xref: /openbmc/linux/drivers/spi/spi-atmel.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <trace/events/spi.h>
26 
27 /* SPI register offsets */
28 #define SPI_CR					0x0000
29 #define SPI_MR					0x0004
30 #define SPI_RDR					0x0008
31 #define SPI_TDR					0x000c
32 #define SPI_SR					0x0010
33 #define SPI_IER					0x0014
34 #define SPI_IDR					0x0018
35 #define SPI_IMR					0x001c
36 #define SPI_CSR0				0x0030
37 #define SPI_CSR1				0x0034
38 #define SPI_CSR2				0x0038
39 #define SPI_CSR3				0x003c
40 #define SPI_FMR					0x0040
41 #define SPI_FLR					0x0044
42 #define SPI_VERSION				0x00fc
43 #define SPI_RPR					0x0100
44 #define SPI_RCR					0x0104
45 #define SPI_TPR					0x0108
46 #define SPI_TCR					0x010c
47 #define SPI_RNPR				0x0110
48 #define SPI_RNCR				0x0114
49 #define SPI_TNPR				0x0118
50 #define SPI_TNCR				0x011c
51 #define SPI_PTCR				0x0120
52 #define SPI_PTSR				0x0124
53 
54 /* Bitfields in CR */
55 #define SPI_SPIEN_OFFSET			0
56 #define SPI_SPIEN_SIZE				1
57 #define SPI_SPIDIS_OFFSET			1
58 #define SPI_SPIDIS_SIZE				1
59 #define SPI_SWRST_OFFSET			7
60 #define SPI_SWRST_SIZE				1
61 #define SPI_LASTXFER_OFFSET			24
62 #define SPI_LASTXFER_SIZE			1
63 #define SPI_TXFCLR_OFFSET			16
64 #define SPI_TXFCLR_SIZE				1
65 #define SPI_RXFCLR_OFFSET			17
66 #define SPI_RXFCLR_SIZE				1
67 #define SPI_FIFOEN_OFFSET			30
68 #define SPI_FIFOEN_SIZE				1
69 #define SPI_FIFODIS_OFFSET			31
70 #define SPI_FIFODIS_SIZE			1
71 
72 /* Bitfields in MR */
73 #define SPI_MSTR_OFFSET				0
74 #define SPI_MSTR_SIZE				1
75 #define SPI_PS_OFFSET				1
76 #define SPI_PS_SIZE				1
77 #define SPI_PCSDEC_OFFSET			2
78 #define SPI_PCSDEC_SIZE				1
79 #define SPI_FDIV_OFFSET				3
80 #define SPI_FDIV_SIZE				1
81 #define SPI_MODFDIS_OFFSET			4
82 #define SPI_MODFDIS_SIZE			1
83 #define SPI_WDRBT_OFFSET			5
84 #define SPI_WDRBT_SIZE				1
85 #define SPI_LLB_OFFSET				7
86 #define SPI_LLB_SIZE				1
87 #define SPI_PCS_OFFSET				16
88 #define SPI_PCS_SIZE				4
89 #define SPI_DLYBCS_OFFSET			24
90 #define SPI_DLYBCS_SIZE				8
91 
92 /* Bitfields in RDR */
93 #define SPI_RD_OFFSET				0
94 #define SPI_RD_SIZE				16
95 
96 /* Bitfields in TDR */
97 #define SPI_TD_OFFSET				0
98 #define SPI_TD_SIZE				16
99 
100 /* Bitfields in SR */
101 #define SPI_RDRF_OFFSET				0
102 #define SPI_RDRF_SIZE				1
103 #define SPI_TDRE_OFFSET				1
104 #define SPI_TDRE_SIZE				1
105 #define SPI_MODF_OFFSET				2
106 #define SPI_MODF_SIZE				1
107 #define SPI_OVRES_OFFSET			3
108 #define SPI_OVRES_SIZE				1
109 #define SPI_ENDRX_OFFSET			4
110 #define SPI_ENDRX_SIZE				1
111 #define SPI_ENDTX_OFFSET			5
112 #define SPI_ENDTX_SIZE				1
113 #define SPI_RXBUFF_OFFSET			6
114 #define SPI_RXBUFF_SIZE				1
115 #define SPI_TXBUFE_OFFSET			7
116 #define SPI_TXBUFE_SIZE				1
117 #define SPI_NSSR_OFFSET				8
118 #define SPI_NSSR_SIZE				1
119 #define SPI_TXEMPTY_OFFSET			9
120 #define SPI_TXEMPTY_SIZE			1
121 #define SPI_SPIENS_OFFSET			16
122 #define SPI_SPIENS_SIZE				1
123 #define SPI_TXFEF_OFFSET			24
124 #define SPI_TXFEF_SIZE				1
125 #define SPI_TXFFF_OFFSET			25
126 #define SPI_TXFFF_SIZE				1
127 #define SPI_TXFTHF_OFFSET			26
128 #define SPI_TXFTHF_SIZE				1
129 #define SPI_RXFEF_OFFSET			27
130 #define SPI_RXFEF_SIZE				1
131 #define SPI_RXFFF_OFFSET			28
132 #define SPI_RXFFF_SIZE				1
133 #define SPI_RXFTHF_OFFSET			29
134 #define SPI_RXFTHF_SIZE				1
135 #define SPI_TXFPTEF_OFFSET			30
136 #define SPI_TXFPTEF_SIZE			1
137 #define SPI_RXFPTEF_OFFSET			31
138 #define SPI_RXFPTEF_SIZE			1
139 
140 /* Bitfields in CSR0 */
141 #define SPI_CPOL_OFFSET				0
142 #define SPI_CPOL_SIZE				1
143 #define SPI_NCPHA_OFFSET			1
144 #define SPI_NCPHA_SIZE				1
145 #define SPI_CSAAT_OFFSET			3
146 #define SPI_CSAAT_SIZE				1
147 #define SPI_BITS_OFFSET				4
148 #define SPI_BITS_SIZE				4
149 #define SPI_SCBR_OFFSET				8
150 #define SPI_SCBR_SIZE				8
151 #define SPI_DLYBS_OFFSET			16
152 #define SPI_DLYBS_SIZE				8
153 #define SPI_DLYBCT_OFFSET			24
154 #define SPI_DLYBCT_SIZE				8
155 
156 /* Bitfields in RCR */
157 #define SPI_RXCTR_OFFSET			0
158 #define SPI_RXCTR_SIZE				16
159 
160 /* Bitfields in TCR */
161 #define SPI_TXCTR_OFFSET			0
162 #define SPI_TXCTR_SIZE				16
163 
164 /* Bitfields in RNCR */
165 #define SPI_RXNCR_OFFSET			0
166 #define SPI_RXNCR_SIZE				16
167 
168 /* Bitfields in TNCR */
169 #define SPI_TXNCR_OFFSET			0
170 #define SPI_TXNCR_SIZE				16
171 
172 /* Bitfields in PTCR */
173 #define SPI_RXTEN_OFFSET			0
174 #define SPI_RXTEN_SIZE				1
175 #define SPI_RXTDIS_OFFSET			1
176 #define SPI_RXTDIS_SIZE				1
177 #define SPI_TXTEN_OFFSET			8
178 #define SPI_TXTEN_SIZE				1
179 #define SPI_TXTDIS_OFFSET			9
180 #define SPI_TXTDIS_SIZE				1
181 
182 /* Bitfields in FMR */
183 #define SPI_TXRDYM_OFFSET			0
184 #define SPI_TXRDYM_SIZE				2
185 #define SPI_RXRDYM_OFFSET			4
186 #define SPI_RXRDYM_SIZE				2
187 #define SPI_TXFTHRES_OFFSET			16
188 #define SPI_TXFTHRES_SIZE			6
189 #define SPI_RXFTHRES_OFFSET			24
190 #define SPI_RXFTHRES_SIZE			6
191 
192 /* Bitfields in FLR */
193 #define SPI_TXFL_OFFSET				0
194 #define SPI_TXFL_SIZE				6
195 #define SPI_RXFL_OFFSET				16
196 #define SPI_RXFL_SIZE				6
197 
198 /* Constants for BITS */
199 #define SPI_BITS_8_BPT				0
200 #define SPI_BITS_9_BPT				1
201 #define SPI_BITS_10_BPT				2
202 #define SPI_BITS_11_BPT				3
203 #define SPI_BITS_12_BPT				4
204 #define SPI_BITS_13_BPT				5
205 #define SPI_BITS_14_BPT				6
206 #define SPI_BITS_15_BPT				7
207 #define SPI_BITS_16_BPT				8
208 #define SPI_ONE_DATA				0
209 #define SPI_TWO_DATA				1
210 #define SPI_FOUR_DATA				2
211 
212 /* Bit manipulation macros */
213 #define SPI_BIT(name) \
214 	(1 << SPI_##name##_OFFSET)
215 #define SPI_BF(name, value) \
216 	(((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217 #define SPI_BFEXT(name, value) \
218 	(((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219 #define SPI_BFINS(name, value, old) \
220 	(((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221 	  | SPI_BF(name, value))
222 
223 /* Register access macros */
224 #define spi_readl(port, reg) \
225 	readl_relaxed((port)->regs + SPI_##reg)
226 #define spi_writel(port, reg, value) \
227 	writel_relaxed((value), (port)->regs + SPI_##reg)
228 #define spi_writew(port, reg, value) \
229 	writew_relaxed((value), (port)->regs + SPI_##reg)
230 
231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232  * cache operations; better heuristics consider wordsize and bitrate.
233  */
234 #define DMA_MIN_BYTES	16
235 
236 #define SPI_DMA_TIMEOUT		(msecs_to_jiffies(1000))
237 
238 #define AUTOSUSPEND_TIMEOUT	2000
239 
240 struct atmel_spi_caps {
241 	bool	is_spi2;
242 	bool	has_wdrbt;
243 	bool	has_dma_support;
244 	bool	has_pdc_support;
245 };
246 
247 /*
248  * The core SPI transfer engine just talks to a register bank to set up
249  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
250  * framework provides the base clock, subdivided for each spi_device.
251  */
252 struct atmel_spi {
253 	spinlock_t		lock;
254 	unsigned long		flags;
255 
256 	phys_addr_t		phybase;
257 	void __iomem		*regs;
258 	int			irq;
259 	struct clk		*clk;
260 	struct platform_device	*pdev;
261 	unsigned long		spi_clk;
262 
263 	struct spi_transfer	*current_transfer;
264 	int			current_remaining_bytes;
265 	int			done_status;
266 	dma_addr_t		dma_addr_rx_bbuf;
267 	dma_addr_t		dma_addr_tx_bbuf;
268 	void			*addr_rx_bbuf;
269 	void			*addr_tx_bbuf;
270 
271 	struct completion	xfer_completion;
272 
273 	struct atmel_spi_caps	caps;
274 
275 	bool			use_dma;
276 	bool			use_pdc;
277 
278 	bool			keep_cs;
279 
280 	u32			fifo_size;
281 	u8			native_cs_free;
282 	u8			native_cs_for_gpio;
283 };
284 
285 /* Controller-specific per-slave state */
286 struct atmel_spi_device {
287 	u32			csr;
288 };
289 
290 #define SPI_MAX_DMA_XFER	65535 /* true for both PDC and DMA */
291 #define INVALID_DMA_ADDRESS	0xffffffff
292 
293 /*
294  * Version 2 of the SPI controller has
295  *  - CR.LASTXFER
296  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
297  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
298  *  - SPI_CSRx.CSAAT
299  *  - SPI_CSRx.SBCR allows faster clocking
300  */
301 static bool atmel_spi_is_v2(struct atmel_spi *as)
302 {
303 	return as->caps.is_spi2;
304 }
305 
306 /*
307  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
308  * they assume that spi slave device state will not change on deselect, so
309  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
310  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
311  * controllers have CSAAT and friends.
312  *
313  * Even controller newer than ar91rm9200, using GPIOs can make sens as
314  * it lets us support active-high chipselects despite the controller's
315  * belief that only active-low devices/systems exists.
316  *
317  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
318  * right when driven with GPIO.  ("Mode Fault does not allow more than one
319  * Master on Chip Select 0.")  No workaround exists for that ... so for
320  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
321  * and (c) will trigger that first erratum in some cases.
322  */
323 
324 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
325 {
326 	struct atmel_spi_device *asd = spi->controller_state;
327 	int chip_select;
328 	u32 mr;
329 
330 	if (spi->cs_gpiod)
331 		chip_select = as->native_cs_for_gpio;
332 	else
333 		chip_select = spi->chip_select;
334 
335 	if (atmel_spi_is_v2(as)) {
336 		spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
337 		/* For the low SPI version, there is a issue that PDC transfer
338 		 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
339 		 */
340 		spi_writel(as, CSR0, asd->csr);
341 		if (as->caps.has_wdrbt) {
342 			spi_writel(as, MR,
343 					SPI_BF(PCS, ~(0x01 << chip_select))
344 					| SPI_BIT(WDRBT)
345 					| SPI_BIT(MODFDIS)
346 					| SPI_BIT(MSTR));
347 		} else {
348 			spi_writel(as, MR,
349 					SPI_BF(PCS, ~(0x01 << chip_select))
350 					| SPI_BIT(MODFDIS)
351 					| SPI_BIT(MSTR));
352 		}
353 
354 		mr = spi_readl(as, MR);
355 		if (spi->cs_gpiod)
356 			gpiod_set_value(spi->cs_gpiod, 1);
357 	} else {
358 		u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
359 		int i;
360 		u32 csr;
361 
362 		/* Make sure clock polarity is correct */
363 		for (i = 0; i < spi->master->num_chipselect; i++) {
364 			csr = spi_readl(as, CSR0 + 4 * i);
365 			if ((csr ^ cpol) & SPI_BIT(CPOL))
366 				spi_writel(as, CSR0 + 4 * i,
367 						csr ^ SPI_BIT(CPOL));
368 		}
369 
370 		mr = spi_readl(as, MR);
371 		mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
372 		if (spi->cs_gpiod)
373 			gpiod_set_value(spi->cs_gpiod, 1);
374 		spi_writel(as, MR, mr);
375 	}
376 
377 	dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
378 }
379 
380 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
381 {
382 	int chip_select;
383 	u32 mr;
384 
385 	if (spi->cs_gpiod)
386 		chip_select = as->native_cs_for_gpio;
387 	else
388 		chip_select = spi->chip_select;
389 
390 	/* only deactivate *this* device; sometimes transfers to
391 	 * another device may be active when this routine is called.
392 	 */
393 	mr = spi_readl(as, MR);
394 	if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
395 		mr = SPI_BFINS(PCS, 0xf, mr);
396 		spi_writel(as, MR, mr);
397 	}
398 
399 	dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
400 
401 	if (!spi->cs_gpiod)
402 		spi_writel(as, CR, SPI_BIT(LASTXFER));
403 	else
404 		gpiod_set_value(spi->cs_gpiod, 0);
405 }
406 
407 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
408 {
409 	spin_lock_irqsave(&as->lock, as->flags);
410 }
411 
412 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
413 {
414 	spin_unlock_irqrestore(&as->lock, as->flags);
415 }
416 
417 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
418 {
419 	return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
420 }
421 
422 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
423 				struct spi_transfer *xfer)
424 {
425 	return as->use_dma && xfer->len >= DMA_MIN_BYTES;
426 }
427 
428 static bool atmel_spi_can_dma(struct spi_master *master,
429 			      struct spi_device *spi,
430 			      struct spi_transfer *xfer)
431 {
432 	struct atmel_spi *as = spi_master_get_devdata(master);
433 
434 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
435 		return atmel_spi_use_dma(as, xfer) &&
436 			!atmel_spi_is_vmalloc_xfer(xfer);
437 	else
438 		return atmel_spi_use_dma(as, xfer);
439 
440 }
441 
442 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
443 				struct dma_slave_config *slave_config,
444 				u8 bits_per_word)
445 {
446 	struct spi_master *master = platform_get_drvdata(as->pdev);
447 	int err = 0;
448 
449 	if (bits_per_word > 8) {
450 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
451 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
452 	} else {
453 		slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
454 		slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
455 	}
456 
457 	slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
458 	slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
459 	slave_config->src_maxburst = 1;
460 	slave_config->dst_maxburst = 1;
461 	slave_config->device_fc = false;
462 
463 	/*
464 	 * This driver uses fixed peripheral select mode (PS bit set to '0' in
465 	 * the Mode Register).
466 	 * So according to the datasheet, when FIFOs are available (and
467 	 * enabled), the Transmit FIFO operates in Multiple Data Mode.
468 	 * In this mode, up to 2 data, not 4, can be written into the Transmit
469 	 * Data Register in a single access.
470 	 * However, the first data has to be written into the lowest 16 bits and
471 	 * the second data into the highest 16 bits of the Transmit
472 	 * Data Register. For 8bit data (the most frequent case), it would
473 	 * require to rework tx_buf so each data would actualy fit 16 bits.
474 	 * So we'd rather write only one data at the time. Hence the transmit
475 	 * path works the same whether FIFOs are available (and enabled) or not.
476 	 */
477 	slave_config->direction = DMA_MEM_TO_DEV;
478 	if (dmaengine_slave_config(master->dma_tx, slave_config)) {
479 		dev_err(&as->pdev->dev,
480 			"failed to configure tx dma channel\n");
481 		err = -EINVAL;
482 	}
483 
484 	/*
485 	 * This driver configures the spi controller for master mode (MSTR bit
486 	 * set to '1' in the Mode Register).
487 	 * So according to the datasheet, when FIFOs are available (and
488 	 * enabled), the Receive FIFO operates in Single Data Mode.
489 	 * So the receive path works the same whether FIFOs are available (and
490 	 * enabled) or not.
491 	 */
492 	slave_config->direction = DMA_DEV_TO_MEM;
493 	if (dmaengine_slave_config(master->dma_rx, slave_config)) {
494 		dev_err(&as->pdev->dev,
495 			"failed to configure rx dma channel\n");
496 		err = -EINVAL;
497 	}
498 
499 	return err;
500 }
501 
502 static int atmel_spi_configure_dma(struct spi_master *master,
503 				   struct atmel_spi *as)
504 {
505 	struct dma_slave_config	slave_config;
506 	struct device *dev = &as->pdev->dev;
507 	int err;
508 
509 	master->dma_tx = dma_request_chan(dev, "tx");
510 	if (IS_ERR(master->dma_tx)) {
511 		err = PTR_ERR(master->dma_tx);
512 		dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
513 		goto error_clear;
514 	}
515 
516 	master->dma_rx = dma_request_chan(dev, "rx");
517 	if (IS_ERR(master->dma_rx)) {
518 		err = PTR_ERR(master->dma_rx);
519 		/*
520 		 * No reason to check EPROBE_DEFER here since we have already
521 		 * requested tx channel.
522 		 */
523 		dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
524 		goto error;
525 	}
526 
527 	err = atmel_spi_dma_slave_config(as, &slave_config, 8);
528 	if (err)
529 		goto error;
530 
531 	dev_info(&as->pdev->dev,
532 			"Using %s (tx) and %s (rx) for DMA transfers\n",
533 			dma_chan_name(master->dma_tx),
534 			dma_chan_name(master->dma_rx));
535 
536 	return 0;
537 error:
538 	if (!IS_ERR(master->dma_rx))
539 		dma_release_channel(master->dma_rx);
540 	if (!IS_ERR(master->dma_tx))
541 		dma_release_channel(master->dma_tx);
542 error_clear:
543 	master->dma_tx = master->dma_rx = NULL;
544 	return err;
545 }
546 
547 static void atmel_spi_stop_dma(struct spi_master *master)
548 {
549 	if (master->dma_rx)
550 		dmaengine_terminate_all(master->dma_rx);
551 	if (master->dma_tx)
552 		dmaengine_terminate_all(master->dma_tx);
553 }
554 
555 static void atmel_spi_release_dma(struct spi_master *master)
556 {
557 	if (master->dma_rx) {
558 		dma_release_channel(master->dma_rx);
559 		master->dma_rx = NULL;
560 	}
561 	if (master->dma_tx) {
562 		dma_release_channel(master->dma_tx);
563 		master->dma_tx = NULL;
564 	}
565 }
566 
567 /* This function is called by the DMA driver from tasklet context */
568 static void dma_callback(void *data)
569 {
570 	struct spi_master	*master = data;
571 	struct atmel_spi	*as = spi_master_get_devdata(master);
572 
573 	if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
574 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
575 		memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
576 		       as->current_transfer->len);
577 	}
578 	complete(&as->xfer_completion);
579 }
580 
581 /*
582  * Next transfer using PIO without FIFO.
583  */
584 static void atmel_spi_next_xfer_single(struct spi_master *master,
585 				       struct spi_transfer *xfer)
586 {
587 	struct atmel_spi	*as = spi_master_get_devdata(master);
588 	unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
589 
590 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
591 
592 	/* Make sure data is not remaining in RDR */
593 	spi_readl(as, RDR);
594 	while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
595 		spi_readl(as, RDR);
596 		cpu_relax();
597 	}
598 
599 	if (xfer->bits_per_word > 8)
600 		spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
601 	else
602 		spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
603 
604 	dev_dbg(master->dev.parent,
605 		"  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
606 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
607 		xfer->bits_per_word);
608 
609 	/* Enable relevant interrupts */
610 	spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
611 }
612 
613 /*
614  * Next transfer using PIO with FIFO.
615  */
616 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
617 				     struct spi_transfer *xfer)
618 {
619 	struct atmel_spi *as = spi_master_get_devdata(master);
620 	u32 current_remaining_data, num_data;
621 	u32 offset = xfer->len - as->current_remaining_bytes;
622 	const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
623 	const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
624 	u16 td0, td1;
625 	u32 fifomr;
626 
627 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
628 
629 	/* Compute the number of data to transfer in the current iteration */
630 	current_remaining_data = ((xfer->bits_per_word > 8) ?
631 				  ((u32)as->current_remaining_bytes >> 1) :
632 				  (u32)as->current_remaining_bytes);
633 	num_data = min(current_remaining_data, as->fifo_size);
634 
635 	/* Flush RX and TX FIFOs */
636 	spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
637 	while (spi_readl(as, FLR))
638 		cpu_relax();
639 
640 	/* Set RX FIFO Threshold to the number of data to transfer */
641 	fifomr = spi_readl(as, FMR);
642 	spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
643 
644 	/* Clear FIFO flags in the Status Register, especially RXFTHF */
645 	(void)spi_readl(as, SR);
646 
647 	/* Fill TX FIFO */
648 	while (num_data >= 2) {
649 		if (xfer->bits_per_word > 8) {
650 			td0 = *words++;
651 			td1 = *words++;
652 		} else {
653 			td0 = *bytes++;
654 			td1 = *bytes++;
655 		}
656 
657 		spi_writel(as, TDR, (td1 << 16) | td0);
658 		num_data -= 2;
659 	}
660 
661 	if (num_data) {
662 		if (xfer->bits_per_word > 8)
663 			td0 = *words++;
664 		else
665 			td0 = *bytes++;
666 
667 		spi_writew(as, TDR, td0);
668 		num_data--;
669 	}
670 
671 	dev_dbg(master->dev.parent,
672 		"  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
673 		xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
674 		xfer->bits_per_word);
675 
676 	/*
677 	 * Enable RX FIFO Threshold Flag interrupt to be notified about
678 	 * transfer completion.
679 	 */
680 	spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
681 }
682 
683 /*
684  * Next transfer using PIO.
685  */
686 static void atmel_spi_next_xfer_pio(struct spi_master *master,
687 				    struct spi_transfer *xfer)
688 {
689 	struct atmel_spi *as = spi_master_get_devdata(master);
690 
691 	if (as->fifo_size)
692 		atmel_spi_next_xfer_fifo(master, xfer);
693 	else
694 		atmel_spi_next_xfer_single(master, xfer);
695 }
696 
697 /*
698  * Submit next transfer for DMA.
699  */
700 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
701 				struct spi_transfer *xfer,
702 				u32 *plen)
703 {
704 	struct atmel_spi	*as = spi_master_get_devdata(master);
705 	struct dma_chan		*rxchan = master->dma_rx;
706 	struct dma_chan		*txchan = master->dma_tx;
707 	struct dma_async_tx_descriptor *rxdesc;
708 	struct dma_async_tx_descriptor *txdesc;
709 	struct dma_slave_config	slave_config;
710 	dma_cookie_t		cookie;
711 
712 	dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
713 
714 	/* Check that the channels are available */
715 	if (!rxchan || !txchan)
716 		return -ENODEV;
717 
718 
719 	*plen = xfer->len;
720 
721 	if (atmel_spi_dma_slave_config(as, &slave_config,
722 				       xfer->bits_per_word))
723 		goto err_exit;
724 
725 	/* Send both scatterlists */
726 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
727 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
728 		rxdesc = dmaengine_prep_slave_single(rxchan,
729 						     as->dma_addr_rx_bbuf,
730 						     xfer->len,
731 						     DMA_DEV_TO_MEM,
732 						     DMA_PREP_INTERRUPT |
733 						     DMA_CTRL_ACK);
734 	} else {
735 		rxdesc = dmaengine_prep_slave_sg(rxchan,
736 						 xfer->rx_sg.sgl,
737 						 xfer->rx_sg.nents,
738 						 DMA_DEV_TO_MEM,
739 						 DMA_PREP_INTERRUPT |
740 						 DMA_CTRL_ACK);
741 	}
742 	if (!rxdesc)
743 		goto err_dma;
744 
745 	if (atmel_spi_is_vmalloc_xfer(xfer) &&
746 	    IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
747 		memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
748 		txdesc = dmaengine_prep_slave_single(txchan,
749 						     as->dma_addr_tx_bbuf,
750 						     xfer->len, DMA_MEM_TO_DEV,
751 						     DMA_PREP_INTERRUPT |
752 						     DMA_CTRL_ACK);
753 	} else {
754 		txdesc = dmaengine_prep_slave_sg(txchan,
755 						 xfer->tx_sg.sgl,
756 						 xfer->tx_sg.nents,
757 						 DMA_MEM_TO_DEV,
758 						 DMA_PREP_INTERRUPT |
759 						 DMA_CTRL_ACK);
760 	}
761 	if (!txdesc)
762 		goto err_dma;
763 
764 	dev_dbg(master->dev.parent,
765 		"  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
766 		xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
767 		xfer->rx_buf, (unsigned long long)xfer->rx_dma);
768 
769 	/* Enable relevant interrupts */
770 	spi_writel(as, IER, SPI_BIT(OVRES));
771 
772 	/* Put the callback on the RX transfer only, that should finish last */
773 	rxdesc->callback = dma_callback;
774 	rxdesc->callback_param = master;
775 
776 	/* Submit and fire RX and TX with TX last so we're ready to read! */
777 	cookie = rxdesc->tx_submit(rxdesc);
778 	if (dma_submit_error(cookie))
779 		goto err_dma;
780 	cookie = txdesc->tx_submit(txdesc);
781 	if (dma_submit_error(cookie))
782 		goto err_dma;
783 	rxchan->device->device_issue_pending(rxchan);
784 	txchan->device->device_issue_pending(txchan);
785 
786 	return 0;
787 
788 err_dma:
789 	spi_writel(as, IDR, SPI_BIT(OVRES));
790 	atmel_spi_stop_dma(master);
791 err_exit:
792 	return -ENOMEM;
793 }
794 
795 static void atmel_spi_next_xfer_data(struct spi_master *master,
796 				struct spi_transfer *xfer,
797 				dma_addr_t *tx_dma,
798 				dma_addr_t *rx_dma,
799 				u32 *plen)
800 {
801 	*rx_dma = xfer->rx_dma + xfer->len - *plen;
802 	*tx_dma = xfer->tx_dma + xfer->len - *plen;
803 	if (*plen > master->max_dma_len)
804 		*plen = master->max_dma_len;
805 }
806 
807 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
808 				    struct spi_device *spi,
809 				    struct spi_transfer *xfer)
810 {
811 	u32			scbr, csr;
812 	unsigned long		bus_hz;
813 	int chip_select;
814 
815 	if (spi->cs_gpiod)
816 		chip_select = as->native_cs_for_gpio;
817 	else
818 		chip_select = spi->chip_select;
819 
820 	/* v1 chips start out at half the peripheral bus speed. */
821 	bus_hz = as->spi_clk;
822 	if (!atmel_spi_is_v2(as))
823 		bus_hz /= 2;
824 
825 	/*
826 	 * Calculate the lowest divider that satisfies the
827 	 * constraint, assuming div32/fdiv/mbz == 0.
828 	 */
829 	scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
830 
831 	/*
832 	 * If the resulting divider doesn't fit into the
833 	 * register bitfield, we can't satisfy the constraint.
834 	 */
835 	if (scbr >= (1 << SPI_SCBR_SIZE)) {
836 		dev_err(&spi->dev,
837 			"setup: %d Hz too slow, scbr %u; min %ld Hz\n",
838 			xfer->speed_hz, scbr, bus_hz/255);
839 		return -EINVAL;
840 	}
841 	if (scbr == 0) {
842 		dev_err(&spi->dev,
843 			"setup: %d Hz too high, scbr %u; max %ld Hz\n",
844 			xfer->speed_hz, scbr, bus_hz);
845 		return -EINVAL;
846 	}
847 	csr = spi_readl(as, CSR0 + 4 * chip_select);
848 	csr = SPI_BFINS(SCBR, scbr, csr);
849 	spi_writel(as, CSR0 + 4 * chip_select, csr);
850 	xfer->effective_speed_hz = bus_hz / scbr;
851 
852 	return 0;
853 }
854 
855 /*
856  * Submit next transfer for PDC.
857  * lock is held, spi irq is blocked
858  */
859 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
860 					struct spi_transfer *xfer)
861 {
862 	struct atmel_spi	*as = spi_master_get_devdata(master);
863 	u32			len;
864 	dma_addr_t		tx_dma, rx_dma;
865 
866 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
867 
868 	len = as->current_remaining_bytes;
869 	atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
870 	as->current_remaining_bytes -= len;
871 
872 	spi_writel(as, RPR, rx_dma);
873 	spi_writel(as, TPR, tx_dma);
874 
875 	if (xfer->bits_per_word > 8)
876 		len >>= 1;
877 	spi_writel(as, RCR, len);
878 	spi_writel(as, TCR, len);
879 
880 	dev_dbg(&master->dev,
881 		"  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
882 		xfer, xfer->len, xfer->tx_buf,
883 		(unsigned long long)xfer->tx_dma, xfer->rx_buf,
884 		(unsigned long long)xfer->rx_dma);
885 
886 	if (as->current_remaining_bytes) {
887 		len = as->current_remaining_bytes;
888 		atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
889 		as->current_remaining_bytes -= len;
890 
891 		spi_writel(as, RNPR, rx_dma);
892 		spi_writel(as, TNPR, tx_dma);
893 
894 		if (xfer->bits_per_word > 8)
895 			len >>= 1;
896 		spi_writel(as, RNCR, len);
897 		spi_writel(as, TNCR, len);
898 
899 		dev_dbg(&master->dev,
900 			"  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
901 			xfer, xfer->len, xfer->tx_buf,
902 			(unsigned long long)xfer->tx_dma, xfer->rx_buf,
903 			(unsigned long long)xfer->rx_dma);
904 	}
905 
906 	/* REVISIT: We're waiting for RXBUFF before we start the next
907 	 * transfer because we need to handle some difficult timing
908 	 * issues otherwise. If we wait for TXBUFE in one transfer and
909 	 * then starts waiting for RXBUFF in the next, it's difficult
910 	 * to tell the difference between the RXBUFF interrupt we're
911 	 * actually waiting for and the RXBUFF interrupt of the
912 	 * previous transfer.
913 	 *
914 	 * It should be doable, though. Just not now...
915 	 */
916 	spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
917 	spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
918 }
919 
920 /*
921  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
922  *  - The buffer is either valid for CPU access, else NULL
923  *  - If the buffer is valid, so is its DMA address
924  *
925  * This driver manages the dma address unless message->is_dma_mapped.
926  */
927 static int
928 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
929 {
930 	struct device	*dev = &as->pdev->dev;
931 
932 	xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
933 	if (xfer->tx_buf) {
934 		/* tx_buf is a const void* where we need a void * for the dma
935 		 * mapping */
936 		void *nonconst_tx = (void *)xfer->tx_buf;
937 
938 		xfer->tx_dma = dma_map_single(dev,
939 				nonconst_tx, xfer->len,
940 				DMA_TO_DEVICE);
941 		if (dma_mapping_error(dev, xfer->tx_dma))
942 			return -ENOMEM;
943 	}
944 	if (xfer->rx_buf) {
945 		xfer->rx_dma = dma_map_single(dev,
946 				xfer->rx_buf, xfer->len,
947 				DMA_FROM_DEVICE);
948 		if (dma_mapping_error(dev, xfer->rx_dma)) {
949 			if (xfer->tx_buf)
950 				dma_unmap_single(dev,
951 						xfer->tx_dma, xfer->len,
952 						DMA_TO_DEVICE);
953 			return -ENOMEM;
954 		}
955 	}
956 	return 0;
957 }
958 
959 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
960 				     struct spi_transfer *xfer)
961 {
962 	if (xfer->tx_dma != INVALID_DMA_ADDRESS)
963 		dma_unmap_single(master->dev.parent, xfer->tx_dma,
964 				 xfer->len, DMA_TO_DEVICE);
965 	if (xfer->rx_dma != INVALID_DMA_ADDRESS)
966 		dma_unmap_single(master->dev.parent, xfer->rx_dma,
967 				 xfer->len, DMA_FROM_DEVICE);
968 }
969 
970 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
971 {
972 	spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
973 }
974 
975 static void
976 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
977 {
978 	u8		*rxp;
979 	u16		*rxp16;
980 	unsigned long	xfer_pos = xfer->len - as->current_remaining_bytes;
981 
982 	if (xfer->bits_per_word > 8) {
983 		rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
984 		*rxp16 = spi_readl(as, RDR);
985 	} else {
986 		rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
987 		*rxp = spi_readl(as, RDR);
988 	}
989 	if (xfer->bits_per_word > 8) {
990 		if (as->current_remaining_bytes > 2)
991 			as->current_remaining_bytes -= 2;
992 		else
993 			as->current_remaining_bytes = 0;
994 	} else {
995 		as->current_remaining_bytes--;
996 	}
997 }
998 
999 static void
1000 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1001 {
1002 	u32 fifolr = spi_readl(as, FLR);
1003 	u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1004 	u32 offset = xfer->len - as->current_remaining_bytes;
1005 	u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1006 	u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1007 	u16 rd; /* RD field is the lowest 16 bits of RDR */
1008 
1009 	/* Update the number of remaining bytes to transfer */
1010 	num_bytes = ((xfer->bits_per_word > 8) ?
1011 		     (num_data << 1) :
1012 		     num_data);
1013 
1014 	if (as->current_remaining_bytes > num_bytes)
1015 		as->current_remaining_bytes -= num_bytes;
1016 	else
1017 		as->current_remaining_bytes = 0;
1018 
1019 	/* Handle odd number of bytes when data are more than 8bit width */
1020 	if (xfer->bits_per_word > 8)
1021 		as->current_remaining_bytes &= ~0x1;
1022 
1023 	/* Read data */
1024 	while (num_data) {
1025 		rd = spi_readl(as, RDR);
1026 		if (xfer->bits_per_word > 8)
1027 			*words++ = rd;
1028 		else
1029 			*bytes++ = rd;
1030 		num_data--;
1031 	}
1032 }
1033 
1034 /* Called from IRQ
1035  *
1036  * Must update "current_remaining_bytes" to keep track of data
1037  * to transfer.
1038  */
1039 static void
1040 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1041 {
1042 	if (as->fifo_size)
1043 		atmel_spi_pump_fifo_data(as, xfer);
1044 	else
1045 		atmel_spi_pump_single_data(as, xfer);
1046 }
1047 
1048 /* Interrupt
1049  *
1050  */
1051 static irqreturn_t
1052 atmel_spi_pio_interrupt(int irq, void *dev_id)
1053 {
1054 	struct spi_master	*master = dev_id;
1055 	struct atmel_spi	*as = spi_master_get_devdata(master);
1056 	u32			status, pending, imr;
1057 	struct spi_transfer	*xfer;
1058 	int			ret = IRQ_NONE;
1059 
1060 	imr = spi_readl(as, IMR);
1061 	status = spi_readl(as, SR);
1062 	pending = status & imr;
1063 
1064 	if (pending & SPI_BIT(OVRES)) {
1065 		ret = IRQ_HANDLED;
1066 		spi_writel(as, IDR, SPI_BIT(OVRES));
1067 		dev_warn(master->dev.parent, "overrun\n");
1068 
1069 		/*
1070 		 * When we get an overrun, we disregard the current
1071 		 * transfer. Data will not be copied back from any
1072 		 * bounce buffer and msg->actual_len will not be
1073 		 * updated with the last xfer.
1074 		 *
1075 		 * We will also not process any remaning transfers in
1076 		 * the message.
1077 		 */
1078 		as->done_status = -EIO;
1079 		smp_wmb();
1080 
1081 		/* Clear any overrun happening while cleaning up */
1082 		spi_readl(as, SR);
1083 
1084 		complete(&as->xfer_completion);
1085 
1086 	} else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1087 		atmel_spi_lock(as);
1088 
1089 		if (as->current_remaining_bytes) {
1090 			ret = IRQ_HANDLED;
1091 			xfer = as->current_transfer;
1092 			atmel_spi_pump_pio_data(as, xfer);
1093 			if (!as->current_remaining_bytes)
1094 				spi_writel(as, IDR, pending);
1095 
1096 			complete(&as->xfer_completion);
1097 		}
1098 
1099 		atmel_spi_unlock(as);
1100 	} else {
1101 		WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1102 		ret = IRQ_HANDLED;
1103 		spi_writel(as, IDR, pending);
1104 	}
1105 
1106 	return ret;
1107 }
1108 
1109 static irqreturn_t
1110 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1111 {
1112 	struct spi_master	*master = dev_id;
1113 	struct atmel_spi	*as = spi_master_get_devdata(master);
1114 	u32			status, pending, imr;
1115 	int			ret = IRQ_NONE;
1116 
1117 	imr = spi_readl(as, IMR);
1118 	status = spi_readl(as, SR);
1119 	pending = status & imr;
1120 
1121 	if (pending & SPI_BIT(OVRES)) {
1122 
1123 		ret = IRQ_HANDLED;
1124 
1125 		spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1126 				     | SPI_BIT(OVRES)));
1127 
1128 		/* Clear any overrun happening while cleaning up */
1129 		spi_readl(as, SR);
1130 
1131 		as->done_status = -EIO;
1132 
1133 		complete(&as->xfer_completion);
1134 
1135 	} else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1136 		ret = IRQ_HANDLED;
1137 
1138 		spi_writel(as, IDR, pending);
1139 
1140 		complete(&as->xfer_completion);
1141 	}
1142 
1143 	return ret;
1144 }
1145 
1146 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1147 {
1148 	struct spi_delay *delay = &spi->word_delay;
1149 	u32 value = delay->value;
1150 
1151 	switch (delay->unit) {
1152 	case SPI_DELAY_UNIT_NSECS:
1153 		value /= 1000;
1154 		break;
1155 	case SPI_DELAY_UNIT_USECS:
1156 		break;
1157 	default:
1158 		return -EINVAL;
1159 	}
1160 
1161 	return (as->spi_clk / 1000000 * value) >> 5;
1162 }
1163 
1164 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1165 {
1166 	int i;
1167 	struct spi_master *master = platform_get_drvdata(as->pdev);
1168 
1169 	if (!as->native_cs_free)
1170 		return; /* already initialized */
1171 
1172 	if (!master->cs_gpiods)
1173 		return; /* No CS GPIO */
1174 
1175 	/*
1176 	 * On the first version of the controller (AT91RM9200), CS0
1177 	 * can't be used associated with GPIO
1178 	 */
1179 	if (atmel_spi_is_v2(as))
1180 		i = 0;
1181 	else
1182 		i = 1;
1183 
1184 	for (; i < 4; i++)
1185 		if (master->cs_gpiods[i])
1186 			as->native_cs_free |= BIT(i);
1187 
1188 	if (as->native_cs_free)
1189 		as->native_cs_for_gpio = ffs(as->native_cs_free);
1190 }
1191 
1192 static int atmel_spi_setup(struct spi_device *spi)
1193 {
1194 	struct atmel_spi	*as;
1195 	struct atmel_spi_device	*asd;
1196 	u32			csr;
1197 	unsigned int		bits = spi->bits_per_word;
1198 	int chip_select;
1199 	int			word_delay_csr;
1200 
1201 	as = spi_master_get_devdata(spi->master);
1202 
1203 	/* see notes above re chipselect */
1204 	if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1205 		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1206 		return -EINVAL;
1207 	}
1208 
1209 	/* Setup() is called during spi_register_controller(aka
1210 	 * spi_register_master) but after all membmers of the cs_gpiod
1211 	 * array have been filled, so we can looked for which native
1212 	 * CS will be free for using with GPIO
1213 	 */
1214 	initialize_native_cs_for_gpio(as);
1215 
1216 	if (spi->cs_gpiod && as->native_cs_free) {
1217 		dev_err(&spi->dev,
1218 			"No native CS available to support this GPIO CS\n");
1219 		return -EBUSY;
1220 	}
1221 
1222 	if (spi->cs_gpiod)
1223 		chip_select = as->native_cs_for_gpio;
1224 	else
1225 		chip_select = spi->chip_select;
1226 
1227 	csr = SPI_BF(BITS, bits - 8);
1228 	if (spi->mode & SPI_CPOL)
1229 		csr |= SPI_BIT(CPOL);
1230 	if (!(spi->mode & SPI_CPHA))
1231 		csr |= SPI_BIT(NCPHA);
1232 
1233 	if (!spi->cs_gpiod)
1234 		csr |= SPI_BIT(CSAAT);
1235 	csr |= SPI_BF(DLYBS, 0);
1236 
1237 	word_delay_csr = atmel_word_delay_csr(spi, as);
1238 	if (word_delay_csr < 0)
1239 		return word_delay_csr;
1240 
1241 	/* DLYBCT adds delays between words.  This is useful for slow devices
1242 	 * that need a bit of time to setup the next transfer.
1243 	 */
1244 	csr |= SPI_BF(DLYBCT, word_delay_csr);
1245 
1246 	asd = spi->controller_state;
1247 	if (!asd) {
1248 		asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1249 		if (!asd)
1250 			return -ENOMEM;
1251 
1252 		spi->controller_state = asd;
1253 	}
1254 
1255 	asd->csr = csr;
1256 
1257 	dev_dbg(&spi->dev,
1258 		"setup: bpw %u mode 0x%x -> csr%d %08x\n",
1259 		bits, spi->mode, spi->chip_select, csr);
1260 
1261 	if (!atmel_spi_is_v2(as))
1262 		spi_writel(as, CSR0 + 4 * chip_select, csr);
1263 
1264 	return 0;
1265 }
1266 
1267 static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1268 {
1269 	struct atmel_spi *as = spi_master_get_devdata(spi->master);
1270 	/* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1271 	 * since we already have routines for activate/deactivate translate
1272 	 * high/low to active/inactive
1273 	 */
1274 	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1275 
1276 	if (enable) {
1277 		cs_activate(as, spi);
1278 	} else {
1279 		cs_deactivate(as, spi);
1280 	}
1281 
1282 }
1283 
1284 static int atmel_spi_one_transfer(struct spi_master *master,
1285 					struct spi_device *spi,
1286 					struct spi_transfer *xfer)
1287 {
1288 	struct atmel_spi	*as;
1289 	u8			bits;
1290 	u32			len;
1291 	struct atmel_spi_device	*asd;
1292 	int			timeout;
1293 	int			ret;
1294 	unsigned long		dma_timeout;
1295 
1296 	as = spi_master_get_devdata(master);
1297 
1298 	asd = spi->controller_state;
1299 	bits = (asd->csr >> 4) & 0xf;
1300 	if (bits != xfer->bits_per_word - 8) {
1301 		dev_dbg(&spi->dev,
1302 			"you can't yet change bits_per_word in transfers\n");
1303 		return -ENOPROTOOPT;
1304 	}
1305 
1306 	/*
1307 	 * DMA map early, for performance (empties dcache ASAP) and
1308 	 * better fault reporting.
1309 	 */
1310 	if ((!master->cur_msg_mapped)
1311 		&& as->use_pdc) {
1312 		if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1313 			return -ENOMEM;
1314 	}
1315 
1316 	atmel_spi_set_xfer_speed(as, spi, xfer);
1317 
1318 	as->done_status = 0;
1319 	as->current_transfer = xfer;
1320 	as->current_remaining_bytes = xfer->len;
1321 	while (as->current_remaining_bytes) {
1322 		reinit_completion(&as->xfer_completion);
1323 
1324 		if (as->use_pdc) {
1325 			atmel_spi_lock(as);
1326 			atmel_spi_pdc_next_xfer(master, xfer);
1327 			atmel_spi_unlock(as);
1328 		} else if (atmel_spi_use_dma(as, xfer)) {
1329 			len = as->current_remaining_bytes;
1330 			ret = atmel_spi_next_xfer_dma_submit(master,
1331 								xfer, &len);
1332 			if (ret) {
1333 				dev_err(&spi->dev,
1334 					"unable to use DMA, fallback to PIO\n");
1335 				as->done_status = ret;
1336 				break;
1337 			} else {
1338 				as->current_remaining_bytes -= len;
1339 				if (as->current_remaining_bytes < 0)
1340 					as->current_remaining_bytes = 0;
1341 			}
1342 		} else {
1343 			atmel_spi_lock(as);
1344 			atmel_spi_next_xfer_pio(master, xfer);
1345 			atmel_spi_unlock(as);
1346 		}
1347 
1348 		dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1349 							  SPI_DMA_TIMEOUT);
1350 		if (WARN_ON(dma_timeout == 0)) {
1351 			dev_err(&spi->dev, "spi transfer timeout\n");
1352 			as->done_status = -EIO;
1353 		}
1354 
1355 		if (as->done_status)
1356 			break;
1357 	}
1358 
1359 	if (as->done_status) {
1360 		if (as->use_pdc) {
1361 			dev_warn(master->dev.parent,
1362 				"overrun (%u/%u remaining)\n",
1363 				spi_readl(as, TCR), spi_readl(as, RCR));
1364 
1365 			/*
1366 			 * Clean up DMA registers and make sure the data
1367 			 * registers are empty.
1368 			 */
1369 			spi_writel(as, RNCR, 0);
1370 			spi_writel(as, TNCR, 0);
1371 			spi_writel(as, RCR, 0);
1372 			spi_writel(as, TCR, 0);
1373 			for (timeout = 1000; timeout; timeout--)
1374 				if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1375 					break;
1376 			if (!timeout)
1377 				dev_warn(master->dev.parent,
1378 					 "timeout waiting for TXEMPTY");
1379 			while (spi_readl(as, SR) & SPI_BIT(RDRF))
1380 				spi_readl(as, RDR);
1381 
1382 			/* Clear any overrun happening while cleaning up */
1383 			spi_readl(as, SR);
1384 
1385 		} else if (atmel_spi_use_dma(as, xfer)) {
1386 			atmel_spi_stop_dma(master);
1387 		}
1388 	}
1389 
1390 	if (!master->cur_msg_mapped
1391 		&& as->use_pdc)
1392 		atmel_spi_dma_unmap_xfer(master, xfer);
1393 
1394 	if (as->use_pdc)
1395 		atmel_spi_disable_pdc_transfer(as);
1396 
1397 	return as->done_status;
1398 }
1399 
1400 static void atmel_spi_cleanup(struct spi_device *spi)
1401 {
1402 	struct atmel_spi_device	*asd = spi->controller_state;
1403 
1404 	if (!asd)
1405 		return;
1406 
1407 	spi->controller_state = NULL;
1408 	kfree(asd);
1409 }
1410 
1411 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1412 {
1413 	return spi_readl(as, VERSION) & 0x00000fff;
1414 }
1415 
1416 static void atmel_get_caps(struct atmel_spi *as)
1417 {
1418 	unsigned int version;
1419 
1420 	version = atmel_get_version(as);
1421 
1422 	as->caps.is_spi2 = version > 0x121;
1423 	as->caps.has_wdrbt = version >= 0x210;
1424 	as->caps.has_dma_support = version >= 0x212;
1425 	as->caps.has_pdc_support = version < 0x212;
1426 }
1427 
1428 static void atmel_spi_init(struct atmel_spi *as)
1429 {
1430 	spi_writel(as, CR, SPI_BIT(SWRST));
1431 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1432 
1433 	/* It is recommended to enable FIFOs first thing after reset */
1434 	if (as->fifo_size)
1435 		spi_writel(as, CR, SPI_BIT(FIFOEN));
1436 
1437 	if (as->caps.has_wdrbt) {
1438 		spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1439 				| SPI_BIT(MSTR));
1440 	} else {
1441 		spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1442 	}
1443 
1444 	if (as->use_pdc)
1445 		spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1446 	spi_writel(as, CR, SPI_BIT(SPIEN));
1447 }
1448 
1449 static int atmel_spi_probe(struct platform_device *pdev)
1450 {
1451 	struct resource		*regs;
1452 	int			irq;
1453 	struct clk		*clk;
1454 	int			ret;
1455 	struct spi_master	*master;
1456 	struct atmel_spi	*as;
1457 
1458 	/* Select default pin state */
1459 	pinctrl_pm_select_default_state(&pdev->dev);
1460 
1461 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1462 	if (!regs)
1463 		return -ENXIO;
1464 
1465 	irq = platform_get_irq(pdev, 0);
1466 	if (irq < 0)
1467 		return irq;
1468 
1469 	clk = devm_clk_get(&pdev->dev, "spi_clk");
1470 	if (IS_ERR(clk))
1471 		return PTR_ERR(clk);
1472 
1473 	/* setup spi core then atmel-specific driver state */
1474 	master = spi_alloc_master(&pdev->dev, sizeof(*as));
1475 	if (!master)
1476 		return -ENOMEM;
1477 
1478 	/* the spi->mode bits understood by this driver: */
1479 	master->use_gpio_descriptors = true;
1480 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1481 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1482 	master->dev.of_node = pdev->dev.of_node;
1483 	master->bus_num = pdev->id;
1484 	master->num_chipselect = 4;
1485 	master->setup = atmel_spi_setup;
1486 	master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1487 	master->transfer_one = atmel_spi_one_transfer;
1488 	master->set_cs = atmel_spi_set_cs;
1489 	master->cleanup = atmel_spi_cleanup;
1490 	master->auto_runtime_pm = true;
1491 	master->max_dma_len = SPI_MAX_DMA_XFER;
1492 	master->can_dma = atmel_spi_can_dma;
1493 	platform_set_drvdata(pdev, master);
1494 
1495 	as = spi_master_get_devdata(master);
1496 
1497 	spin_lock_init(&as->lock);
1498 
1499 	as->pdev = pdev;
1500 	as->regs = devm_ioremap_resource(&pdev->dev, regs);
1501 	if (IS_ERR(as->regs)) {
1502 		ret = PTR_ERR(as->regs);
1503 		goto out_unmap_regs;
1504 	}
1505 	as->phybase = regs->start;
1506 	as->irq = irq;
1507 	as->clk = clk;
1508 
1509 	init_completion(&as->xfer_completion);
1510 
1511 	atmel_get_caps(as);
1512 
1513 	as->use_dma = false;
1514 	as->use_pdc = false;
1515 	if (as->caps.has_dma_support) {
1516 		ret = atmel_spi_configure_dma(master, as);
1517 		if (ret == 0) {
1518 			as->use_dma = true;
1519 		} else if (ret == -EPROBE_DEFER) {
1520 			goto out_unmap_regs;
1521 		}
1522 	} else if (as->caps.has_pdc_support) {
1523 		as->use_pdc = true;
1524 	}
1525 
1526 	if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1527 		as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1528 						      SPI_MAX_DMA_XFER,
1529 						      &as->dma_addr_rx_bbuf,
1530 						      GFP_KERNEL | GFP_DMA);
1531 		if (!as->addr_rx_bbuf) {
1532 			as->use_dma = false;
1533 		} else {
1534 			as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1535 					SPI_MAX_DMA_XFER,
1536 					&as->dma_addr_tx_bbuf,
1537 					GFP_KERNEL | GFP_DMA);
1538 			if (!as->addr_tx_bbuf) {
1539 				as->use_dma = false;
1540 				dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1541 						  as->addr_rx_bbuf,
1542 						  as->dma_addr_rx_bbuf);
1543 			}
1544 		}
1545 		if (!as->use_dma)
1546 			dev_info(master->dev.parent,
1547 				 "  can not allocate dma coherent memory\n");
1548 	}
1549 
1550 	if (as->caps.has_dma_support && !as->use_dma)
1551 		dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1552 
1553 	if (as->use_pdc) {
1554 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1555 					0, dev_name(&pdev->dev), master);
1556 	} else {
1557 		ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1558 					0, dev_name(&pdev->dev), master);
1559 	}
1560 	if (ret)
1561 		goto out_unmap_regs;
1562 
1563 	/* Initialize the hardware */
1564 	ret = clk_prepare_enable(clk);
1565 	if (ret)
1566 		goto out_free_irq;
1567 
1568 	as->spi_clk = clk_get_rate(clk);
1569 
1570 	as->fifo_size = 0;
1571 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1572 				  &as->fifo_size)) {
1573 		dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1574 	}
1575 
1576 	atmel_spi_init(as);
1577 
1578 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1579 	pm_runtime_use_autosuspend(&pdev->dev);
1580 	pm_runtime_set_active(&pdev->dev);
1581 	pm_runtime_enable(&pdev->dev);
1582 
1583 	ret = devm_spi_register_master(&pdev->dev, master);
1584 	if (ret)
1585 		goto out_free_dma;
1586 
1587 	/* go! */
1588 	dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1589 			atmel_get_version(as), (unsigned long)regs->start,
1590 			irq);
1591 
1592 	return 0;
1593 
1594 out_free_dma:
1595 	pm_runtime_disable(&pdev->dev);
1596 	pm_runtime_set_suspended(&pdev->dev);
1597 
1598 	if (as->use_dma)
1599 		atmel_spi_release_dma(master);
1600 
1601 	spi_writel(as, CR, SPI_BIT(SWRST));
1602 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1603 	clk_disable_unprepare(clk);
1604 out_free_irq:
1605 out_unmap_regs:
1606 	spi_master_put(master);
1607 	return ret;
1608 }
1609 
1610 static int atmel_spi_remove(struct platform_device *pdev)
1611 {
1612 	struct spi_master	*master = platform_get_drvdata(pdev);
1613 	struct atmel_spi	*as = spi_master_get_devdata(master);
1614 
1615 	pm_runtime_get_sync(&pdev->dev);
1616 
1617 	/* reset the hardware and block queue progress */
1618 	if (as->use_dma) {
1619 		atmel_spi_stop_dma(master);
1620 		atmel_spi_release_dma(master);
1621 		if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1622 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1623 					  as->addr_tx_bbuf,
1624 					  as->dma_addr_tx_bbuf);
1625 			dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1626 					  as->addr_rx_bbuf,
1627 					  as->dma_addr_rx_bbuf);
1628 		}
1629 	}
1630 
1631 	spin_lock_irq(&as->lock);
1632 	spi_writel(as, CR, SPI_BIT(SWRST));
1633 	spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1634 	spi_readl(as, SR);
1635 	spin_unlock_irq(&as->lock);
1636 
1637 	clk_disable_unprepare(as->clk);
1638 
1639 	pm_runtime_put_noidle(&pdev->dev);
1640 	pm_runtime_disable(&pdev->dev);
1641 
1642 	return 0;
1643 }
1644 
1645 #ifdef CONFIG_PM
1646 static int atmel_spi_runtime_suspend(struct device *dev)
1647 {
1648 	struct spi_master *master = dev_get_drvdata(dev);
1649 	struct atmel_spi *as = spi_master_get_devdata(master);
1650 
1651 	clk_disable_unprepare(as->clk);
1652 	pinctrl_pm_select_sleep_state(dev);
1653 
1654 	return 0;
1655 }
1656 
1657 static int atmel_spi_runtime_resume(struct device *dev)
1658 {
1659 	struct spi_master *master = dev_get_drvdata(dev);
1660 	struct atmel_spi *as = spi_master_get_devdata(master);
1661 
1662 	pinctrl_pm_select_default_state(dev);
1663 
1664 	return clk_prepare_enable(as->clk);
1665 }
1666 
1667 #ifdef CONFIG_PM_SLEEP
1668 static int atmel_spi_suspend(struct device *dev)
1669 {
1670 	struct spi_master *master = dev_get_drvdata(dev);
1671 	int ret;
1672 
1673 	/* Stop the queue running */
1674 	ret = spi_master_suspend(master);
1675 	if (ret)
1676 		return ret;
1677 
1678 	if (!pm_runtime_suspended(dev))
1679 		atmel_spi_runtime_suspend(dev);
1680 
1681 	return 0;
1682 }
1683 
1684 static int atmel_spi_resume(struct device *dev)
1685 {
1686 	struct spi_master *master = dev_get_drvdata(dev);
1687 	struct atmel_spi *as = spi_master_get_devdata(master);
1688 	int ret;
1689 
1690 	ret = clk_prepare_enable(as->clk);
1691 	if (ret)
1692 		return ret;
1693 
1694 	atmel_spi_init(as);
1695 
1696 	clk_disable_unprepare(as->clk);
1697 
1698 	if (!pm_runtime_suspended(dev)) {
1699 		ret = atmel_spi_runtime_resume(dev);
1700 		if (ret)
1701 			return ret;
1702 	}
1703 
1704 	/* Start the queue running */
1705 	return spi_master_resume(master);
1706 }
1707 #endif
1708 
1709 static const struct dev_pm_ops atmel_spi_pm_ops = {
1710 	SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1711 	SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1712 			   atmel_spi_runtime_resume, NULL)
1713 };
1714 #define ATMEL_SPI_PM_OPS	(&atmel_spi_pm_ops)
1715 #else
1716 #define ATMEL_SPI_PM_OPS	NULL
1717 #endif
1718 
1719 static const struct of_device_id atmel_spi_dt_ids[] = {
1720 	{ .compatible = "atmel,at91rm9200-spi" },
1721 	{ /* sentinel */ }
1722 };
1723 
1724 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1725 
1726 static struct platform_driver atmel_spi_driver = {
1727 	.driver		= {
1728 		.name	= "atmel_spi",
1729 		.pm	= ATMEL_SPI_PM_OPS,
1730 		.of_match_table	= atmel_spi_dt_ids,
1731 	},
1732 	.probe		= atmel_spi_probe,
1733 	.remove		= atmel_spi_remove,
1734 };
1735 module_platform_driver(atmel_spi_driver);
1736 
1737 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1738 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1739 MODULE_LICENSE("GPL");
1740 MODULE_ALIAS("platform:atmel_spi");
1741