. 903 */ 904 if (scbr >= (1 << SPI_SCBR_SIZE)) { 905 dev_err(&spi->dev, 906 "setup: %d Hz too slow, scbr %u; min %ld Hz\n", 907 xfer->speed_hz, scbr, bus_hz/255); 908 return -EINVAL; 909 } 910 if (scbr == 0) { 911 dev_err(&spi->dev, 912 "setup: %d Hz too high, scbr %u; max %ld Hz\n", 913 xfer->speed_hz, scbr, bus_hz); 914 return -EINVAL; 915 } 916 csr = spi_readl(as, CSR0 + 4 * chip_select); 917 csr = SPI_BFINS(SCBR, scbr, csr); 918 spi_writel(as, CSR0 + 4 * chip_select, csr); 919 xfer->effective_speed_hz = bus_hz / scbr; 920 921 return 0; 922 } 923 924 /* 925 * Submit next transfer for PDC. 926 * lock is held, spi irq is blocked 927 */ 928 static void atmel_spi_pdc_next_xfer(struct spi_controller *host, 929 struct spi_transfer *xfer) 930 { 931 struct atmel_spi *as = spi_controller_get_devdata(host); 932 u32 len; 933 dma_addr_t tx_dma, rx_dma; 934 935 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 936 937 len = as->current_remaining_bytes; 938 atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len); 939 as->current_remaining_bytes -= len; 940 941 spi_writel(as, RPR, rx_dma); 942 spi_writel(as, TPR, tx_dma); 943 944 if (xfer->bits_per_word > 8) 945 len >>= 1; 946 spi_writel(as, RCR, len); 947 spi_writel(as, TCR, len); 948 949 dev_dbg(&host->dev, 950 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 951 xfer, xfer->len, xfer->tx_buf, 952 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 953 (unsigned long long)xfer->rx_dma); 954 955 if (as->current_remaining_bytes) { 956 len = as->current_remaining_bytes; 957 atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len); 958 as->current_remaining_bytes -= len; 959 960 spi_writel(as, RNPR, rx_dma); 961 spi_writel(as, TNPR, tx_dma); 962 963 if (xfer->bits_per_word > 8) 964 len >>= 1; 965 spi_writel(as, RNCR, len); 966 spi_writel(as, TNCR, len); 967 968 dev_dbg(&host->dev, 969 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n", 970 xfer, xfer->len, xfer->tx_buf, 971 (unsigned long long)xfer->tx_dma, xfer->rx_buf, 972 (unsigned long long)xfer->rx_dma); 973 } 974 975 /* REVISIT: We're waiting for RXBUFF before we start the next 976 * transfer because we need to handle some difficult timing 977 * issues otherwise. If we wait for TXBUFE in one transfer and 978 * then starts waiting for RXBUFF in the next, it's difficult 979 * to tell the difference between the RXBUFF interrupt we're 980 * actually waiting for and the RXBUFF interrupt of the 981 * previous transfer. 982 * 983 * It should be doable, though. Just not now... 984 */ 985 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES)); 986 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN)); 987 } 988 989 /* 990 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma: 991 * - The buffer is either valid for CPU access, else NULL 992 * - If the buffer is valid, so is its DMA address 993 * 994 * This driver manages the dma address unless message->is_dma_mapped. 995 */ 996 static int 997 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer) 998 { 999 struct device *dev = &as->pdev->dev; 1000 1001 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS; 1002 if (xfer->tx_buf) { 1003 /* tx_buf is a const void* where we need a void * for the dma 1004 * mapping */ 1005 void *nonconst_tx = (void *)xfer->tx_buf; 1006 1007 xfer->tx_dma = dma_map_single(dev, 1008 nonconst_tx, xfer->len, 1009 DMA_TO_DEVICE); 1010 if (dma_mapping_error(dev, xfer->tx_dma)) 1011 return -ENOMEM; 1012 } 1013 if (xfer->rx_buf) { 1014 xfer->rx_dma = dma_map_single(dev, 1015 xfer->rx_buf, xfer->len, 1016 DMA_FROM_DEVICE); 1017 if (dma_mapping_error(dev, xfer->rx_dma)) { 1018 if (xfer->tx_buf) 1019 dma_unmap_single(dev, 1020 xfer->tx_dma, xfer->len, 1021 DMA_TO_DEVICE); 1022 return -ENOMEM; 1023 } 1024 } 1025 return 0; 1026 } 1027 1028 static void atmel_spi_dma_unmap_xfer(struct spi_controller *host, 1029 struct spi_transfer *xfer) 1030 { 1031 if (xfer->tx_dma != INVALID_DMA_ADDRESS) 1032 dma_unmap_single(host->dev.parent, xfer->tx_dma, 1033 xfer->len, DMA_TO_DEVICE); 1034 if (xfer->rx_dma != INVALID_DMA_ADDRESS) 1035 dma_unmap_single(host->dev.parent, xfer->rx_dma, 1036 xfer->len, DMA_FROM_DEVICE); 1037 } 1038 1039 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as) 1040 { 1041 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1042 } 1043 1044 static void 1045 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer) 1046 { 1047 u8 *rxp; 1048 u16 *rxp16; 1049 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes; 1050 1051 if (xfer->bits_per_word > 8) { 1052 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos); 1053 *rxp16 = spi_readl(as, RDR); 1054 } else { 1055 rxp = ((u8 *)xfer->rx_buf) + xfer_pos; 1056 *rxp = spi_readl(as, RDR); 1057 } 1058 if (xfer->bits_per_word > 8) { 1059 if (as->current_remaining_bytes > 2) 1060 as->current_remaining_bytes -= 2; 1061 else 1062 as->current_remaining_bytes = 0; 1063 } else { 1064 as->current_remaining_bytes--; 1065 } 1066 } 1067 1068 static void 1069 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer) 1070 { 1071 u32 fifolr = spi_readl(as, FLR); 1072 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr); 1073 u32 offset = xfer->len - as->current_remaining_bytes; 1074 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset); 1075 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset); 1076 u16 rd; /* RD field is the lowest 16 bits of RDR */ 1077 1078 /* Update the number of remaining bytes to transfer */ 1079 num_bytes = ((xfer->bits_per_word > 8) ? 1080 (num_data << 1) : 1081 num_data); 1082 1083 if (as->current_remaining_bytes > num_bytes) 1084 as->current_remaining_bytes -= num_bytes; 1085 else 1086 as->current_remaining_bytes = 0; 1087 1088 /* Handle odd number of bytes when data are more than 8bit width */ 1089 if (xfer->bits_per_word > 8) 1090 as->current_remaining_bytes &= ~0x1; 1091 1092 /* Read data */ 1093 while (num_data) { 1094 rd = spi_readl(as, RDR); 1095 if (xfer->bits_per_word > 8) 1096 *words++ = rd; 1097 else 1098 *bytes++ = rd; 1099 num_data--; 1100 } 1101 } 1102 1103 /* Called from IRQ 1104 * 1105 * Must update "current_remaining_bytes" to keep track of data 1106 * to transfer. 1107 */ 1108 static void 1109 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer) 1110 { 1111 if (as->fifo_size) 1112 atmel_spi_pump_fifo_data(as, xfer); 1113 else 1114 atmel_spi_pump_single_data(as, xfer); 1115 } 1116 1117 /* Interrupt 1118 * 1119 */ 1120 static irqreturn_t 1121 atmel_spi_pio_interrupt(int irq, void *dev_id) 1122 { 1123 struct spi_controller *host = dev_id; 1124 struct atmel_spi *as = spi_controller_get_devdata(host); 1125 u32 status, pending, imr; 1126 struct spi_transfer *xfer; 1127 int ret = IRQ_NONE; 1128 1129 imr = spi_readl(as, IMR); 1130 status = spi_readl(as, SR); 1131 pending = status & imr; 1132 1133 if (pending & SPI_BIT(OVRES)) { 1134 ret = IRQ_HANDLED; 1135 spi_writel(as, IDR, SPI_BIT(OVRES)); 1136 dev_warn(host->dev.parent, "overrun\n"); 1137 1138 /* 1139 * When we get an overrun, we disregard the current 1140 * transfer. Data will not be copied back from any 1141 * bounce buffer and msg->actual_len will not be 1142 * updated with the last xfer. 1143 * 1144 * We will also not process any remaning transfers in 1145 * the message. 1146 */ 1147 as->done_status = -EIO; 1148 smp_wmb(); 1149 1150 /* Clear any overrun happening while cleaning up */ 1151 spi_readl(as, SR); 1152 1153 complete(&as->xfer_completion); 1154 1155 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) { 1156 atmel_spi_lock(as); 1157 1158 if (as->current_remaining_bytes) { 1159 ret = IRQ_HANDLED; 1160 xfer = as->current_transfer; 1161 atmel_spi_pump_pio_data(as, xfer); 1162 if (!as->current_remaining_bytes) 1163 spi_writel(as, IDR, pending); 1164 1165 complete(&as->xfer_completion); 1166 } 1167 1168 atmel_spi_unlock(as); 1169 } else { 1170 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending); 1171 ret = IRQ_HANDLED; 1172 spi_writel(as, IDR, pending); 1173 } 1174 1175 return ret; 1176 } 1177 1178 static irqreturn_t 1179 atmel_spi_pdc_interrupt(int irq, void *dev_id) 1180 { 1181 struct spi_controller *host = dev_id; 1182 struct atmel_spi *as = spi_controller_get_devdata(host); 1183 u32 status, pending, imr; 1184 int ret = IRQ_NONE; 1185 1186 imr = spi_readl(as, IMR); 1187 status = spi_readl(as, SR); 1188 pending = status & imr; 1189 1190 if (pending & SPI_BIT(OVRES)) { 1191 1192 ret = IRQ_HANDLED; 1193 1194 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) 1195 | SPI_BIT(OVRES))); 1196 1197 /* Clear any overrun happening while cleaning up */ 1198 spi_readl(as, SR); 1199 1200 as->done_status = -EIO; 1201 1202 complete(&as->xfer_completion); 1203 1204 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) { 1205 ret = IRQ_HANDLED; 1206 1207 spi_writel(as, IDR, pending); 1208 1209 complete(&as->xfer_completion); 1210 } 1211 1212 return ret; 1213 } 1214 1215 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as) 1216 { 1217 struct spi_delay *delay = &spi->word_delay; 1218 u32 value = delay->value; 1219 1220 switch (delay->unit) { 1221 case SPI_DELAY_UNIT_NSECS: 1222 value /= 1000; 1223 break; 1224 case SPI_DELAY_UNIT_USECS: 1225 break; 1226 default: 1227 return -EINVAL; 1228 } 1229 1230 return (as->spi_clk / 1000000 * value) >> 5; 1231 } 1232 1233 static void initialize_native_cs_for_gpio(struct atmel_spi *as) 1234 { 1235 int i; 1236 struct spi_controller *host = platform_get_drvdata(as->pdev); 1237 1238 if (!as->native_cs_free) 1239 return; /* already initialized */ 1240 1241 if (!host->cs_gpiods) 1242 return; /* No CS GPIO */ 1243 1244 /* 1245 * On the first version of the controller (AT91RM9200), CS0 1246 * can't be used associated with GPIO 1247 */ 1248 if (atmel_spi_is_v2(as)) 1249 i = 0; 1250 else 1251 i = 1; 1252 1253 for (; i < 4; i++) 1254 if (host->cs_gpiods[i]) 1255 as->native_cs_free |= BIT(i); 1256 1257 if (as->native_cs_free) 1258 as->native_cs_for_gpio = ffs(as->native_cs_free); 1259 } 1260 1261 static int atmel_spi_setup(struct spi_device *spi) 1262 { 1263 struct atmel_spi *as; 1264 struct atmel_spi_device *asd; 1265 u32 csr; 1266 unsigned int bits = spi->bits_per_word; 1267 int chip_select; 1268 int word_delay_csr; 1269 1270 as = spi_controller_get_devdata(spi->controller); 1271 1272 /* see notes above re chipselect */ 1273 if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH)) { 1274 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n"); 1275 return -EINVAL; 1276 } 1277 1278 /* Setup() is called during spi_register_controller(aka 1279 * spi_register_master) but after all membmers of the cs_gpiod 1280 * array have been filled, so we can looked for which native 1281 * CS will be free for using with GPIO 1282 */ 1283 initialize_native_cs_for_gpio(as); 1284 1285 if (spi_get_csgpiod(spi, 0) && as->native_cs_free) { 1286 dev_err(&spi->dev, 1287 "No native CS available to support this GPIO CS\n"); 1288 return -EBUSY; 1289 } 1290 1291 if (spi_get_csgpiod(spi, 0)) 1292 chip_select = as->native_cs_for_gpio; 1293 else 1294 chip_select = spi_get_chipselect(spi, 0); 1295 1296 csr = SPI_BF(BITS, bits - 8); 1297 if (spi->mode & SPI_CPOL) 1298 csr |= SPI_BIT(CPOL); 1299 if (!(spi->mode & SPI_CPHA)) 1300 csr |= SPI_BIT(NCPHA); 1301 1302 if (!spi_get_csgpiod(spi, 0)) 1303 csr |= SPI_BIT(CSAAT); 1304 csr |= SPI_BF(DLYBS, 0); 1305 1306 word_delay_csr = atmel_word_delay_csr(spi, as); 1307 if (word_delay_csr < 0) 1308 return word_delay_csr; 1309 1310 /* DLYBCT adds delays between words. This is useful for slow devices 1311 * that need a bit of time to setup the next transfer. 1312 */ 1313 csr |= SPI_BF(DLYBCT, word_delay_csr); 1314 1315 asd = spi->controller_state; 1316 if (!asd) { 1317 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL); 1318 if (!asd) 1319 return -ENOMEM; 1320 1321 spi->controller_state = asd; 1322 } 1323 1324 asd->csr = csr; 1325 1326 dev_dbg(&spi->dev, 1327 "setup: bpw %u mode 0x%x -> csr%d %08x\n", 1328 bits, spi->mode, spi_get_chipselect(spi, 0), csr); 1329 1330 if (!atmel_spi_is_v2(as)) 1331 spi_writel(as, CSR0 + 4 * chip_select, csr); 1332 1333 return 0; 1334 } 1335 1336 static void atmel_spi_set_cs(struct spi_device *spi, bool enable) 1337 { 1338 struct atmel_spi *as = spi_controller_get_devdata(spi->controller); 1339 /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW 1340 * since we already have routines for activate/deactivate translate 1341 * high/low to active/inactive 1342 */ 1343 enable = (!!(spi->mode & SPI_CS_HIGH) == enable); 1344 1345 if (enable) { 1346 cs_activate(as, spi); 1347 } else { 1348 cs_deactivate(as, spi); 1349 } 1350 1351 } 1352 1353 static int atmel_spi_one_transfer(struct spi_controller *host, 1354 struct spi_device *spi, 1355 struct spi_transfer *xfer) 1356 { 1357 struct atmel_spi *as; 1358 u8 bits; 1359 u32 len; 1360 struct atmel_spi_device *asd; 1361 int timeout; 1362 int ret; 1363 unsigned int dma_timeout; 1364 long ret_timeout; 1365 1366 as = spi_controller_get_devdata(host); 1367 1368 asd = spi->controller_state; 1369 bits = (asd->csr >> 4) & 0xf; 1370 if (bits != xfer->bits_per_word - 8) { 1371 dev_dbg(&spi->dev, 1372 "you can't yet change bits_per_word in transfers\n"); 1373 return -ENOPROTOOPT; 1374 } 1375 1376 /* 1377 * DMA map early, for performance (empties dcache ASAP) and 1378 * better fault reporting. 1379 */ 1380 if ((!host->cur_msg->is_dma_mapped) 1381 && as->use_pdc) { 1382 if (atmel_spi_dma_map_xfer(as, xfer) < 0) 1383 return -ENOMEM; 1384 } 1385 1386 atmel_spi_set_xfer_speed(as, spi, xfer); 1387 1388 as->done_status = 0; 1389 as->current_transfer = xfer; 1390 as->current_remaining_bytes = xfer->len; 1391 while (as->current_remaining_bytes) { 1392 reinit_completion(&as->xfer_completion); 1393 1394 if (as->use_pdc) { 1395 atmel_spi_lock(as); 1396 atmel_spi_pdc_next_xfer(host, xfer); 1397 atmel_spi_unlock(as); 1398 } else if (atmel_spi_use_dma(as, xfer)) { 1399 len = as->current_remaining_bytes; 1400 ret = atmel_spi_next_xfer_dma_submit(host, 1401 xfer, &len); 1402 if (ret) { 1403 dev_err(&spi->dev, 1404 "unable to use DMA, fallback to PIO\n"); 1405 as->done_status = ret; 1406 break; 1407 } else { 1408 as->current_remaining_bytes -= len; 1409 if (as->current_remaining_bytes < 0) 1410 as->current_remaining_bytes = 0; 1411 } 1412 } else { 1413 atmel_spi_lock(as); 1414 atmel_spi_next_xfer_pio(host, xfer); 1415 atmel_spi_unlock(as); 1416 } 1417 1418 dma_timeout = msecs_to_jiffies(spi_controller_xfer_timeout(host, xfer)); 1419 ret_timeout = wait_for_completion_timeout(&as->xfer_completion, dma_timeout); 1420 if (!ret_timeout) { 1421 dev_err(&spi->dev, "spi transfer timeout\n"); 1422 as->done_status = -EIO; 1423 } 1424 1425 if (as->done_status) 1426 break; 1427 } 1428 1429 if (as->done_status) { 1430 if (as->use_pdc) { 1431 dev_warn(host->dev.parent, 1432 "overrun (%u/%u remaining)\n", 1433 spi_readl(as, TCR), spi_readl(as, RCR)); 1434 1435 /* 1436 * Clean up DMA registers and make sure the data 1437 * registers are empty. 1438 */ 1439 spi_writel(as, RNCR, 0); 1440 spi_writel(as, TNCR, 0); 1441 spi_writel(as, RCR, 0); 1442 spi_writel(as, TCR, 0); 1443 for (timeout = 1000; timeout; timeout--) 1444 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY)) 1445 break; 1446 if (!timeout) 1447 dev_warn(host->dev.parent, 1448 "timeout waiting for TXEMPTY"); 1449 while (spi_readl(as, SR) & SPI_BIT(RDRF)) 1450 spi_readl(as, RDR); 1451 1452 /* Clear any overrun happening while cleaning up */ 1453 spi_readl(as, SR); 1454 1455 } else if (atmel_spi_use_dma(as, xfer)) { 1456 atmel_spi_stop_dma(host); 1457 } 1458 } 1459 1460 if (!host->cur_msg->is_dma_mapped 1461 && as->use_pdc) 1462 atmel_spi_dma_unmap_xfer(host, xfer); 1463 1464 if (as->use_pdc) 1465 atmel_spi_disable_pdc_transfer(as); 1466 1467 return as->done_status; 1468 } 1469 1470 static void atmel_spi_cleanup(struct spi_device *spi) 1471 { 1472 struct atmel_spi_device *asd = spi->controller_state; 1473 1474 if (!asd) 1475 return; 1476 1477 spi->controller_state = NULL; 1478 kfree(asd); 1479 } 1480 1481 static inline unsigned int atmel_get_version(struct atmel_spi *as) 1482 { 1483 return spi_readl(as, VERSION) & 0x00000fff; 1484 } 1485 1486 static void atmel_get_caps(struct atmel_spi *as) 1487 { 1488 unsigned int version; 1489 1490 version = atmel_get_version(as); 1491 1492 as->caps.is_spi2 = version > 0x121; 1493 as->caps.has_wdrbt = version >= 0x210; 1494 as->caps.has_dma_support = version >= 0x212; 1495 as->caps.has_pdc_support = version < 0x212; 1496 } 1497 1498 static void atmel_spi_init(struct atmel_spi *as) 1499 { 1500 spi_writel(as, CR, SPI_BIT(SWRST)); 1501 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1502 1503 /* It is recommended to enable FIFOs first thing after reset */ 1504 if (as->fifo_size) 1505 spi_writel(as, CR, SPI_BIT(FIFOEN)); 1506 1507 if (as->caps.has_wdrbt) { 1508 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS) 1509 | SPI_BIT(MSTR)); 1510 } else { 1511 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS)); 1512 } 1513 1514 if (as->use_pdc) 1515 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS)); 1516 spi_writel(as, CR, SPI_BIT(SPIEN)); 1517 } 1518 1519 static int atmel_spi_probe(struct platform_device *pdev) 1520 { 1521 struct resource *regs; 1522 int irq; 1523 struct clk *clk; 1524 int ret; 1525 struct spi_controller *host; 1526 struct atmel_spi *as; 1527 1528 /* Select default pin state */ 1529 pinctrl_pm_select_default_state(&pdev->dev); 1530 1531 irq = platform_get_irq(pdev, 0); 1532 if (irq < 0) 1533 return irq; 1534 1535 clk = devm_clk_get(&pdev->dev, "spi_clk"); 1536 if (IS_ERR(clk)) 1537 return PTR_ERR(clk); 1538 1539 /* setup spi core then atmel-specific driver state */ 1540 host = spi_alloc_host(&pdev->dev, sizeof(*as)); 1541 if (!host) 1542 return -ENOMEM; 1543 1544 /* the spi->mode bits understood by this driver: */ 1545 host->use_gpio_descriptors = true; 1546 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1547 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16); 1548 host->dev.of_node = pdev->dev.of_node; 1549 host->bus_num = pdev->id; 1550 host->num_chipselect = 4; 1551 host->setup = atmel_spi_setup; 1552 host->flags = (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX | 1553 SPI_CONTROLLER_GPIO_SS); 1554 host->transfer_one = atmel_spi_one_transfer; 1555 host->set_cs = atmel_spi_set_cs; 1556 host->cleanup = atmel_spi_cleanup; 1557 host->auto_runtime_pm = true; 1558 host->max_dma_len = SPI_MAX_DMA_XFER; 1559 host->can_dma = atmel_spi_can_dma; 1560 platform_set_drvdata(pdev, host); 1561 1562 as = spi_controller_get_devdata(host); 1563 1564 spin_lock_init(&as->lock); 1565 1566 as->pdev = pdev; 1567 as->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ®s); 1568 if (IS_ERR(as->regs)) { 1569 ret = PTR_ERR(as->regs); 1570 goto out_unmap_regs; 1571 } 1572 as->phybase = regs->start; 1573 as->irq = irq; 1574 as->clk = clk; 1575 1576 init_completion(&as->xfer_completion); 1577 1578 atmel_get_caps(as); 1579 1580 as->use_dma = false; 1581 as->use_pdc = false; 1582 if (as->caps.has_dma_support) { 1583 ret = atmel_spi_configure_dma(host, as); 1584 if (ret == 0) { 1585 as->use_dma = true; 1586 } else if (ret == -EPROBE_DEFER) { 1587 goto out_unmap_regs; 1588 } 1589 } else if (as->caps.has_pdc_support) { 1590 as->use_pdc = true; 1591 } 1592 1593 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 1594 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev, 1595 SPI_MAX_DMA_XFER, 1596 &as->dma_addr_rx_bbuf, 1597 GFP_KERNEL | GFP_DMA); 1598 if (!as->addr_rx_bbuf) { 1599 as->use_dma = false; 1600 } else { 1601 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev, 1602 SPI_MAX_DMA_XFER, 1603 &as->dma_addr_tx_bbuf, 1604 GFP_KERNEL | GFP_DMA); 1605 if (!as->addr_tx_bbuf) { 1606 as->use_dma = false; 1607 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1608 as->addr_rx_bbuf, 1609 as->dma_addr_rx_bbuf); 1610 } 1611 } 1612 if (!as->use_dma) 1613 dev_info(host->dev.parent, 1614 " can not allocate dma coherent memory\n"); 1615 } 1616 1617 if (as->caps.has_dma_support && !as->use_dma) 1618 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n"); 1619 1620 if (as->use_pdc) { 1621 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt, 1622 0, dev_name(&pdev->dev), host); 1623 } else { 1624 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt, 1625 0, dev_name(&pdev->dev), host); 1626 } 1627 if (ret) 1628 goto out_unmap_regs; 1629 1630 /* Initialize the hardware */ 1631 ret = clk_prepare_enable(clk); 1632 if (ret) 1633 goto out_free_irq; 1634 1635 as->spi_clk = clk_get_rate(clk); 1636 1637 as->fifo_size = 0; 1638 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size", 1639 &as->fifo_size)) { 1640 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size); 1641 } 1642 1643 atmel_spi_init(as); 1644 1645 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT); 1646 pm_runtime_use_autosuspend(&pdev->dev); 1647 pm_runtime_set_active(&pdev->dev); 1648 pm_runtime_enable(&pdev->dev); 1649 1650 ret = devm_spi_register_controller(&pdev->dev, host); 1651 if (ret) 1652 goto out_free_dma; 1653 1654 /* go! */ 1655 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n", 1656 atmel_get_version(as), (unsigned long)regs->start, 1657 irq); 1658 1659 return 0; 1660 1661 out_free_dma: 1662 pm_runtime_disable(&pdev->dev); 1663 pm_runtime_set_suspended(&pdev->dev); 1664 1665 if (as->use_dma) 1666 atmel_spi_release_dma(host); 1667 1668 spi_writel(as, CR, SPI_BIT(SWRST)); 1669 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1670 clk_disable_unprepare(clk); 1671 out_free_irq: 1672 out_unmap_regs: 1673 spi_controller_put(host); 1674 return ret; 1675 } 1676 1677 static void atmel_spi_remove(struct platform_device *pdev) 1678 { 1679 struct spi_controller *host = platform_get_drvdata(pdev); 1680 struct atmel_spi *as = spi_controller_get_devdata(host); 1681 1682 pm_runtime_get_sync(&pdev->dev); 1683 1684 /* reset the hardware and block queue progress */ 1685 if (as->use_dma) { 1686 atmel_spi_stop_dma(host); 1687 atmel_spi_release_dma(host); 1688 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) { 1689 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1690 as->addr_tx_bbuf, 1691 as->dma_addr_tx_bbuf); 1692 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER, 1693 as->addr_rx_bbuf, 1694 as->dma_addr_rx_bbuf); 1695 } 1696 } 1697 1698 spin_lock_irq(&as->lock); 1699 spi_writel(as, CR, SPI_BIT(SWRST)); 1700 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */ 1701 spi_readl(as, SR); 1702 spin_unlock_irq(&as->lock); 1703 1704 clk_disable_unprepare(as->clk); 1705 1706 pm_runtime_put_noidle(&pdev->dev); 1707 pm_runtime_disable(&pdev->dev); 1708 } 1709 1710 static int atmel_spi_runtime_suspend(struct device *dev) 1711 { 1712 struct spi_controller *host = dev_get_drvdata(dev); 1713 struct atmel_spi *as = spi_controller_get_devdata(host); 1714 1715 clk_disable_unprepare(as->clk); 1716 pinctrl_pm_select_sleep_state(dev); 1717 1718 return 0; 1719 } 1720 1721 static int atmel_spi_runtime_resume(struct device *dev) 1722 { 1723 struct spi_controller *host = dev_get_drvdata(dev); 1724 struct atmel_spi *as = spi_controller_get_devdata(host); 1725 1726 pinctrl_pm_select_default_state(dev); 1727 1728 return clk_prepare_enable(as->clk); 1729 } 1730 1731 static int atmel_spi_suspend(struct device *dev) 1732 { 1733 struct spi_controller *host = dev_get_drvdata(dev); 1734 int ret; 1735 1736 /* Stop the queue running */ 1737 ret = spi_controller_suspend(host); 1738 if (ret) 1739 return ret; 1740 1741 if (!pm_runtime_suspended(dev)) 1742 atmel_spi_runtime_suspend(dev); 1743 1744 return 0; 1745 } 1746 1747 static int atmel_spi_resume(struct device *dev) 1748 { 1749 struct spi_controller *host = dev_get_drvdata(dev); 1750 struct atmel_spi *as = spi_controller_get_devdata(host); 1751 int ret; 1752 1753 ret = clk_prepare_enable(as->clk); 1754 if (ret) 1755 return ret; 1756 1757 atmel_spi_init(as); 1758 1759 clk_disable_unprepare(as->clk); 1760 1761 if (!pm_runtime_suspended(dev)) { 1762 ret = atmel_spi_runtime_resume(dev); 1763 if (ret) 1764 return ret; 1765 } 1766 1767 /* Start the queue running */ 1768 return spi_controller_resume(host); 1769 } 1770 1771 static const struct dev_pm_ops atmel_spi_pm_ops = { 1772 SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume) 1773 RUNTIME_PM_OPS(atmel_spi_runtime_suspend, 1774 atmel_spi_runtime_resume, NULL) 1775 }; 1776 1777 static const struct of_device_id atmel_spi_dt_ids[] = { 1778 { .compatible = "atmel,at91rm9200-spi" }, 1779 { /* sentinel */ } 1780 }; 1781 1782 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids); 1783 1784 static struct platform_driver atmel_spi_driver = { 1785 .driver = { 1786 .name = "atmel_spi", 1787 .pm = pm_ptr(&atmel_spi_pm_ops), 1788 .of_match_table = atmel_spi_dt_ids, 1789 }, 1790 .probe = atmel_spi_probe, 1791 .remove_new = atmel_spi_remove, 1792 }; 1793 module_platform_driver(atmel_spi_driver); 1794 1795 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver"); 1796 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 1797 MODULE_LICENSE("GPL"); 1798 MODULE_ALIAS("platform:atmel_spi"); 1799