xref: /openbmc/linux/drivers/spi/spi-atmel.c (revision 975aaadd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/iopoll.h>
26 #include <trace/events/spi.h>
27 
28 /* SPI register offsets */
29 #define SPI_CR					0x0000
30 #define SPI_MR					0x0004
31 #define SPI_RDR					0x0008
32 #define SPI_TDR					0x000c
33 #define SPI_SR					0x0010
34 #define SPI_IER					0x0014
35 #define SPI_IDR					0x0018
36 #define SPI_IMR					0x001c
37 #define SPI_CSR0				0x0030
38 #define SPI_CSR1				0x0034
39 #define SPI_CSR2				0x0038
40 #define SPI_CSR3				0x003c
41 #define SPI_FMR					0x0040
42 #define SPI_FLR					0x0044
43 #define SPI_VERSION				0x00fc
44 #define SPI_RPR					0x0100
45 #define SPI_RCR					0x0104
46 #define SPI_TPR					0x0108
47 #define SPI_TCR					0x010c
48 #define SPI_RNPR				0x0110
49 #define SPI_RNCR				0x0114
50 #define SPI_TNPR				0x0118
51 #define SPI_TNCR				0x011c
52 #define SPI_PTCR				0x0120
53 #define SPI_PTSR				0x0124
54 
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET			0
57 #define SPI_SPIEN_SIZE				1
58 #define SPI_SPIDIS_OFFSET			1
59 #define SPI_SPIDIS_SIZE				1
60 #define SPI_SWRST_OFFSET			7
61 #define SPI_SWRST_SIZE				1
62 #define SPI_LASTXFER_OFFSET			24
63 #define SPI_LASTXFER_SIZE			1
64 #define SPI_TXFCLR_OFFSET			16
65 #define SPI_TXFCLR_SIZE				1
66 #define SPI_RXFCLR_OFFSET			17
67 #define SPI_RXFCLR_SIZE				1
68 #define SPI_FIFOEN_OFFSET			30
69 #define SPI_FIFOEN_SIZE				1
70 #define SPI_FIFODIS_OFFSET			31
71 #define SPI_FIFODIS_SIZE			1
72 
73 /* Bitfields in MR */
74 #define SPI_MSTR_OFFSET				0
75 #define SPI_MSTR_SIZE				1
76 #define SPI_PS_OFFSET				1
77 #define SPI_PS_SIZE				1
78 #define SPI_PCSDEC_OFFSET			2
79 #define SPI_PCSDEC_SIZE				1
80 #define SPI_FDIV_OFFSET				3
81 #define SPI_FDIV_SIZE				1
82 #define SPI_MODFDIS_OFFSET			4
83 #define SPI_MODFDIS_SIZE			1
84 #define SPI_WDRBT_OFFSET			5
85 #define SPI_WDRBT_SIZE				1
86 #define SPI_LLB_OFFSET				7
87 #define SPI_LLB_SIZE				1
88 #define SPI_PCS_OFFSET				16
89 #define SPI_PCS_SIZE				4
90 #define SPI_DLYBCS_OFFSET			24
91 #define SPI_DLYBCS_SIZE				8
92 
93 /* Bitfields in RDR */
94 #define SPI_RD_OFFSET				0
95 #define SPI_RD_SIZE				16
96 
97 /* Bitfields in TDR */
98 #define SPI_TD_OFFSET				0
99 #define SPI_TD_SIZE				16
100 
101 /* Bitfields in SR */
102 #define SPI_RDRF_OFFSET				0
103 #define SPI_RDRF_SIZE				1
104 #define SPI_TDRE_OFFSET				1
105 #define SPI_TDRE_SIZE				1
106 #define SPI_MODF_OFFSET				2
107 #define SPI_MODF_SIZE				1
108 #define SPI_OVRES_OFFSET			3
109 #define SPI_OVRES_SIZE				1
110 #define SPI_ENDRX_OFFSET			4
111 #define SPI_ENDRX_SIZE				1
112 #define SPI_ENDTX_OFFSET			5
113 #define SPI_ENDTX_SIZE				1
114 #define SPI_RXBUFF_OFFSET			6
115 #define SPI_RXBUFF_SIZE				1
116 #define SPI_TXBUFE_OFFSET			7
117 #define SPI_TXBUFE_SIZE				1
118 #define SPI_NSSR_OFFSET				8
119 #define SPI_NSSR_SIZE				1
120 #define SPI_TXEMPTY_OFFSET			9
121 #define SPI_TXEMPTY_SIZE			1
122 #define SPI_SPIENS_OFFSET			16
123 #define SPI_SPIENS_SIZE				1
124 #define SPI_TXFEF_OFFSET			24
125 #define SPI_TXFEF_SIZE				1
126 #define SPI_TXFFF_OFFSET			25
127 #define SPI_TXFFF_SIZE				1
128 #define SPI_TXFTHF_OFFSET			26
129 #define SPI_TXFTHF_SIZE				1
130 #define SPI_RXFEF_OFFSET			27
131 #define SPI_RXFEF_SIZE				1
132 #define SPI_RXFFF_OFFSET			28
133 #define SPI_RXFFF_SIZE				1
134 #define SPI_RXFTHF_OFFSET			29
135 #define SPI_RXFTHF_SIZE				1
136 #define SPI_TXFPTEF_OFFSET			30
137 #define SPI_TXFPTEF_SIZE			1
138 #define SPI_RXFPTEF_OFFSET			31
139 #define SPI_RXFPTEF_SIZE			1
140 
141 /* Bitfields in CSR0 */
142 #define SPI_CPOL_OFFSET				0
143 #define SPI_CPOL_SIZE				1
144 #define SPI_NCPHA_OFFSET			1
145 #define SPI_NCPHA_SIZE				1
146 #define SPI_CSAAT_OFFSET			3
147 #define SPI_CSAAT_SIZE				1
148 #define SPI_BITS_OFFSET				4
149 #define SPI_BITS_SIZE				4
150 #define SPI_SCBR_OFFSET				8
151 #define SPI_SCBR_SIZE				8
152 #define SPI_DLYBS_OFFSET			16
153 #define SPI_DLYBS_SIZE				8
154 #define SPI_DLYBCT_OFFSET			24
155 #define SPI_DLYBCT_SIZE				8
156 
157 /* Bitfields in RCR */
158 #define SPI_RXCTR_OFFSET			0
159 #define SPI_RXCTR_SIZE				16
160 
161 /* Bitfields in TCR */
162 #define SPI_TXCTR_OFFSET			0
163 #define SPI_TXCTR_SIZE				16
164 
165 /* Bitfields in RNCR */
166 #define SPI_RXNCR_OFFSET			0
167 #define SPI_RXNCR_SIZE				16
168 
169 /* Bitfields in TNCR */
170 #define SPI_TXNCR_OFFSET			0
171 #define SPI_TXNCR_SIZE				16
172 
173 /* Bitfields in PTCR */
174 #define SPI_RXTEN_OFFSET			0
175 #define SPI_RXTEN_SIZE				1
176 #define SPI_RXTDIS_OFFSET			1
177 #define SPI_RXTDIS_SIZE				1
178 #define SPI_TXTEN_OFFSET			8
179 #define SPI_TXTEN_SIZE				1
180 #define SPI_TXTDIS_OFFSET			9
181 #define SPI_TXTDIS_SIZE				1
182 
183 /* Bitfields in FMR */
184 #define SPI_TXRDYM_OFFSET			0
185 #define SPI_TXRDYM_SIZE				2
186 #define SPI_RXRDYM_OFFSET			4
187 #define SPI_RXRDYM_SIZE				2
188 #define SPI_TXFTHRES_OFFSET			16
189 #define SPI_TXFTHRES_SIZE			6
190 #define SPI_RXFTHRES_OFFSET			24
191 #define SPI_RXFTHRES_SIZE			6
192 
193 /* Bitfields in FLR */
194 #define SPI_TXFL_OFFSET				0
195 #define SPI_TXFL_SIZE				6
196 #define SPI_RXFL_OFFSET				16
197 #define SPI_RXFL_SIZE				6
198 
199 /* Constants for BITS */
200 #define SPI_BITS_8_BPT				0
201 #define SPI_BITS_9_BPT				1
202 #define SPI_BITS_10_BPT				2
203 #define SPI_BITS_11_BPT				3
204 #define SPI_BITS_12_BPT				4
205 #define SPI_BITS_13_BPT				5
206 #define SPI_BITS_14_BPT				6
207 #define SPI_BITS_15_BPT				7
208 #define SPI_BITS_16_BPT				8
209 #define SPI_ONE_DATA				0
210 #define SPI_TWO_DATA				1
211 #define SPI_FOUR_DATA				2
212 
213 /* Bit manipulation macros */
214 #define SPI_BIT(name) \
215 	(1 << SPI_##name##_OFFSET)
216 #define SPI_BF(name, value) \
217 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218 #define SPI_BFEXT(name, value) \
219 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220 #define SPI_BFINS(name, value, old) \
221 	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222 	  | SPI_BF(name, value))
223 
224 /* Register access macros */
225 #define spi_readl(port, reg) \
226 	readl_relaxed((port)->regs + SPI_##reg)
227 #define spi_writel(port, reg, value) \
228 	writel_relaxed((value), (port)->regs + SPI_##reg)
229 #define spi_writew(port, reg, value) \
230 	writew_relaxed((value), (port)->regs + SPI_##reg)
231 
232 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
233  * cache operations; better heuristics consider wordsize and bitrate.
234  */
235 #define DMA_MIN_BYTES	16
236 
237 #define SPI_DMA_MIN_TIMEOUT	(msecs_to_jiffies(1000))
238 #define SPI_DMA_TIMEOUT_PER_10K	(msecs_to_jiffies(4))
239 
240 #define AUTOSUSPEND_TIMEOUT	2000
241 
242 struct atmel_spi_caps {
243 	bool	is_spi2;
244 	bool	has_wdrbt;
245 	bool	has_dma_support;
246 	bool	has_pdc_support;
247 };
248 
249 /*
250  * The core SPI transfer engine just talks to a register bank to set up
251  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
252  * framework provides the base clock, subdivided for each spi_device.
253  */
254 struct atmel_spi {
255 	spinlock_t		lock;
256 	unsigned long		flags;
257 
258 	phys_addr_t		phybase;
259 	void __iomem		*regs;
260 	int			irq;
261 	struct clk		*clk;
262 	struct platform_device	*pdev;
263 	unsigned long		spi_clk;
264 
265 	struct spi_transfer	*current_transfer;
266 	int			current_remaining_bytes;
267 	int			done_status;
268 	dma_addr_t		dma_addr_rx_bbuf;
269 	dma_addr_t		dma_addr_tx_bbuf;
270 	void			*addr_rx_bbuf;
271 	void			*addr_tx_bbuf;
272 
273 	struct completion	xfer_completion;
274 
275 	struct atmel_spi_caps	caps;
276 
277 	bool			use_dma;
278 	bool			use_pdc;
279 
280 	bool			keep_cs;
281 
282 	u32			fifo_size;
283 	bool			last_polarity;
284 	u8			native_cs_free;
285 	u8			native_cs_for_gpio;
286 };
287 
288 /* Controller-specific per-slave state */
289 struct atmel_spi_device {
290 	u32			csr;
291 };
292 
293 #define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
294 #define INVALID_DMA_ADDRESS	0xffffffff
295 
296 /*
297  * This frequency can be anything supported by the controller, but to avoid
298  * unnecessary delay, the highest possible frequency is chosen.
299  *
300  * This frequency is the highest possible which is not interfering with other
301  * chip select registers (see Note for Serial Clock Bit Rate configuration in
302  * Atmel-11121F-ATARM-SAMA5D3-Series-Datasheet_02-Feb-16, page 1283)
303  */
304 #define DUMMY_MSG_FREQUENCY	0x02
305 /*
306  * 8 bits is the minimum data the controller is capable of sending.
307  *
308  * This message can be anything as it should not be treated by any SPI device.
309  */
310 #define DUMMY_MSG		0xAA
311 
312 /*
313  * Version 2 of the SPI controller has
314  *  - CR.LASTXFER
315  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
316  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
317  *  - SPI_CSRx.CSAAT
318  *  - SPI_CSRx.SBCR allows faster clocking
319  */
320 static bool atmel_spi_is_v2(struct atmel_spi *as)
321 {
322 	return as->caps.is_spi2;
323 }
324 
325 /*
326  * Send a dummy message.
327  *
328  * This is sometimes needed when using a CS GPIO to force clock transition when
329  * switching between devices with different polarities.
330  */
331 static void atmel_spi_send_dummy(struct atmel_spi *as, struct spi_device *spi, int chip_select)
332 {
333 	u32 status;
334 	u32 csr;
335 
336 	/*
337 	 * Set a clock frequency to allow sending message on SPI bus.
338 	 * The frequency here can be anything, but is needed for
339 	 * the controller to send the data.
340 	 */
341 	csr = spi_readl(as, CSR0 + 4 * chip_select);
342 	csr = SPI_BFINS(SCBR, DUMMY_MSG_FREQUENCY, csr);
343 	spi_writel(as, CSR0 + 4 * chip_select, csr);
344 
345 	/*
346 	 * Read all data coming from SPI bus, needed to be able to send
347 	 * the message.
348 	 */
349 	spi_readl(as, RDR);
350 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
351 		spi_readl(as, RDR);
352 		cpu_relax();
353 	}
354 
355 	spi_writel(as, TDR, DUMMY_MSG);
356 
357 	readl_poll_timeout_atomic(as->regs + SPI_SR, status,
358 				  (status & SPI_BIT(TXEMPTY)), 1, 1000);
359 }
360 
361 
362 /*
363  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
364  * they assume that spi slave device state will not change on deselect, so
365  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
366  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
367  * controllers have CSAAT and friends.
368  *
369  * Even controller newer than ar91rm9200, using GPIOs can make sens as
370  * it lets us support active-high chipselects despite the controller's
371  * belief that only active-low devices/systems exists.
372  *
373  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
374  * right when driven with GPIO.  ("Mode Fault does not allow more than one
375  * Master on Chip Select 0.")  No workaround exists for that ... so for
376  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
377  * and (c) will trigger that first erratum in some cases.
378  *
379  * When changing the clock polarity, the SPI controller waits for the next
380  * transmission to enforce the default clock state. This may be an issue when
381  * using a GPIO as Chip Select: the clock level is applied only when the first
382  * packet is sent, once the CS has already been asserted. The workaround is to
383  * avoid this by sending a first (dummy) message before toggling the CS state.
384  */
385 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
386 {
387 	struct atmel_spi_device *asd = spi->controller_state;
388 	bool new_polarity;
389 	int chip_select;
390 	u32 mr;
391 
392 	if (spi_get_csgpiod(spi, 0))
393 		chip_select = as->native_cs_for_gpio;
394 	else
395 		chip_select = spi_get_chipselect(spi, 0);
396 
397 	if (atmel_spi_is_v2(as)) {
398 		spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
399 		/* For the low SPI version, there is a issue that PDC transfer
400 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
401 		 */
402 		spi_writel(as, CSR0, asd->csr);
403 		if (as->caps.has_wdrbt) {
404 			spi_writel(as, MR,
405 					SPI_BF(PCS, ~(0x01 << chip_select))
406 					| SPI_BIT(WDRBT)
407 					| SPI_BIT(MODFDIS)
408 					| SPI_BIT(MSTR));
409 		} else {
410 			spi_writel(as, MR,
411 					SPI_BF(PCS, ~(0x01 << chip_select))
412 					| SPI_BIT(MODFDIS)
413 					| SPI_BIT(MSTR));
414 		}
415 
416 		mr = spi_readl(as, MR);
417 
418 		/*
419 		 * Ensures the clock polarity is valid before we actually
420 		 * assert the CS to avoid spurious clock edges to be
421 		 * processed by the spi devices.
422 		 */
423 		if (spi_get_csgpiod(spi, 0)) {
424 			new_polarity = (asd->csr & SPI_BIT(CPOL)) != 0;
425 			if (new_polarity != as->last_polarity) {
426 				/*
427 				 * Need to disable the GPIO before sending the dummy
428 				 * message because it is already set by the spi core.
429 				 */
430 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 0);
431 				atmel_spi_send_dummy(as, spi, chip_select);
432 				as->last_polarity = new_polarity;
433 				gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), 1);
434 			}
435 		}
436 	} else {
437 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
438 		int i;
439 		u32 csr;
440 
441 		/* Make sure clock polarity is correct */
442 		for (i = 0; i < spi->controller->num_chipselect; i++) {
443 			csr = spi_readl(as, CSR0 + 4 * i);
444 			if ((csr ^ cpol) & SPI_BIT(CPOL))
445 				spi_writel(as, CSR0 + 4 * i,
446 						csr ^ SPI_BIT(CPOL));
447 		}
448 
449 		mr = spi_readl(as, MR);
450 		mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
451 		spi_writel(as, MR, mr);
452 	}
453 
454 	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
455 }
456 
457 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
458 {
459 	int chip_select;
460 	u32 mr;
461 
462 	if (spi_get_csgpiod(spi, 0))
463 		chip_select = as->native_cs_for_gpio;
464 	else
465 		chip_select = spi_get_chipselect(spi, 0);
466 
467 	/* only deactivate *this* device; sometimes transfers to
468 	 * another device may be active when this routine is called.
469 	 */
470 	mr = spi_readl(as, MR);
471 	if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
472 		mr = SPI_BFINS(PCS, 0xf, mr);
473 		spi_writel(as, MR, mr);
474 	}
475 
476 	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
477 
478 	if (!spi_get_csgpiod(spi, 0))
479 		spi_writel(as, CR, SPI_BIT(LASTXFER));
480 }
481 
482 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
483 {
484 	spin_lock_irqsave(&as->lock, as->flags);
485 }
486 
487 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
488 {
489 	spin_unlock_irqrestore(&as->lock, as->flags);
490 }
491 
492 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
493 {
494 	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
495 }
496 
497 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
498 				struct spi_transfer *xfer)
499 {
500 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
501 }
502 
503 static bool atmel_spi_can_dma(struct spi_controller *host,
504 			      struct spi_device *spi,
505 			      struct spi_transfer *xfer)
506 {
507 	struct atmel_spi *as = spi_controller_get_devdata(host);
508 
509 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
510 		return atmel_spi_use_dma(as, xfer) &&
511 			!atmel_spi_is_vmalloc_xfer(xfer);
512 	else
513 		return atmel_spi_use_dma(as, xfer);
514 
515 }
516 
517 static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
518 {
519 	struct spi_controller *host = platform_get_drvdata(as->pdev);
520 	struct dma_slave_config	slave_config;
521 	int err = 0;
522 
523 	if (bits_per_word > 8) {
524 		slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
525 		slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
526 	} else {
527 		slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
528 		slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
529 	}
530 
531 	slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
532 	slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
533 	slave_config.src_maxburst = 1;
534 	slave_config.dst_maxburst = 1;
535 	slave_config.device_fc = false;
536 
537 	/*
538 	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
539 	 * the Mode Register).
540 	 * So according to the datasheet, when FIFOs are available (and
541 	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
542 	 * In this mode, up to 2 data, not 4, can be written into the Transmit
543 	 * Data Register in a single access.
544 	 * However, the first data has to be written into the lowest 16 bits and
545 	 * the second data into the highest 16 bits of the Transmit
546 	 * Data Register. For 8bit data (the most frequent case), it would
547 	 * require to rework tx_buf so each data would actually fit 16 bits.
548 	 * So we'd rather write only one data at the time. Hence the transmit
549 	 * path works the same whether FIFOs are available (and enabled) or not.
550 	 */
551 	if (dmaengine_slave_config(host->dma_tx, &slave_config)) {
552 		dev_err(&as->pdev->dev,
553 			"failed to configure tx dma channel\n");
554 		err = -EINVAL;
555 	}
556 
557 	/*
558 	 * This driver configures the spi controller for host mode (MSTR bit
559 	 * set to '1' in the Mode Register).
560 	 * So according to the datasheet, when FIFOs are available (and
561 	 * enabled), the Receive FIFO operates in Single Data Mode.
562 	 * So the receive path works the same whether FIFOs are available (and
563 	 * enabled) or not.
564 	 */
565 	if (dmaengine_slave_config(host->dma_rx, &slave_config)) {
566 		dev_err(&as->pdev->dev,
567 			"failed to configure rx dma channel\n");
568 		err = -EINVAL;
569 	}
570 
571 	return err;
572 }
573 
574 static int atmel_spi_configure_dma(struct spi_controller *host,
575 				   struct atmel_spi *as)
576 {
577 	struct device *dev = &as->pdev->dev;
578 	int err;
579 
580 	host->dma_tx = dma_request_chan(dev, "tx");
581 	if (IS_ERR(host->dma_tx)) {
582 		err = PTR_ERR(host->dma_tx);
583 		dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
584 		goto error_clear;
585 	}
586 
587 	host->dma_rx = dma_request_chan(dev, "rx");
588 	if (IS_ERR(host->dma_rx)) {
589 		err = PTR_ERR(host->dma_rx);
590 		/*
591 		 * No reason to check EPROBE_DEFER here since we have already
592 		 * requested tx channel.
593 		 */
594 		dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
595 		goto error;
596 	}
597 
598 	err = atmel_spi_dma_slave_config(as, 8);
599 	if (err)
600 		goto error;
601 
602 	dev_info(&as->pdev->dev,
603 			"Using %s (tx) and %s (rx) for DMA transfers\n",
604 			dma_chan_name(host->dma_tx),
605 			dma_chan_name(host->dma_rx));
606 
607 	return 0;
608 error:
609 	if (!IS_ERR(host->dma_rx))
610 		dma_release_channel(host->dma_rx);
611 	if (!IS_ERR(host->dma_tx))
612 		dma_release_channel(host->dma_tx);
613 error_clear:
614 	host->dma_tx = host->dma_rx = NULL;
615 	return err;
616 }
617 
618 static void atmel_spi_stop_dma(struct spi_controller *host)
619 {
620 	if (host->dma_rx)
621 		dmaengine_terminate_all(host->dma_rx);
622 	if (host->dma_tx)
623 		dmaengine_terminate_all(host->dma_tx);
624 }
625 
626 static void atmel_spi_release_dma(struct spi_controller *host)
627 {
628 	if (host->dma_rx) {
629 		dma_release_channel(host->dma_rx);
630 		host->dma_rx = NULL;
631 	}
632 	if (host->dma_tx) {
633 		dma_release_channel(host->dma_tx);
634 		host->dma_tx = NULL;
635 	}
636 }
637 
638 /* This function is called by the DMA driver from tasklet context */
639 static void dma_callback(void *data)
640 {
641 	struct spi_controller	*host = data;
642 	struct atmel_spi	*as = spi_controller_get_devdata(host);
643 
644 	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
645 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
646 		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
647 		       as->current_transfer->len);
648 	}
649 	complete(&as->xfer_completion);
650 }
651 
652 /*
653  * Next transfer using PIO without FIFO.
654  */
655 static void atmel_spi_next_xfer_single(struct spi_controller *host,
656 				       struct spi_transfer *xfer)
657 {
658 	struct atmel_spi	*as = spi_controller_get_devdata(host);
659 	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
660 
661 	dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_pio\n");
662 
663 	/* Make sure data is not remaining in RDR */
664 	spi_readl(as, RDR);
665 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
666 		spi_readl(as, RDR);
667 		cpu_relax();
668 	}
669 
670 	if (xfer->bits_per_word > 8)
671 		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
672 	else
673 		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
674 
675 	dev_dbg(host->dev.parent,
676 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
677 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
678 		xfer->bits_per_word);
679 
680 	/* Enable relevant interrupts */
681 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
682 }
683 
684 /*
685  * Next transfer using PIO with FIFO.
686  */
687 static void atmel_spi_next_xfer_fifo(struct spi_controller *host,
688 				     struct spi_transfer *xfer)
689 {
690 	struct atmel_spi *as = spi_controller_get_devdata(host);
691 	u32 current_remaining_data, num_data;
692 	u32 offset = xfer->len - as->current_remaining_bytes;
693 	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
694 	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
695 	u16 td0, td1;
696 	u32 fifomr;
697 
698 	dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_fifo\n");
699 
700 	/* Compute the number of data to transfer in the current iteration */
701 	current_remaining_data = ((xfer->bits_per_word > 8) ?
702 				  ((u32)as->current_remaining_bytes >> 1) :
703 				  (u32)as->current_remaining_bytes);
704 	num_data = min(current_remaining_data, as->fifo_size);
705 
706 	/* Flush RX and TX FIFOs */
707 	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
708 	while (spi_readl(as, FLR))
709 		cpu_relax();
710 
711 	/* Set RX FIFO Threshold to the number of data to transfer */
712 	fifomr = spi_readl(as, FMR);
713 	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
714 
715 	/* Clear FIFO flags in the Status Register, especially RXFTHF */
716 	(void)spi_readl(as, SR);
717 
718 	/* Fill TX FIFO */
719 	while (num_data >= 2) {
720 		if (xfer->bits_per_word > 8) {
721 			td0 = *words++;
722 			td1 = *words++;
723 		} else {
724 			td0 = *bytes++;
725 			td1 = *bytes++;
726 		}
727 
728 		spi_writel(as, TDR, (td1 << 16) | td0);
729 		num_data -= 2;
730 	}
731 
732 	if (num_data) {
733 		if (xfer->bits_per_word > 8)
734 			td0 = *words++;
735 		else
736 			td0 = *bytes++;
737 
738 		spi_writew(as, TDR, td0);
739 		num_data--;
740 	}
741 
742 	dev_dbg(host->dev.parent,
743 		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
744 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
745 		xfer->bits_per_word);
746 
747 	/*
748 	 * Enable RX FIFO Threshold Flag interrupt to be notified about
749 	 * transfer completion.
750 	 */
751 	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
752 }
753 
754 /*
755  * Next transfer using PIO.
756  */
757 static void atmel_spi_next_xfer_pio(struct spi_controller *host,
758 				    struct spi_transfer *xfer)
759 {
760 	struct atmel_spi *as = spi_controller_get_devdata(host);
761 
762 	if (as->fifo_size)
763 		atmel_spi_next_xfer_fifo(host, xfer);
764 	else
765 		atmel_spi_next_xfer_single(host, xfer);
766 }
767 
768 /*
769  * Submit next transfer for DMA.
770  */
771 static int atmel_spi_next_xfer_dma_submit(struct spi_controller *host,
772 				struct spi_transfer *xfer,
773 				u32 *plen)
774 {
775 	struct atmel_spi	*as = spi_controller_get_devdata(host);
776 	struct dma_chan		*rxchan = host->dma_rx;
777 	struct dma_chan		*txchan = host->dma_tx;
778 	struct dma_async_tx_descriptor *rxdesc;
779 	struct dma_async_tx_descriptor *txdesc;
780 	dma_cookie_t		cookie;
781 
782 	dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
783 
784 	/* Check that the channels are available */
785 	if (!rxchan || !txchan)
786 		return -ENODEV;
787 
788 
789 	*plen = xfer->len;
790 
791 	if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
792 		goto err_exit;
793 
794 	/* Send both scatterlists */
795 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
796 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
797 		rxdesc = dmaengine_prep_slave_single(rxchan,
798 						     as->dma_addr_rx_bbuf,
799 						     xfer->len,
800 						     DMA_DEV_TO_MEM,
801 						     DMA_PREP_INTERRUPT |
802 						     DMA_CTRL_ACK);
803 	} else {
804 		rxdesc = dmaengine_prep_slave_sg(rxchan,
805 						 xfer->rx_sg.sgl,
806 						 xfer->rx_sg.nents,
807 						 DMA_DEV_TO_MEM,
808 						 DMA_PREP_INTERRUPT |
809 						 DMA_CTRL_ACK);
810 	}
811 	if (!rxdesc)
812 		goto err_dma;
813 
814 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
815 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
816 		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
817 		txdesc = dmaengine_prep_slave_single(txchan,
818 						     as->dma_addr_tx_bbuf,
819 						     xfer->len, DMA_MEM_TO_DEV,
820 						     DMA_PREP_INTERRUPT |
821 						     DMA_CTRL_ACK);
822 	} else {
823 		txdesc = dmaengine_prep_slave_sg(txchan,
824 						 xfer->tx_sg.sgl,
825 						 xfer->tx_sg.nents,
826 						 DMA_MEM_TO_DEV,
827 						 DMA_PREP_INTERRUPT |
828 						 DMA_CTRL_ACK);
829 	}
830 	if (!txdesc)
831 		goto err_dma;
832 
833 	dev_dbg(host->dev.parent,
834 		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
835 		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
836 		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
837 
838 	/* Enable relevant interrupts */
839 	spi_writel(as, IER, SPI_BIT(OVRES));
840 
841 	/* Put the callback on the RX transfer only, that should finish last */
842 	rxdesc->callback = dma_callback;
843 	rxdesc->callback_param = host;
844 
845 	/* Submit and fire RX and TX with TX last so we're ready to read! */
846 	cookie = rxdesc->tx_submit(rxdesc);
847 	if (dma_submit_error(cookie))
848 		goto err_dma;
849 	cookie = txdesc->tx_submit(txdesc);
850 	if (dma_submit_error(cookie))
851 		goto err_dma;
852 	rxchan->device->device_issue_pending(rxchan);
853 	txchan->device->device_issue_pending(txchan);
854 
855 	return 0;
856 
857 err_dma:
858 	spi_writel(as, IDR, SPI_BIT(OVRES));
859 	atmel_spi_stop_dma(host);
860 err_exit:
861 	return -ENOMEM;
862 }
863 
864 static void atmel_spi_next_xfer_data(struct spi_controller *host,
865 				struct spi_transfer *xfer,
866 				dma_addr_t *tx_dma,
867 				dma_addr_t *rx_dma,
868 				u32 *plen)
869 {
870 	*rx_dma = xfer->rx_dma + xfer->len - *plen;
871 	*tx_dma = xfer->tx_dma + xfer->len - *plen;
872 	if (*plen > host->max_dma_len)
873 		*plen = host->max_dma_len;
874 }
875 
876 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
877 				    struct spi_device *spi,
878 				    struct spi_transfer *xfer)
879 {
880 	u32			scbr, csr;
881 	unsigned long		bus_hz;
882 	int chip_select;
883 
884 	if (spi_get_csgpiod(spi, 0))
885 		chip_select = as->native_cs_for_gpio;
886 	else
887 		chip_select = spi_get_chipselect(spi, 0);
888 
889 	/* v1 chips start out at half the peripheral bus speed. */
890 	bus_hz = as->spi_clk;
891 	if (!atmel_spi_is_v2(as))
892 		bus_hz /= 2;
893 
894 	/*
895 	 * Calculate the lowest divider that satisfies the
896 	 * constraint, assuming div32/fdiv/mbz == 0.
897 	 */
898 	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
899 
900 	/*
901 	 * If the resulting divider doesn't fit into the
902 	 * register bitfield, we can't satisfy the constraint.
903 	 */
904 	if (scbr >= (1 << SPI_SCBR_SIZE)) {
905 		dev_err(&spi->dev,
906 			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
907 			xfer->speed_hz, scbr, bus_hz/255);
908 		return -EINVAL;
909 	}
910 	if (scbr == 0) {
911 		dev_err(&spi->dev,
912 			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
913 			xfer->speed_hz, scbr, bus_hz);
914 		return -EINVAL;
915 	}
916 	csr = spi_readl(as, CSR0 + 4 * chip_select);
917 	csr = SPI_BFINS(SCBR, scbr, csr);
918 	spi_writel(as, CSR0 + 4 * chip_select, csr);
919 	xfer->effective_speed_hz = bus_hz / scbr;
920 
921 	return 0;
922 }
923 
924 /*
925  * Submit next transfer for PDC.
926  * lock is held, spi irq is blocked
927  */
928 static void atmel_spi_pdc_next_xfer(struct spi_controller *host,
929 					struct spi_transfer *xfer)
930 {
931 	struct atmel_spi	*as = spi_controller_get_devdata(host);
932 	u32			len;
933 	dma_addr_t		tx_dma, rx_dma;
934 
935 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
936 
937 	len = as->current_remaining_bytes;
938 	atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
939 	as->current_remaining_bytes -= len;
940 
941 	spi_writel(as, RPR, rx_dma);
942 	spi_writel(as, TPR, tx_dma);
943 
944 	if (xfer->bits_per_word > 8)
945 		len >>= 1;
946 	spi_writel(as, RCR, len);
947 	spi_writel(as, TCR, len);
948 
949 	dev_dbg(&host->dev,
950 		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
951 		xfer, xfer->len, xfer->tx_buf,
952 		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
953 		(unsigned long long)xfer->rx_dma);
954 
955 	if (as->current_remaining_bytes) {
956 		len = as->current_remaining_bytes;
957 		atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
958 		as->current_remaining_bytes -= len;
959 
960 		spi_writel(as, RNPR, rx_dma);
961 		spi_writel(as, TNPR, tx_dma);
962 
963 		if (xfer->bits_per_word > 8)
964 			len >>= 1;
965 		spi_writel(as, RNCR, len);
966 		spi_writel(as, TNCR, len);
967 
968 		dev_dbg(&host->dev,
969 			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
970 			xfer, xfer->len, xfer->tx_buf,
971 			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
972 			(unsigned long long)xfer->rx_dma);
973 	}
974 
975 	/* REVISIT: We're waiting for RXBUFF before we start the next
976 	 * transfer because we need to handle some difficult timing
977 	 * issues otherwise. If we wait for TXBUFE in one transfer and
978 	 * then starts waiting for RXBUFF in the next, it's difficult
979 	 * to tell the difference between the RXBUFF interrupt we're
980 	 * actually waiting for and the RXBUFF interrupt of the
981 	 * previous transfer.
982 	 *
983 	 * It should be doable, though. Just not now...
984 	 */
985 	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
986 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
987 }
988 
989 /*
990  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
991  *  - The buffer is either valid for CPU access, else NULL
992  *  - If the buffer is valid, so is its DMA address
993  *
994  * This driver manages the dma address unless message->is_dma_mapped.
995  */
996 static int
997 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
998 {
999 	struct device	*dev = &as->pdev->dev;
1000 
1001 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
1002 	if (xfer->tx_buf) {
1003 		/* tx_buf is a const void* where we need a void * for the dma
1004 		 * mapping */
1005 		void *nonconst_tx = (void *)xfer->tx_buf;
1006 
1007 		xfer->tx_dma = dma_map_single(dev,
1008 				nonconst_tx, xfer->len,
1009 				DMA_TO_DEVICE);
1010 		if (dma_mapping_error(dev, xfer->tx_dma))
1011 			return -ENOMEM;
1012 	}
1013 	if (xfer->rx_buf) {
1014 		xfer->rx_dma = dma_map_single(dev,
1015 				xfer->rx_buf, xfer->len,
1016 				DMA_FROM_DEVICE);
1017 		if (dma_mapping_error(dev, xfer->rx_dma)) {
1018 			if (xfer->tx_buf)
1019 				dma_unmap_single(dev,
1020 						xfer->tx_dma, xfer->len,
1021 						DMA_TO_DEVICE);
1022 			return -ENOMEM;
1023 		}
1024 	}
1025 	return 0;
1026 }
1027 
1028 static void atmel_spi_dma_unmap_xfer(struct spi_controller *host,
1029 				     struct spi_transfer *xfer)
1030 {
1031 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
1032 		dma_unmap_single(host->dev.parent, xfer->tx_dma,
1033 				 xfer->len, DMA_TO_DEVICE);
1034 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
1035 		dma_unmap_single(host->dev.parent, xfer->rx_dma,
1036 				 xfer->len, DMA_FROM_DEVICE);
1037 }
1038 
1039 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1040 {
1041 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1042 }
1043 
1044 static void
1045 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1046 {
1047 	u8		*rxp;
1048 	u16		*rxp16;
1049 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
1050 
1051 	if (xfer->bits_per_word > 8) {
1052 		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1053 		*rxp16 = spi_readl(as, RDR);
1054 	} else {
1055 		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1056 		*rxp = spi_readl(as, RDR);
1057 	}
1058 	if (xfer->bits_per_word > 8) {
1059 		if (as->current_remaining_bytes > 2)
1060 			as->current_remaining_bytes -= 2;
1061 		else
1062 			as->current_remaining_bytes = 0;
1063 	} else {
1064 		as->current_remaining_bytes--;
1065 	}
1066 }
1067 
1068 static void
1069 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1070 {
1071 	u32 fifolr = spi_readl(as, FLR);
1072 	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1073 	u32 offset = xfer->len - as->current_remaining_bytes;
1074 	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1075 	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1076 	u16 rd; /* RD field is the lowest 16 bits of RDR */
1077 
1078 	/* Update the number of remaining bytes to transfer */
1079 	num_bytes = ((xfer->bits_per_word > 8) ?
1080 		     (num_data << 1) :
1081 		     num_data);
1082 
1083 	if (as->current_remaining_bytes > num_bytes)
1084 		as->current_remaining_bytes -= num_bytes;
1085 	else
1086 		as->current_remaining_bytes = 0;
1087 
1088 	/* Handle odd number of bytes when data are more than 8bit width */
1089 	if (xfer->bits_per_word > 8)
1090 		as->current_remaining_bytes &= ~0x1;
1091 
1092 	/* Read data */
1093 	while (num_data) {
1094 		rd = spi_readl(as, RDR);
1095 		if (xfer->bits_per_word > 8)
1096 			*words++ = rd;
1097 		else
1098 			*bytes++ = rd;
1099 		num_data--;
1100 	}
1101 }
1102 
1103 /* Called from IRQ
1104  *
1105  * Must update "current_remaining_bytes" to keep track of data
1106  * to transfer.
1107  */
1108 static void
1109 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1110 {
1111 	if (as->fifo_size)
1112 		atmel_spi_pump_fifo_data(as, xfer);
1113 	else
1114 		atmel_spi_pump_single_data(as, xfer);
1115 }
1116 
1117 /* Interrupt
1118  *
1119  */
1120 static irqreturn_t
1121 atmel_spi_pio_interrupt(int irq, void *dev_id)
1122 {
1123 	struct spi_controller	*host = dev_id;
1124 	struct atmel_spi	*as = spi_controller_get_devdata(host);
1125 	u32			status, pending, imr;
1126 	struct spi_transfer	*xfer;
1127 	int			ret = IRQ_NONE;
1128 
1129 	imr = spi_readl(as, IMR);
1130 	status = spi_readl(as, SR);
1131 	pending = status & imr;
1132 
1133 	if (pending & SPI_BIT(OVRES)) {
1134 		ret = IRQ_HANDLED;
1135 		spi_writel(as, IDR, SPI_BIT(OVRES));
1136 		dev_warn(host->dev.parent, "overrun\n");
1137 
1138 		/*
1139 		 * When we get an overrun, we disregard the current
1140 		 * transfer. Data will not be copied back from any
1141 		 * bounce buffer and msg->actual_len will not be
1142 		 * updated with the last xfer.
1143 		 *
1144 		 * We will also not process any remaning transfers in
1145 		 * the message.
1146 		 */
1147 		as->done_status = -EIO;
1148 		smp_wmb();
1149 
1150 		/* Clear any overrun happening while cleaning up */
1151 		spi_readl(as, SR);
1152 
1153 		complete(&as->xfer_completion);
1154 
1155 	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1156 		atmel_spi_lock(as);
1157 
1158 		if (as->current_remaining_bytes) {
1159 			ret = IRQ_HANDLED;
1160 			xfer = as->current_transfer;
1161 			atmel_spi_pump_pio_data(as, xfer);
1162 			if (!as->current_remaining_bytes)
1163 				spi_writel(as, IDR, pending);
1164 
1165 			complete(&as->xfer_completion);
1166 		}
1167 
1168 		atmel_spi_unlock(as);
1169 	} else {
1170 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1171 		ret = IRQ_HANDLED;
1172 		spi_writel(as, IDR, pending);
1173 	}
1174 
1175 	return ret;
1176 }
1177 
1178 static irqreturn_t
1179 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1180 {
1181 	struct spi_controller	*host = dev_id;
1182 	struct atmel_spi	*as = spi_controller_get_devdata(host);
1183 	u32			status, pending, imr;
1184 	int			ret = IRQ_NONE;
1185 
1186 	imr = spi_readl(as, IMR);
1187 	status = spi_readl(as, SR);
1188 	pending = status & imr;
1189 
1190 	if (pending & SPI_BIT(OVRES)) {
1191 
1192 		ret = IRQ_HANDLED;
1193 
1194 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1195 				     | SPI_BIT(OVRES)));
1196 
1197 		/* Clear any overrun happening while cleaning up */
1198 		spi_readl(as, SR);
1199 
1200 		as->done_status = -EIO;
1201 
1202 		complete(&as->xfer_completion);
1203 
1204 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1205 		ret = IRQ_HANDLED;
1206 
1207 		spi_writel(as, IDR, pending);
1208 
1209 		complete(&as->xfer_completion);
1210 	}
1211 
1212 	return ret;
1213 }
1214 
1215 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1216 {
1217 	struct spi_delay *delay = &spi->word_delay;
1218 	u32 value = delay->value;
1219 
1220 	switch (delay->unit) {
1221 	case SPI_DELAY_UNIT_NSECS:
1222 		value /= 1000;
1223 		break;
1224 	case SPI_DELAY_UNIT_USECS:
1225 		break;
1226 	default:
1227 		return -EINVAL;
1228 	}
1229 
1230 	return (as->spi_clk / 1000000 * value) >> 5;
1231 }
1232 
1233 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1234 {
1235 	int i;
1236 	struct spi_controller *host = platform_get_drvdata(as->pdev);
1237 
1238 	if (!as->native_cs_free)
1239 		return; /* already initialized */
1240 
1241 	if (!host->cs_gpiods)
1242 		return; /* No CS GPIO */
1243 
1244 	/*
1245 	 * On the first version of the controller (AT91RM9200), CS0
1246 	 * can't be used associated with GPIO
1247 	 */
1248 	if (atmel_spi_is_v2(as))
1249 		i = 0;
1250 	else
1251 		i = 1;
1252 
1253 	for (; i < 4; i++)
1254 		if (host->cs_gpiods[i])
1255 			as->native_cs_free |= BIT(i);
1256 
1257 	if (as->native_cs_free)
1258 		as->native_cs_for_gpio = ffs(as->native_cs_free);
1259 }
1260 
1261 static int atmel_spi_setup(struct spi_device *spi)
1262 {
1263 	struct atmel_spi	*as;
1264 	struct atmel_spi_device	*asd;
1265 	u32			csr;
1266 	unsigned int		bits = spi->bits_per_word;
1267 	int chip_select;
1268 	int			word_delay_csr;
1269 
1270 	as = spi_controller_get_devdata(spi->controller);
1271 
1272 	/* see notes above re chipselect */
1273 	if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH)) {
1274 		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1275 		return -EINVAL;
1276 	}
1277 
1278 	/* Setup() is called during spi_register_controller(aka
1279 	 * spi_register_master) but after all membmers of the cs_gpiod
1280 	 * array have been filled, so we can looked for which native
1281 	 * CS will be free for using with GPIO
1282 	 */
1283 	initialize_native_cs_for_gpio(as);
1284 
1285 	if (spi_get_csgpiod(spi, 0) && as->native_cs_free) {
1286 		dev_err(&spi->dev,
1287 			"No native CS available to support this GPIO CS\n");
1288 		return -EBUSY;
1289 	}
1290 
1291 	if (spi_get_csgpiod(spi, 0))
1292 		chip_select = as->native_cs_for_gpio;
1293 	else
1294 		chip_select = spi_get_chipselect(spi, 0);
1295 
1296 	csr = SPI_BF(BITS, bits - 8);
1297 	if (spi->mode & SPI_CPOL)
1298 		csr |= SPI_BIT(CPOL);
1299 	if (!(spi->mode & SPI_CPHA))
1300 		csr |= SPI_BIT(NCPHA);
1301 
1302 	if (!spi_get_csgpiod(spi, 0))
1303 		csr |= SPI_BIT(CSAAT);
1304 	csr |= SPI_BF(DLYBS, 0);
1305 
1306 	word_delay_csr = atmel_word_delay_csr(spi, as);
1307 	if (word_delay_csr < 0)
1308 		return word_delay_csr;
1309 
1310 	/* DLYBCT adds delays between words.  This is useful for slow devices
1311 	 * that need a bit of time to setup the next transfer.
1312 	 */
1313 	csr |= SPI_BF(DLYBCT, word_delay_csr);
1314 
1315 	asd = spi->controller_state;
1316 	if (!asd) {
1317 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1318 		if (!asd)
1319 			return -ENOMEM;
1320 
1321 		spi->controller_state = asd;
1322 	}
1323 
1324 	asd->csr = csr;
1325 
1326 	dev_dbg(&spi->dev,
1327 		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1328 		bits, spi->mode, spi_get_chipselect(spi, 0), csr);
1329 
1330 	if (!atmel_spi_is_v2(as))
1331 		spi_writel(as, CSR0 + 4 * chip_select, csr);
1332 
1333 	return 0;
1334 }
1335 
1336 static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1337 {
1338 	struct atmel_spi *as = spi_controller_get_devdata(spi->controller);
1339 	/* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1340 	 * since we already have routines for activate/deactivate translate
1341 	 * high/low to active/inactive
1342 	 */
1343 	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1344 
1345 	if (enable) {
1346 		cs_activate(as, spi);
1347 	} else {
1348 		cs_deactivate(as, spi);
1349 	}
1350 
1351 }
1352 
1353 static int atmel_spi_one_transfer(struct spi_controller *host,
1354 					struct spi_device *spi,
1355 					struct spi_transfer *xfer)
1356 {
1357 	struct atmel_spi	*as;
1358 	u8			bits;
1359 	u32			len;
1360 	struct atmel_spi_device	*asd;
1361 	int			timeout;
1362 	int			ret;
1363 	unsigned int		dma_timeout;
1364 	long			ret_timeout;
1365 
1366 	as = spi_controller_get_devdata(host);
1367 
1368 	asd = spi->controller_state;
1369 	bits = (asd->csr >> 4) & 0xf;
1370 	if (bits != xfer->bits_per_word - 8) {
1371 		dev_dbg(&spi->dev,
1372 			"you can't yet change bits_per_word in transfers\n");
1373 		return -ENOPROTOOPT;
1374 	}
1375 
1376 	/*
1377 	 * DMA map early, for performance (empties dcache ASAP) and
1378 	 * better fault reporting.
1379 	 */
1380 	if ((!host->cur_msg->is_dma_mapped)
1381 		&& as->use_pdc) {
1382 		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1383 			return -ENOMEM;
1384 	}
1385 
1386 	atmel_spi_set_xfer_speed(as, spi, xfer);
1387 
1388 	as->done_status = 0;
1389 	as->current_transfer = xfer;
1390 	as->current_remaining_bytes = xfer->len;
1391 	while (as->current_remaining_bytes) {
1392 		reinit_completion(&as->xfer_completion);
1393 
1394 		if (as->use_pdc) {
1395 			atmel_spi_lock(as);
1396 			atmel_spi_pdc_next_xfer(host, xfer);
1397 			atmel_spi_unlock(as);
1398 		} else if (atmel_spi_use_dma(as, xfer)) {
1399 			len = as->current_remaining_bytes;
1400 			ret = atmel_spi_next_xfer_dma_submit(host,
1401 								xfer, &len);
1402 			if (ret) {
1403 				dev_err(&spi->dev,
1404 					"unable to use DMA, fallback to PIO\n");
1405 				as->done_status = ret;
1406 				break;
1407 			} else {
1408 				as->current_remaining_bytes -= len;
1409 				if (as->current_remaining_bytes < 0)
1410 					as->current_remaining_bytes = 0;
1411 			}
1412 		} else {
1413 			atmel_spi_lock(as);
1414 			atmel_spi_next_xfer_pio(host, xfer);
1415 			atmel_spi_unlock(as);
1416 		}
1417 
1418 		dma_timeout = msecs_to_jiffies(spi_controller_xfer_timeout(host, xfer));
1419 		ret_timeout = wait_for_completion_timeout(&as->xfer_completion, dma_timeout);
1420 		if (!ret_timeout) {
1421 			dev_err(&spi->dev, "spi transfer timeout\n");
1422 			as->done_status = -EIO;
1423 		}
1424 
1425 		if (as->done_status)
1426 			break;
1427 	}
1428 
1429 	if (as->done_status) {
1430 		if (as->use_pdc) {
1431 			dev_warn(host->dev.parent,
1432 				"overrun (%u/%u remaining)\n",
1433 				spi_readl(as, TCR), spi_readl(as, RCR));
1434 
1435 			/*
1436 			 * Clean up DMA registers and make sure the data
1437 			 * registers are empty.
1438 			 */
1439 			spi_writel(as, RNCR, 0);
1440 			spi_writel(as, TNCR, 0);
1441 			spi_writel(as, RCR, 0);
1442 			spi_writel(as, TCR, 0);
1443 			for (timeout = 1000; timeout; timeout--)
1444 				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1445 					break;
1446 			if (!timeout)
1447 				dev_warn(host->dev.parent,
1448 					 "timeout waiting for TXEMPTY");
1449 			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1450 				spi_readl(as, RDR);
1451 
1452 			/* Clear any overrun happening while cleaning up */
1453 			spi_readl(as, SR);
1454 
1455 		} else if (atmel_spi_use_dma(as, xfer)) {
1456 			atmel_spi_stop_dma(host);
1457 		}
1458 	}
1459 
1460 	if (!host->cur_msg->is_dma_mapped
1461 		&& as->use_pdc)
1462 		atmel_spi_dma_unmap_xfer(host, xfer);
1463 
1464 	if (as->use_pdc)
1465 		atmel_spi_disable_pdc_transfer(as);
1466 
1467 	return as->done_status;
1468 }
1469 
1470 static void atmel_spi_cleanup(struct spi_device *spi)
1471 {
1472 	struct atmel_spi_device	*asd = spi->controller_state;
1473 
1474 	if (!asd)
1475 		return;
1476 
1477 	spi->controller_state = NULL;
1478 	kfree(asd);
1479 }
1480 
1481 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1482 {
1483 	return spi_readl(as, VERSION) & 0x00000fff;
1484 }
1485 
1486 static void atmel_get_caps(struct atmel_spi *as)
1487 {
1488 	unsigned int version;
1489 
1490 	version = atmel_get_version(as);
1491 
1492 	as->caps.is_spi2 = version > 0x121;
1493 	as->caps.has_wdrbt = version >= 0x210;
1494 	as->caps.has_dma_support = version >= 0x212;
1495 	as->caps.has_pdc_support = version < 0x212;
1496 }
1497 
1498 static void atmel_spi_init(struct atmel_spi *as)
1499 {
1500 	spi_writel(as, CR, SPI_BIT(SWRST));
1501 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1502 
1503 	/* It is recommended to enable FIFOs first thing after reset */
1504 	if (as->fifo_size)
1505 		spi_writel(as, CR, SPI_BIT(FIFOEN));
1506 
1507 	if (as->caps.has_wdrbt) {
1508 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1509 				| SPI_BIT(MSTR));
1510 	} else {
1511 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1512 	}
1513 
1514 	if (as->use_pdc)
1515 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1516 	spi_writel(as, CR, SPI_BIT(SPIEN));
1517 }
1518 
1519 static int atmel_spi_probe(struct platform_device *pdev)
1520 {
1521 	struct resource		*regs;
1522 	int			irq;
1523 	struct clk		*clk;
1524 	int			ret;
1525 	struct spi_controller	*host;
1526 	struct atmel_spi	*as;
1527 
1528 	/* Select default pin state */
1529 	pinctrl_pm_select_default_state(&pdev->dev);
1530 
1531 	irq = platform_get_irq(pdev, 0);
1532 	if (irq < 0)
1533 		return irq;
1534 
1535 	clk = devm_clk_get(&pdev->dev, "spi_clk");
1536 	if (IS_ERR(clk))
1537 		return PTR_ERR(clk);
1538 
1539 	/* setup spi core then atmel-specific driver state */
1540 	host = spi_alloc_host(&pdev->dev, sizeof(*as));
1541 	if (!host)
1542 		return -ENOMEM;
1543 
1544 	/* the spi->mode bits understood by this driver: */
1545 	host->use_gpio_descriptors = true;
1546 	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1547 	host->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1548 	host->dev.of_node = pdev->dev.of_node;
1549 	host->bus_num = pdev->id;
1550 	host->num_chipselect = 4;
1551 	host->setup = atmel_spi_setup;
1552 	host->flags = (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX |
1553 			SPI_CONTROLLER_GPIO_SS);
1554 	host->transfer_one = atmel_spi_one_transfer;
1555 	host->set_cs = atmel_spi_set_cs;
1556 	host->cleanup = atmel_spi_cleanup;
1557 	host->auto_runtime_pm = true;
1558 	host->max_dma_len = SPI_MAX_DMA_XFER;
1559 	host->can_dma = atmel_spi_can_dma;
1560 	platform_set_drvdata(pdev, host);
1561 
1562 	as = spi_controller_get_devdata(host);
1563 
1564 	spin_lock_init(&as->lock);
1565 
1566 	as->pdev = pdev;
1567 	as->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
1568 	if (IS_ERR(as->regs)) {
1569 		ret = PTR_ERR(as->regs);
1570 		goto out_unmap_regs;
1571 	}
1572 	as->phybase = regs->start;
1573 	as->irq = irq;
1574 	as->clk = clk;
1575 
1576 	init_completion(&as->xfer_completion);
1577 
1578 	atmel_get_caps(as);
1579 
1580 	as->use_dma = false;
1581 	as->use_pdc = false;
1582 	if (as->caps.has_dma_support) {
1583 		ret = atmel_spi_configure_dma(host, as);
1584 		if (ret == 0) {
1585 			as->use_dma = true;
1586 		} else if (ret == -EPROBE_DEFER) {
1587 			goto out_unmap_regs;
1588 		}
1589 	} else if (as->caps.has_pdc_support) {
1590 		as->use_pdc = true;
1591 	}
1592 
1593 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1594 		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1595 						      SPI_MAX_DMA_XFER,
1596 						      &as->dma_addr_rx_bbuf,
1597 						      GFP_KERNEL | GFP_DMA);
1598 		if (!as->addr_rx_bbuf) {
1599 			as->use_dma = false;
1600 		} else {
1601 			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1602 					SPI_MAX_DMA_XFER,
1603 					&as->dma_addr_tx_bbuf,
1604 					GFP_KERNEL | GFP_DMA);
1605 			if (!as->addr_tx_bbuf) {
1606 				as->use_dma = false;
1607 				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1608 						  as->addr_rx_bbuf,
1609 						  as->dma_addr_rx_bbuf);
1610 			}
1611 		}
1612 		if (!as->use_dma)
1613 			dev_info(host->dev.parent,
1614 				 "  can not allocate dma coherent memory\n");
1615 	}
1616 
1617 	if (as->caps.has_dma_support && !as->use_dma)
1618 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1619 
1620 	if (as->use_pdc) {
1621 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1622 					0, dev_name(&pdev->dev), host);
1623 	} else {
1624 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1625 					0, dev_name(&pdev->dev), host);
1626 	}
1627 	if (ret)
1628 		goto out_unmap_regs;
1629 
1630 	/* Initialize the hardware */
1631 	ret = clk_prepare_enable(clk);
1632 	if (ret)
1633 		goto out_free_irq;
1634 
1635 	as->spi_clk = clk_get_rate(clk);
1636 
1637 	as->fifo_size = 0;
1638 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1639 				  &as->fifo_size)) {
1640 		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1641 	}
1642 
1643 	atmel_spi_init(as);
1644 
1645 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1646 	pm_runtime_use_autosuspend(&pdev->dev);
1647 	pm_runtime_set_active(&pdev->dev);
1648 	pm_runtime_enable(&pdev->dev);
1649 
1650 	ret = devm_spi_register_controller(&pdev->dev, host);
1651 	if (ret)
1652 		goto out_free_dma;
1653 
1654 	/* go! */
1655 	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1656 			atmel_get_version(as), (unsigned long)regs->start,
1657 			irq);
1658 
1659 	return 0;
1660 
1661 out_free_dma:
1662 	pm_runtime_disable(&pdev->dev);
1663 	pm_runtime_set_suspended(&pdev->dev);
1664 
1665 	if (as->use_dma)
1666 		atmel_spi_release_dma(host);
1667 
1668 	spi_writel(as, CR, SPI_BIT(SWRST));
1669 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1670 	clk_disable_unprepare(clk);
1671 out_free_irq:
1672 out_unmap_regs:
1673 	spi_controller_put(host);
1674 	return ret;
1675 }
1676 
1677 static void atmel_spi_remove(struct platform_device *pdev)
1678 {
1679 	struct spi_controller	*host = platform_get_drvdata(pdev);
1680 	struct atmel_spi	*as = spi_controller_get_devdata(host);
1681 
1682 	pm_runtime_get_sync(&pdev->dev);
1683 
1684 	/* reset the hardware and block queue progress */
1685 	if (as->use_dma) {
1686 		atmel_spi_stop_dma(host);
1687 		atmel_spi_release_dma(host);
1688 		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1689 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1690 					  as->addr_tx_bbuf,
1691 					  as->dma_addr_tx_bbuf);
1692 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1693 					  as->addr_rx_bbuf,
1694 					  as->dma_addr_rx_bbuf);
1695 		}
1696 	}
1697 
1698 	spin_lock_irq(&as->lock);
1699 	spi_writel(as, CR, SPI_BIT(SWRST));
1700 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1701 	spi_readl(as, SR);
1702 	spin_unlock_irq(&as->lock);
1703 
1704 	clk_disable_unprepare(as->clk);
1705 
1706 	pm_runtime_put_noidle(&pdev->dev);
1707 	pm_runtime_disable(&pdev->dev);
1708 }
1709 
1710 static int atmel_spi_runtime_suspend(struct device *dev)
1711 {
1712 	struct spi_controller *host = dev_get_drvdata(dev);
1713 	struct atmel_spi *as = spi_controller_get_devdata(host);
1714 
1715 	clk_disable_unprepare(as->clk);
1716 	pinctrl_pm_select_sleep_state(dev);
1717 
1718 	return 0;
1719 }
1720 
1721 static int atmel_spi_runtime_resume(struct device *dev)
1722 {
1723 	struct spi_controller *host = dev_get_drvdata(dev);
1724 	struct atmel_spi *as = spi_controller_get_devdata(host);
1725 
1726 	pinctrl_pm_select_default_state(dev);
1727 
1728 	return clk_prepare_enable(as->clk);
1729 }
1730 
1731 static int atmel_spi_suspend(struct device *dev)
1732 {
1733 	struct spi_controller *host = dev_get_drvdata(dev);
1734 	int ret;
1735 
1736 	/* Stop the queue running */
1737 	ret = spi_controller_suspend(host);
1738 	if (ret)
1739 		return ret;
1740 
1741 	if (!pm_runtime_suspended(dev))
1742 		atmel_spi_runtime_suspend(dev);
1743 
1744 	return 0;
1745 }
1746 
1747 static int atmel_spi_resume(struct device *dev)
1748 {
1749 	struct spi_controller *host = dev_get_drvdata(dev);
1750 	struct atmel_spi *as = spi_controller_get_devdata(host);
1751 	int ret;
1752 
1753 	ret = clk_prepare_enable(as->clk);
1754 	if (ret)
1755 		return ret;
1756 
1757 	atmel_spi_init(as);
1758 
1759 	clk_disable_unprepare(as->clk);
1760 
1761 	if (!pm_runtime_suspended(dev)) {
1762 		ret = atmel_spi_runtime_resume(dev);
1763 		if (ret)
1764 			return ret;
1765 	}
1766 
1767 	/* Start the queue running */
1768 	return spi_controller_resume(host);
1769 }
1770 
1771 static const struct dev_pm_ops atmel_spi_pm_ops = {
1772 	SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1773 	RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1774 		       atmel_spi_runtime_resume, NULL)
1775 };
1776 
1777 static const struct of_device_id atmel_spi_dt_ids[] = {
1778 	{ .compatible = "atmel,at91rm9200-spi" },
1779 	{ /* sentinel */ }
1780 };
1781 
1782 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1783 
1784 static struct platform_driver atmel_spi_driver = {
1785 	.driver		= {
1786 		.name	= "atmel_spi",
1787 		.pm	= pm_ptr(&atmel_spi_pm_ops),
1788 		.of_match_table	= atmel_spi_dt_ids,
1789 	},
1790 	.probe		= atmel_spi_probe,
1791 	.remove_new	= atmel_spi_remove,
1792 };
1793 module_platform_driver(atmel_spi_driver);
1794 
1795 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1796 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1797 MODULE_LICENSE("GPL");
1798 MODULE_ALIAS("platform:atmel_spi");
1799